Natural Resource Stewardship and Science

Plant Community Composition and Structure Monitoring at Theodore Roosevelt National Park 2019 Data Report

Natural Resource Data Series NPS/THRO/NRDS-2019/1250

ON THIS PAGE

Plant community composition and structure monitoring plot THRON_PCM_008 at Theodore Roosevelt National Park, July 2019. Photograph courtesy of the National Park Service.

ON THE COVER

Landscape view taken from monitoring plot THROS_PCM_0024 at Theodore Roosevelt National Park, August 2019. Photograph courtesy of the National Park Service.

Plant Community Composition and Structure Monitoring at Theodore Roosevelt National Park

2019 Data Report

Natural Resource Data Series NPS/THRO/NRDS-2019/1250

Ryan M. Manuel¹, Daniel J. Swanson²

¹National Park Service Northern Great Plains Inventory & Monitoring Network 820 Columbus St. Rapid City, SD 57701

²National Park Service Northern Great Plains Fire Management 26611 U.S. Hwy 385 Hot Springs, SD 57747

November 2019

U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.

The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change.

All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.

Data in this report were collected and analyzed using methods based on established, peer-reviewed protocols and were analyzed and interpreted within the guidelines of the protocols.

Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government.

This report is available in digital format from the <u>Northern Great Plains Inventory & Monitoring</u> <u>website</u> and the <u>Natural Resource Publications Management website</u>. If you have difficulty accessing information in this publication, particularly if using assistive technology, please email <u>irma@nps.gov</u>.

Please cite this publication as:

Manuel, R. M., and D. J. Swanson. 2019. Plant community composition and structure monitoring at Theodore Roosevelt National Park: 2019 data report. Natural Resource Data Series NPS/THRO/NRDS—2019/1250. National Park Service, Fort Collins, Colorado.

Contents

Figuresiv
Tablesv
Abstractvi
Acknowledgmentsviii
Introduction1
Methods
Sample Design
Plot Layout and Sampling4
Data Management and Analysis
Results9
Further Analysis
Literature Cited

Page

Figures

	Page
Figure 1. Maps of plant community and fire effects monitoring plots surveyed in 2019 in the north unit (top) and south unit (bottom) of Theodore Roosevelt National Park	r
Figure 2. Long-term monitoring plot layout used for sampling vegetation used by the	
Northern Great Plains Inventory and Monitoring and Fire Ecology programs Figure 3. The Northern Great Plains Inventory & Monitoring vegetation crew used point-	5
intercept (left and center panel) and quadrats (right panel) to document plant diversity and abundance	6

Tables

Table 1. Field journal for Northern Great Plains Network (NGPN) and Northern GreatPlains Fire Ecology Program (NGPFire) plant community monitoring (PCM and FPCM)visits at Theodore Roosevelt National Park (THRO) in 2019.	4
Table 2. Exotic species included in the Northern Great Plains Network's early detection and rapid response program.	7
Table 3. A list of all plant species identified in Theodore Roosevelt National Park's long-term plant community monitoring plots in 2019.	9
Table 4. Total number of plant species identified in plots monitored at TheodoreRoosevelt National Park in 2019.	15
Table 5. Absolute percent cover of native and exotic plant species in plots monitored at Theodore Roosevelt National Park in 2019.	16
Table 6. Woody species densities from 10 long-term monitoring plots visited at Theodore Roosevelt National Park in 2019.	17
Table 7. Surface fuels summary for three plots visited in 2019 at Theodore Roosevelt National Park by Northern Great Plains Network.	19
Table 8. Disturbance type and size (area in m ²) observed in 12 plots visited at TheodoreRoosevelt National Park by Northern Great Plains Network in 2019.	19

Page

Abstract

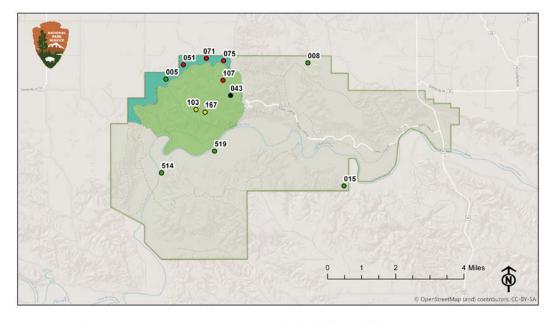
This report presents the results of vegetation monitoring work conducted in 2019 at Theodore Roosevelt National Park (THRO) by the Northern Great Plains Inventory and Monitoring Network (NGPN) and the Northern Great Plains Fire Ecology (NGPFire) program.

During the ninth consecutive year of data collection, the NGPN field crew visited fifteen long-term plant community monitoring (PCM) plots to collect data to assess plant communities at THRO. Four scheduled PCM plot installs in THRO's south unit and one PCM plot install in THRO's North unit were not visited or completed in 2019. The compliance required for installation of permanent rebar and nails had not yet been completed at the time of fieldwork. These five PCM plots may be installed on a future visit. The NGPFire crew visited three PCM plots and eight long-term fire plant community (FPCM) plots to collect data and assess fire effects following prescribed burns at the park. Two of these FPCM plots (THRON_FPCM_0103 and THRON_FPCM_0167) were not read within the Sheep burn unit since they did not burn in the 2019 Sheep prescribed fire. This monitoring work is part of a long-term monitoring effort with the goal of sampling 20 of 100 randomly located plots every year so that each plot is visited for two consecutive years and then rested for eight years on a ten-year rotating basis. NGPN staff collected data relating to species richness, herb-layer height, abundance of native and non-native species, ground cover, and site disturbance in each of the 15 visited plots. In plots where woody species were present, NGPN measured tree regeneration, tall shrub and tree density, and woody fuel load. The NGPFire crew collected data relating to herb-layer height, abundance of native and non-native species, and ground cover. In addition to the abovementioned vegetation indices, the NGPFire crew also collected species richness data in the one plot monitored within the Jones Creek unit.

Monitoring crews identified 194 species in the 24 monitoring plots visited in 2019 at THRO, 25 of which were exotic species. The average absolute cover of exotic species was 45% and 151% for native species. Tree density, health, and seedling regeneration, as well as woody fuel loads, were recorded at 9 plots. The most common disturbances observed were the result of animal activity (e.g., grazing, game trails, and prairie dogs).

Liatris punctata observed in Theodore Roosevelt National Park (NPS /RYAN MANUEL)

Acknowledgments

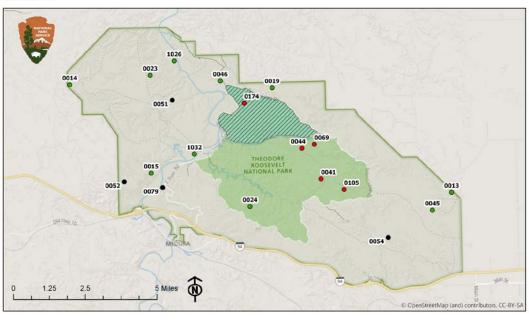

We thank all the authors of the Northern Great Plains Plant Community Monitoring Protocol, particularly A. Symstad, for outstanding guidance on data collection and reporting. Thank you to the staff at THRO, particularly Grant Geis for his logistical support and safety checks. The 2019 NGPN vegetation field crew of S. Rockwood, M. Davis, R. Manuel, T. Schaffner, E. Duda, and T. Bortz with the assistance of the Northern Great Plains Fire Ecology crew of D. Swanson, I. Muirhead, M. Pahler and L. Badertscher, collected all the data included in this report.

Introduction

Located in southwestern North Dakota, Theodore Roosevelt National Park (THRO) encompasses 70,477 acres in the Little Missouri River Badlands. THRO is composed of three discrete management units, each of which is a patchwork of mixed-grass prairie, clay buttes, bottomland forest, and open shrublands. The three park units (North, South, and Elkhorn Ranch Site) are connected by the Little Missouri River. The park would like more information regarding the condition of native grasslands and woody draws because of the large number of exotic species, but a lack of data in the past made estimates of condition in these and other plant communities difficult (Amberg et al. 2014). The Northern Great Plains Inventory & Monitoring Program (NGPN) began vegetation monitoring efforts in THRO in 2011 (Ashton et al. 2012). Vegetation monitoring protocols and plot locations were chosen to represent the north and south unit and to coordinate efforts with the Northern Great Plains Fire Ecology Program (NGPFire).

The long-term objectives of the NGPN plant community monitoring effort (Symstad et al. 2012b) in THRO are to determine park-wide status and long-term trends in vegetation species composition (e.g., exotic vs. native) and structure (e.g., cover, height) of herbaceous and shrub species, determine status (at 10-year intervals) and long-term trends of tree density by species, height class, and diameter class in the riparian forest, and improve our understanding of the effects of external drivers and management actions on plant community species composition and structure by correlating changes in vegetation composition and structure with changes in climate, landscape patterns, atmospheric chemical composition, fire, and invasive plant control.

This report is intended to provide a timely release of basic data sets and data summaries from our sampling efforts at THRO in 2019, NGPN's ninth year of sampling vegetation. NGPN visited 15 plots and NGPFire visited a total of 11 plots in the south unit and north unit.


Theodore Roosevelt National Park North Unit

Northern Great Plains Inventory & Monitoring Network

Medora, ND 58645

National Park Service November 2019 2019 Plant Community Monitoring

- Plant Community Plots
 Sheep Burn Unit (2019)
- Plant Community Plots (Not Visited)
- Fire Effects Plots
- Northwest Burn Unit (2019) Trails Roads
- Fire Effects Plots (Not burned or read)

Theodore Roosevelt National Park South Unit Medora, ND 58645

Northern Great Plains Inventory & Monitoring Network National Park Service November 2019

2019 Plant Community Monitoring

- Image: Speed and Speed
- Plant Community Plots
 Fire Effects Plots
- Plant Community Plots (Not Visited)

Figure 1. Maps of plant community and fire effects monitoring plots surveyed in 2019 in the north unit (top) and south unit (bottom) of Theodore Roosevelt National Park.

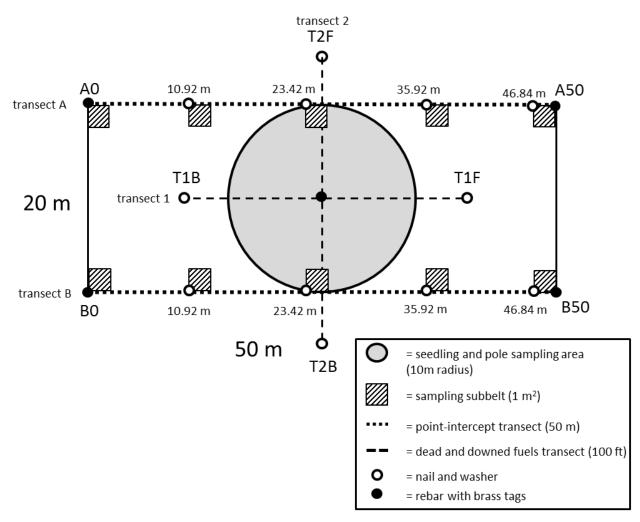
Methods

The NGPN Plant Community Composition and Structure Monitoring Protocol (Symstad et al. 2012b, a) describes in detail the methods used for sampling long-term plots. Below, we briefly describe the general approach. For those interested in more detail, please see the protocol publications cited above, and available at https://www.nps.gov/im/ngpn/plant-communities.htm.

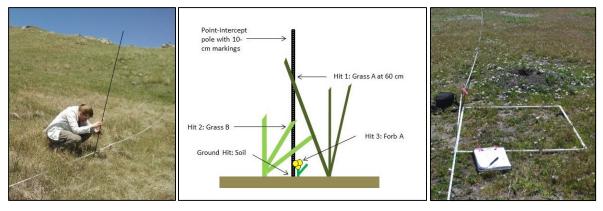
Sample Design

The NGPN and NGPFire implemented a survey to monitor plant community structure and composition in THRO using a spatially balanced probability design (Generalized Random Tessellation Stratified [GRTS]; <u>Stevens and Olsen 2003, 2004</u>). Using the GRTS design, NGPN selected 100 randomly located sites within the north unit and the south unit. These sites were divided into 10 monitoring panels with 10 sites each. Originally, NGPN planned on visiting two panels (28 sites) every year. However, due to logistical constraints on the NGPN and Fire Ecology Programs, the number of anticipated site visits per year was reduced to the current 20 per year. In 2019, 15 sites were visited during the last 10 days of July and the second week of August (Table 1). Four scheduled PCM plot installs in THRO's south unit and one PCM plot install in THRO's North unit were not visited or completed in 2019. The approval required for installation of permanent rebar and nails had not yet been granted. These five PCM plots may be installed on a future visit once compliance requirements have been met. Data from these randomly selected sites can be used to estimate condition.

NGPFire established and monitored a number of new Fire Plant Community monitoring (FPCM) plots focused on active burn units using the same GRTS sampling schema. When a previously installed PCM plot was located within an active burn unit, those plots were monitored as long as they meet specified fire effects monitoring parameters (e.g. minimum distance to burn perimeter, sufficient vegetation to burn, stratum definition). NGPFire visits sites based on a 1, 2, 5, and 10 year sampling schedule. In 2019 NGPFire monitored one plot within the Jones Creek unit, which was burned in the Donut Hole RX (2018), as a year 2 read. Four additional plots were monitored within the greater Donut Hole unit as year 2 reads following the 2018 Donut Hole prescribed fire (Table 1). In addition, three plots were monitored as year 1 reads in the NW Corner and one in the Sheep unit following these prescribed fires on May 16, 2019.


Table 1. Field journal for Northern Great Plains Network (NGPN) and Northern Great Plains Fire Ecology Program (NGPFire) plant community monitoring (PCM and FPCM) visits at Theodore Roosevelt National Park (THRO) in 2019. Four NGPFire crew members visited 11 plots. The burn units associated with the 11 plots visited by NGPFire are included in the field notes along with burn details. Six NGPN crew members completed 15 plots with the assistance of NGPN GIS tech Amy Fowler at three plots.

Date Visited	Plot Name	Burn Unit	Field Notes
7/18/2019	FPCM_0174	Jones Creek	B line only, 100pts and 5 quads; year 2 read
7/19/2019	FPCM_0105	Donut Hole	A&B transects, year 2 read
7/19/2019	PCM_0044	Donut Hole	A&B transects, year 2 read
7/18/2019	PCM_0069	Donut Hole	A&B tansects, year 2 read
7/19/2019	PCM_0041	Donut Hole	A&B transects, year 2 read
7/21/2019	FPCM-0107	Sheep	Sheep RX (May 2019), A transect, 100 pts, year 1 read
7/21/2019	FPCM-0103	Sheep	Plot did not burn in Sheep RX (May 16, 2019), so we did not read plot.
7/21/2019	FPCM-0167	Sheep	Plot did not burn in Sheep RX (May 16, 2019), so we did not read plot.
7/20/2019	FPCM-051	NW Corner	NW Corner RX (May 16, 2019), A&B transects; year 1 read
7/20/2019	FPCM-071	NW Corner	NW Corner RX (May 16, 2019), A&B transects; year 1 read
7/20/2019	FPCM-075	NW Corner	NW Corner RX (May 16, 2019), A&B transects; year 1 read
7/22/2019	PCM_005	-	-
7/23/2019	PCM_514	-	-
7/23/2019	PCM_519	_	Did not have time to read trees, seedlings, or fuels
7/24/2019	PCM_008	-	Recollected points using ipad
7/25/2019	PCM_015	-	Recorded navigation route and recollected points using ipad
7/26/2019	PCM_0046	_	-
7/27/2019	PCM_0045	-	-
7/27/2019	PCM_0013	_	-
7/28/2019	PCM_0019	-	-
7/28/2019	PCM_0014	-	-
8/5/2019	PCM_0024	-	-
8/6/2019	PCM_0023	_	Plot points recollected w/ Arrow 100; Poison Ivy
8/6/2019	PCM_1026	_	-
8/7/2019	PCM_0015	_	-
8/7/2019	PCM_1032	-	Plot partially buried due to flood plain. Recollected the located points w/ Arrow 100


Plot Layout and Sampling

At each site visited, the NGPN crew recorded plant species cover and frequency in a rectangular, 50 m x 20 m (0.1 ha), permanent plot (Figure 2). Data on ground cover, herb-layer height (≤ 2 m), and plant cover were collected on two 50 m transects (the long sides of the plot) using a point-intercept method (Figure 3). Species richness data from the point-intercept method were supplemented with species presence data collected in five 1 m² quadrats located systematically along each transect

(Figure 2). The NGPN crew measured species presence at ten quadrats per plot. If a plant species was identified in the plot but was not included on the verified park species list, a voucher plant specimen was collected when possible and submitted to a botanist for independent verification. NGP fire collected point-intercept data, but quadrat data was only collect from 5 quadrats within one plot in 2019.

Figure 2. Long-term monitoring plot layout used for sampling vegetation used by the Northern Great Plains Inventory and Monitoring and Fire Ecology programs.

Figure 3. The Northern Great Plains Inventory & Monitoring vegetation crew used point-intercept (left and center panel) and quadrats (right panel) to document plant diversity and abundance.

When woody species were present within 38 m of plot center, monitoring crews collected tree regeneration and tall shrub density data within a 10 m radius subplot centered in the larger 50 m x 20 m (0.1 ha) plot. Trees with diameter at breast height (DBH) > 15 cm, present within the 0.1 ha plot were mapped and tagged. For each tree, the species, DBH, status (live or dead), and condition (e.g., leaf-discoloration, insect-damaged, etc.) were recorded. For all poles ($2.54 \le DBH \le 15$ cm) located within the 10 m radius subplot, only DBH and status were recorded. Tree and tall shrub species with DBH < 2.54 cm (seedlings) were tallied by species within the 10 m radius subplot. In 2019, NGPN changed the way these seedling counts were made. Previously, stump sprouts (stems originating between ground level and 137 cm on the bole of trees that have died or been cut) were tallied individually, often resulting in a high number of stump sprouts counted. As of 2019, only one sprout per stump is counted. Dead and downed woody fuel load data were collected along two perpendicular 100 ft (30.49 m) transects (fuel lines) with midpoints at the center of the plot (Figure 2), following Brown's Line methods (Brown 1974, Brown et al. 1982). Fuel load data were only collected if at least one piece of woody litter or fuel intersected a fuel line.

The NGPN crew assessed and documented common disturbances at each plot. The disturbance type, which included rodent mounds, animal trails, and fire, as well as the approximate area (m^2) of each disturbance was recorded. Plots were also assessed for the presence and abundance of target exotic species (Table 2), a critical step in the early detection and rapid response to exotic species threats. These target species were chosen in collaboration with the Midwest Invasive Plant Network, Northern Great Plains Exotic Plant Management Team, park managers, and local weed experts. Each target species was assigned an abundance class from 1-5, based on an ocular estimate of cover, where 1 = one individual, 2 = few individuals, 3 = cover of 1-5%, 4 = cover of 5-25%, and 5 = cover > 25% of the plot.

Habitat	Scientific Name	Common Name
	Alliaria petiolata	garlic mustard
	Polygonum cuspidatum; P. sachalinense; P. x bohemicum	knotweeds
	Pueraria montana var. lobata	kudzu
	Iris pseudacorus	yellow iris
Riparian	Ailanthus altissima	tree of heaven
	Lepidium latifolium	perennial pepperweed
	Arundo donax	giant reed
	Rhamnus cathartica	common buckthorn
	Heracleum mantegazzianum	giant hogweed
	Centaurea solstitialis	yellow star thistle
	Hieracium aurantiacum; H. caespitosum	orange and meadow hawkweed
	Isatis tinctoria	Dyer's woad
	Taeniatherum caput-medusae	medusahead
	Chondrilla juncea	rush skeletonweed
Unland	Gypsophila paniculata	baby's breath
Upland	Centaurea virgata; C.diffusa	knapweeds
	Linaria dalmatica; L. vulgaris	toadflax
	Euphorbia myrsinites & E. cyparissias	myrtle spurge
	Dipsacus fullonum & D. laciniatus	common teasel
	Salvia aethiopis	Mediterranean sage
	Ventenata dubia	African wiregrass

Table 2. Exotic species included in the Northern Great Plains Network's early detection and rapid response program.

Data Management and Analysis

FFI (FEAT/FIREMON Integrated; http://frames.gov/ffi/) was the primary software environment used for managing our sampling data. FFI is used by a variety of agencies (e.g., NPS, USDA Forest Service, U.S. Fish and Wildlife Service), has a national-level support system, and generally conforms to the <u>Natural Resource Database Template</u> standards established by the Inventory and Monitoring Program. Species scientific names, codes, common names, and native status are from the USDA Plants Database (USDA-NRCS 2017). However, nomenclature follows the <u>Integrated Taxonomic</u> Information System (ITIS). In the few cases where ITIS recognizes a new name that was not in the USDA PLANTS database, the new name was used, and a unique plant code was assigned. In the case where there is not enough evidence for genus and species identification, a special code for the unknown species was created. These are then designated as an exotic species in the total count, but omitted from the species list.

After data were entered in the database, 100% of records were verified with the original data sheets to minimize transcription errors, followed by a 10% review of records to confirm accuracy. After all data were entered and verified, automated queries were used to check for any remaining errors in the data. When errors were identified by the crew or the automated queries, corrections were made to the original datasheets and the FFI database.

Data summaries were produced using the FFI reporting and query tools and R software (R version 3.6.1). The number of species encountered in each plot was calculated using data from point-intercept, quadrat, woody species, and target species protocols. Absolute cover was calculated using point-intercept data and is the total number of vegetation intercepts. This is often greater than 100% because more than one species can be intercepted per point due to overlapping vegetation.

The conservation status rank of plant species observed at THRO in 2019 was determined by crossreferencing with the NatureServe conservation status list, as well as the North Dakota rare plant species list. For the purpose of this report, a species was considered rare or of conservation concern if its state or global conservation status rank was critically imperiled (S1/G1), imperiled (S1/G2), or vulnerable (S3/G3). More information on conservation ranks can be found at the <u>NatureServe</u> website. The 2019 species list was also cross-referenced with the list of noxious weeds maintained by the <u>North Dakota Department of Agriculture</u>.

Results

There are 554 vascular plant species on the verified <u>THRO species list</u>, and monitoring crews observed 194 of these species in 2019 (Table 3). Of these plant species, 25 are exotic species at THRO.

Family	Symbol	Scientific Name	Common Name	Notes
Agavaceae	YUGL	Yucca glauca	soapweed yucca	-
Amaranthaceae	STDI99	Stutzia dioica	scurfless saltbush	-
Anacardiaceae	RHAR4	Rhus aromatica	fragrant sumac	-
Anacardiaceae	TORY	Toxicodendron rydbergii	western poison ivy	-
Apocynaceae	APAN2	Apocynum androsaemifolium	spreading dogbane	-
Asclepiadaceae	ASPU	Asclepias pumila	plains milkweed	-
Asteraceae	ACMI2	Achillea millefolium	common yarrow	-
Asteraceae	AGGL	Agoseris glauca	pale agoseris	-
Asteraceae	AMPS	Ambrosia psilostachya	Cuman ragweed	-
Asteraceae	ANPA4	Antennaria parvifolia	small-leaf pussytoes	-
Asteraceae	ANTEN	Antennaria	pussytoes	-
Asteraceae	ARCA12	Artemisia campestris	field sagewort	-
Asteraceae	ARCA13	Artemisia cana	silver sagebrush	-
Asteraceae	ARDR4	Artemisia dracunculus	tarragon	-
Asteraceae	ARFR4	Artemisia frigida	fringed sagewort	-
Asteraceae	ARLU	Artemisia ludoviciana	white sagebrush	-
Asteraceae	ARTR2	Artemisia tridentata	big sagebrush	-
Asteraceae	CIAR4	Cirsium arvense	Canada thistle	Noxious-ND
Asteraceae	CIUN	Cirsium undulatum	wavyleaf thistle	-
Asteraceae	COCA5	Conyza canadensis	horseweed	-
Asteraceae	ECAN2	Echinacea angustifolia	blacksamson echinacea	-
Asteraceae	ERIGE2	Erigeron	fleabane	-
Asteraceae	ERNA10	Ericameria nauseosa	rubber rabbitbrush	-
Asteraceae	ERST3	Erigeron strigosus	prairie fleabane	-
Asteraceae	GUSA2	Gutierrezia sarothrae	broom snakeweed	-
Asteraceae	HEAN3	Helianthus annuus	common sunflower	-

Family	Symbol	Scientific Name	Common Name	Notes
Asteraceae	HELIA3	Helianthus	sunflower	-
Asteraceae	HEMA2	Helianthus maximiliani	Maximilian sunflower	-
Asteraceae	HEPA19	Helianthus pauciflorus	stiff sunflower	-
Asteraceae	HEVI4	Heterotheca villosa	hairy false goldenaster	-
Asteraceae	LIPU	Liatris punctata	dotted blazing star	-
Asteraceae	LYJU	Lygodesmia juncea	rush skeletonplant	-
Asteraceae	MUOB99	Mulgedium oblongifolium	blue lettuce	-
Asteraceae	PAPL12	Packera plattensis	prairie groundsel	-
Asteraceae	RACO3	Ratibida columnifera	upright prairie coneflower	-
Asteraceae	SOAR2	Sonchus arvensis	field sowthistle	Exotic
Asteraceae	SOCA6	Solidago canadensis	Canada goldenrod	-
Asteraceae	SOMI2	Solidago missouriensis	Missouri goldenrod	-
Asteraceae	SOMO	Solidago mollis	velvety goldenrod	-
Asteraceae	SONE	Solidago nemoralis	gray goldenrod	-
Asteraceae	SOPT4	Solidago ptarmicoides	prairie goldenrod	-
Asteraceae	SORI2	Solidago rigida	stiff goldenrod	-
Asteraceae	SYER	Symphyotrichum ericoides	white heath aster	-
Asteraceae	SYLA3	Symphyotrichum laeve	smooth blue aster	-
Asteraceae	SYLA6	Symphyotrichum lanceolatum	white panicle aster	-
Asteraceae	SYMPH4	Symphyotrichum	aster	-
Asteraceae	SYOB	Symphyotrichum oblongifolium	aromatic aster	-
Asteraceae	TAOF	Taraxacum officinale	common dandelion	Exotic
Asteraceae	TEAC	Tetraneuris acaulis	stemless four-nerve daisy	-
Asteraceae	TRDU	Tragopogon dubius	yellow salsify	Exotic
Asteraceae	XASP99	Xanthisma spinulosum	lacy tansyaster	-
Asteraceae	XAST	Xanthium strumarium	cocklebur	-
Boraginaceae	HADE	Hackelia deflexa	nodding stickseed	-
Boraginaceae	LAOC3	Lappula occidentalis	flatspine stickseed	-
Boraginaceae	LASQ	Lappula squarrosa	European stickseed	Exotic
Boraginaceae	LIIN2	Lithospermum incisum	narrowleaf stoneseed	-
Brassicaceae	CAMI2	Camelina microcarpa	littlepod false flax	Exotic

Family	Symbol	Scientific Name	Common Name	Notes
Brassicaceae	DEPI	Descurainia pinnata	western tansymustard	_
Brassicaceae	ERYSI	Erysimum	wallflower	Exotic
Brassicaceae	LEDE	Lepidium densiflorum	common pepperweed	-
Brassicaceae	PHLU99	Physaria ludoviciana	foothill bladderpod	_
Brassicaceae	THAR5	Thlaspi arvense	field pennycress	Exotic
Cactaceae	OPFR	Opuntia fragilis	brittle pricklypear	_
Cactaceae	OPPO	Opuntia polyacantha	plains pricklypear	_
Campanulaceae	CARO2	Campanula rotundifolia	bluebell bellflower	_
Caprifoliaceae	SYOC	Symphoricarpos occidentalis	western snowberry	_
Caryophyllaceae	CEAR4	Cerastium arvense	field chickweed	_
Caryophyllaceae	SIAN2	Silene antirrhina	sleepy silene	_
Caryophyllaceae	SILEN	Silene	catchfly	Exotic
Chenopodiaceae	ATCA2	Atriplex canescens	fourwing saltbush	-
Chenopodiaceae	CHENO	Chenopodium	goosefoot	Exotic
Chenopodiaceae	KRLA2	Krascheninnikovia lanata	winterfat	_
Chenopodiaceae	SATR12	Salsola tragus	prickly Russian thistle	Exotic
Chenopodiaceae	SAVE4	Sarcobatus vermiculatus	greasewood	_
Convolvulaceae	COAR4	Convolvulus arvensis	field bindweed	Exotic
Cupressaceae	JUCO6	Juniperus communis	common juniper	_
Cupressaceae	JUHO2	Juniperus horizontalis	creeping juniper	-
Cupressaceae	JUSC2	Juniperus scopulorum	Rocky mountain juniper	-
Cupressaceae	JUSC2	Juniperus scopulorum	Rocky Mountain juniper	_
Cyperaceae	CADU6	Carex duriuscula	needleleaf sedge	-
Cyperaceae	CAFI	Carex filifolia	threadleaf sedge	-
Cyperaceae	CAIN9	Carex inops	sun sedge	_
Cyperaceae	CAREX	Carex	sedge	-
Cyperaceae	CASA9	Carex saximontana	Rocky Mountain sedge	-
Dryopteridaceae	CYFR2	Cystopteris fragilis	brittle bladderfern	-
Elaeagnaceae	SHAR	Shepherdia argentea	silver buffaloberry	_
Elaeagnaceae	SHCA	Shepherdia canadensis	russet buffaloberry	-
Elaegnaceae	SHAR	Shepherdia argentea	buffaloberry	_
Equisetaceae	EQLA	Equisetum laevigatum	smooth horsetail	_

Family	Symbol	Scientific Name	Common Name	Notes
Euphorbiaceae	EUES	Euphorbia esula	leafy spurge	Noxious-ND
Euphorbiaceae	EUSE4	Euphorbia serpens	matted sandmat	-
Euphorbiaceae	EUSP	Euphorbia spathulata	warty spurge	-
Fabaceae	ASAG2	Astragalus agrestis	purple milkvetch	-
Fabaceae	ASFL2	Astragalus flexuosus	flexile milkvetch	-
Fabaceae	ASGI5	Astragalus gilviflorus	plains milkvetch	-
Fabaceae	ASLA27	Astragalus laxmannii	Laxmann's milkvetch	-
Fabaceae	ASMI10	Astragalus missouriensis	Missouri milkvetch	-
Fabaceae	ASTRA	Astragalus	milkvetch	-
Fabaceae	DACA7	Dalea candida	white prairie clover	-
Fabaceae	DAPU5	Dalea purpurea	purple prairie clover	-
Fabaceae	GLLE3	Glycyrrhiza lepidota	American licorice	-
Fabaceae	HEBO	Hedysarum boreale	Utah sweetvetch	-
Fabaceae	MELU	Medicago lupulina	black medick	Exotic
Fabaceae	MEOF	Melilotus officinalis	yellow sweetclover	Exotic
Fabaceae	OXLA3	Oxytropis lambertii	purple locoweed	-
Fabaceae	OXSE	Oxytropis sericea	white locoweed	S1/G5
Fabaceae	OXYTR	Oxytropis	locoweed	-
Fabaceae	PEAR6	Pediomelum argophyllum	silverleaf Indian breadroot	-
Fabaceae	PEES	Pediomelum esculentum	large Indian breadroot	-
Fabaceae	PSLA3	Psoralidium lanceolatum	lemon scurfpea	-
Fabaceae	THRH	Thermopsis rhombifolia	golden pea	-
Fabaceae	VIAM	Vicia americana	American vetch	-
Gentianaceae	GEAM3	Gentianella amarella	autumn dwarf gentian	-
Grossulariaceae	RIAU	Ribes aureum	golden currant	-
Grossulariaceae	RIOX	Ribes oxyacanthoides	Canadian gooseberry	-
Lamiaceae	HEHI	Hedeoma hispida	rough false pennyroyal	-
Lamiaceae	MOFI	Monarda fistulosa	wild bergamot	-
Liliaceae	ALTE	Allium textile	textile onion	-
Liliaceae	MAST4	Maianthemum stellatum	starry false lily of the valley	-
Linaceae	LILE3	Linum lewisii	Lewis flax	-
Linaceae	LIRI	Linum rigidum	stiffstem flax	-

Family	Symbol	Scientific Name	Common Name	Notes
Malvaceae	SPCO	Sphaeralcea coccinea	scarlet globemallow	_
Oleaceae	FRPE	Fraxinus pennsylvanica	green ash	_
Onagraceae	OESE3	Oenothera serrulata	yellow sundrops	_
Onagraceae	OESU99	Oenothera suffrutescens	scarlet beeblossom	_
Orobanchaceae	ORLU	Orobanche ludoviciana	Louisiana broomrape	_
Plantaginaceae	PLPA2	Plantago patagonica	woolly plantain	-
Poaceae	AGCR	Agropyron cristatum	crested wheatgrass	Exotic
Poaceae	ANGE	Andropogon gerardii	big bluestem	_
Poaceae	ARPU9	Aristida purpurea	purple threeawn	-
Poaceae	BOCU	Bouteloua curtipendula	sideoats grama	_
Poaceae	BODA2	Bouteloua dactyloides	buffalograss	-
Poaceae	BOGR2	Bouteloua gracilis	blue grama	_
Poaceae	BOHI2	Bouteloua hirsuta	hairy grama	_
Poaceae	BRIN2	Bromus inermis	smooth brome	Exotic
Poaceae	BRJA	Bromus japonicus	Japanese brome	Exotic
Poaceae	CALO	Calamovilfa longifolia	prairie sandreed	-
Poaceae	DASP2	Danthonia spicata	poverty oatgrass	-
Poaceae	DISP	Distichlis spicata	saltgrass	_
Poaceae	DIWI5	Dichanthelium wilcoxianum	fall rosette grass	-
Poaceae	ELCA4	Elymus canadensis	Canada wildrye	-
Poaceae	ELLA3	Elymus lanceolatus	thickspike wheatgrass	-
Poaceae	ELRE4	Elymus repens	quackgrass	Exotic
Poaceae	ELTR7	Elymus trachycaulus	slender wheatgrass	-
Poaceae	HECO26	Hesperostipa comata	needle and thread	-
Poaceae	HESP11	Hesperostipa spartea	porcupinegrass	-
Poaceae	KOMA	Koeleria macrantha	prairie Junegrass	-
Poaceae	MUCU3	Muhlenbergia cuspidata	plains muhly	-
Poaceae	MUPA99	Muhlenbergia paniculata	tumblegrass	-
Poaceae	MURA	Muhlenbergia racemosa	marsh muhly	-
Poaceae	NAVI4	Nassella viridula	green needlegrass	-
Poaceae	PASM	Pascopyrum smithii	western wheatgrass	-
Poaceae	PAVI2	Panicum virgatum	switchgrass	-

Family	Symbol	Scientific Name	Common Name	Notes
Poaceae	PIMI7	Piptatherum micranthum	littleseed ricegrass	_
Poaceae	PONE	Poa nemoralis	wood bluegrass	_
Poaceae	POPR	Poa pratensis	Kentucky bluegrass	Exotic
Poaceae	POSE	Poa secunda	Sandberg bluegrass	_
Poaceae	SCSC	Schizachyrium scoparium	little bluestem	_
Poaceae	SPCR	Sporobolus cryptandrus	sand dropseed	_
Poaceae	VUOC	Vulpia octoflora	sixweeks fescue	_
Polemoniaceae	COLI2	Collomia linearis	tiny trumpet	_
Polemoniaceae	PHHO	Phlox hoodii	spiny phlox	_
Polygalaceae	POAL4	Polygala alba	white milkwort	-
Polygonaceae	ERIOG	Eriogonum	buckwheat	_
Polygonaceae	FACO	Fallopia convolvulus	black bindweed	Exotic
Polygonaceae	POAV	Polygonum aviculare	prostrate knotweed	Exotic
Ranunculaceae	ANCY	Anemone cylindrica	candle anemone	_
Ranunculaceae	ANPA19	Anemone patens	eastern pasqueflower	-
Ranunculaceae	CLLI2	Clematis ligusticifolia	western white clematis	_
Rosaceae	AMAL2	Amelanchier alnifolia	Saskatoon serviceberry	_
Rosaceae	DAFR6	Dasiphora fruticosa	shrubby cinquefoil	-
Rosaceae	DRAR8	Drymocallis arguta	tall cinquefoil	_
Rosaceae	GETR	Geum triflorum	prairie smoke	-
Rosaceae	POPE8	Potentilla pensylvanica	Pennsylvania cinquefoil	_
Rosaceae	POTEN	Potentilla	cinquefoil	Exotic
Rosaceae	PRVI	Prunus virginiana	chokecherry	_
Rosaceae	ROAR3	Rosa arkansana	prairie rose	_
Rosaceae	ROWO	Rosa woodsii	Woods' rose	_
Rubiaceae	GAAP2	Galium aparine	stickywilly	_
Rubiaceae	GABO2	Galium boreale	northern bedstraw	_
Santalaceae	COUM	Comandra umbellata	bastard toadflax	-
Saxifragaceae	HERI	Heuchera richardsonii	Richardson's alumroot	-
Scrophulariaceae	ORLU2	Orthocarpus luteus	yellow owl's-clover	-
Scrophulariaceae	PEER	Penstemon eriantherus	fuzzytongue penstemon	-
Scrophulariaceae	PEGR5	Penstemon gracilis	lilac penstemon	_

Family	Symbol	Scientific Name	Common Name	Notes
Scrophulariaceae	PENST	Penstemon	beardtongue	-
Scrophulariaceae	VEPE2	Veronica peregrina	neckweed	-
Selaginellaceae	SEDE2	Selaginella densa	lesser spikemoss	-
Unknown family	UNKFORB	Unknown forb	unknown forb	Exotic
Unknown family	UNKGRAM	Unknown graminoid	unknown graminoid	Exotic
Urticaceae	PAPE5	Parietaria pensylvanica	Pennsylvania pellitory	-
Violaceae	VINU2	Viola nuttallii	Nuttall's violet; yellow prairie violet	_
Violaceae	VIPE2	Viola pedatifida	prairie violet	-
Vitaceae	PAVI5	Parthenocissus vitacea	woodbine	-

Based on the total count of unique species observed in all plots in 2019, PCM_0019 had the highest number with 106 total species, followed by PCM_0015 with 101 species (Table 4). PCM_0019 and PCM_0015 had the most native species, both totaling more than 90. Nine plots visited in 2019 each had more than 60 unique species identified within the plot. Absolute cover calculations (Table 5) showed that plots visited by NGPN and NGPFire had greater native species cover compared with exotic species cover. Plot FPCM_0105, had only one exotic species (*Poa pratensis*) recorded using the point-intercept method. Plot PCM_1026 had the highest absolute cover of exotic species (119%), and PCM_0019 had the highest absolute cover of native species at 260%.

Table 4. Total number of plant species identified in plots monitored at Theodore Roosevelt National Park in 2019. This is a count of all unique species identified in the plot using species data from point-intercept, quadrat, woody species, and early detection exotic species protocols. Note that quadrat data were not collected from plots with *, resulting in a lower total species count.

Plot Name	Native Species	Exotic Species	Total Species
THRON_FPCM_051*	19	4	23
THRON_FPCM_071*	18	3	21
THRON_FPCM_075*	24	4	28
THRON_FPCM_107*	28	3	31
THRON_PCM_005	46	9	55
THRON_PCM_008	69	10	79
THRON_PCM_015	54	11	65

Table 4 (continued). Total number of plant species identified in plots monitored at Theodore Roosevelt National Park in 2019. This is a count of all unique species identified in the plot using species data from point-intercept, quadrat, woody species, and early detection exotic species protocols. Note that quadrat data were not collected from plots with *, resulting in a lower total species count.

Plot Name	Native Species	Exotic Species	Total Species
THRON_PCM_514	47	7	54
THRON_PCM_519	29	11	40
THROS_FPCM_0105*	25	1	26
THROS_FPCM_0174	77	9	86
THROS_PCM_0013	26	13	39
THROS_PCM_0014	69	7	76
THROS_PCM_0015	93	8	101
THROS_PCM_0019	96	10	106
THROS_PCM_0023	84	9	93
THROS_PCM_0024	62	10	72
THROS_PCM_0041*	28	3	31
THROS_PCM_0044*	34	2	36
THROS_PCM_0045	33	7	40
THROS_PCM_0046	80	2	82
THROS_PCM_0069*	30	3	33
THROS_PCM_1026	23	15	38
THROS_PCM_1032	22	12	34

Table 5. Absolute percent cover of native and exotic plant species in plots monitored at TheodoreRoosevelt National Park in 2019. Absolute percent cover was calculated using the point-intercept data.This includes overlapping species canopies, which can result in values greater than 100%.

	Absolute Cover %				
Plot	Native Species	Exotic Species			
THRON_FPCM_051	90	57			
THRON_FPCM_071	80	73			
THRON_FPCM_075	149	62			
THRON_FPCM_107	106	5			
THRON_PCM_005	69	77			
THRON_PCM_008	136	54			
THRON_PCM_015	147	40			
THRON_PCM_514	272	90			
THRON_PCM_519	170	43			

Table 5 (continued). Absolute percent cover of native and exotic plant species in plots monitored at Theodore Roosevelt National Park in 2019. Absolute percent cover was calculated using the point-intercept data. This includes overlapping species canopies, which can result in values greater than 100%.

	Absolute Cover %		
Plot	Native Species	Exotic Species	
THROS_FPCM_0105	135	2	
THROS_FPCM_0174	165	43	
THROS_PCM_0013	26	115	
THROS_PCM_0014	185	6	
THROS_PCM_0015	201	22	
THROS_PCM_0019	260	59	
THROS_PCM_0023	231	34	
THROS_PCM_0024	161	13	
THROS_PCM_0041	183	28	
THROS_PCM_0044	151	14	
THROS_PCM_0045	68	10	
THROS_PCM_0046	176	0	
THROS_PCM_0069	151	19	
THROS_PCM_1026	138	119	
THROS_PCM_1032	167	95	

The NGPN crew collected woody species data at 10 plots in 2019. Five unique species of trees and shrubs were identified, with Rocky Mountain juniper (*Juniperus scopulorum*) being the most frequently observed species.

Table 6. Woody species densities from 10 long-term monitoring plots visited at Theodore Roosevelt National Park in 2019. DBH categories are tree (DBH > 15 cm), pole ($2.54 \text{ cm} \le \text{DBH} \le 15 \text{ cm}$), and seedling (DBH < 2.54 cm).

Plot Name	Common Name	DBH	Status	Density hectares
THRON_PCM_005	chokecherry	Seedling	Live	3373.65
THRON_PCM_008	Rocky mountain juniper	Seedling	Live	1400.38
THRON_PCM_008	chokecherry	Seedling	Live	922.98
THRON_PCM_008	green ash	Seedling	Live	63.65
THRON_PCM_008	Rocky mountain juniper	Pole	Live	127.39
THRON_PCM_008	Rocky mountain juniper	Tree	Live	90
THRON_PCM_015	Rocky mountain juniper	Seedling	Live	31.83
THRON_PCM_015	chokecherry	Seedling	Live	5983.45
THRON_PCM_015	green ash	Seedling	Live	159.13

Plot Name	Common Name	DBH	Status	Density hectares
THRON_PCM_015	Rocky mountain juniper	Pole	Live	127.39
THRON_PCM_015	Rocky mountain juniper	Tree	Live	230
THRON_PCM_514	Rocky mountain juniper	Seedling	Live	381.92
THRON_PCM_514	chokecherry	Seedling	Live	63.65
THRON_PCM_514	green ash	Seedling	Live	1432.21
THRON_PCM_514	green ash	Pole	Live	31.85
THROS_PCM_0014	silver buffaloberry	Seedling	Live	286.44
THROS_PCM_0014	Rocky mountain juniper	Pole	Live	31.85
THROS_PCM_0014	Rocky mountain juniper	Tree	Live	10
THROS_PCM_0015	Rocky mountain juniper	Seedling	Live	732.02
THROS_PCM_0015	chokecherry	Seedling	Live	18236.79
THROS_PCM_0015	serviceberry	Seedling	Live	5983.45
THROS_PCM_0015	green ash	Seedling	Live	2259.71
THROS_PCM_0015	Rocky mountain juniper	Pole	Dead	31.85
THROS_PCM_0015	Rocky mountain juniper	Pole	Live	31.85
THROS_PCM_0015	chokecherry	Pole	Live	987.26
THROS_PCM_0015	green ash	Pole	Live	63.69
THROS_PCM_0015	Rocky mountain juniper	Tree	Dead	10
THROS_PCM_0015	Rocky mountain juniper	Tree	Live	80
THROS_PCM_0019	chokecherry	Seedling	Live	7352.01
THROS_PCM_0019	silver buffaloberry	Seedling	Live	350.1
THROS_PCM_0019	silver buffaloberry	Seedling	Live	190.96
THROS_PCM_0023	Rocky mountain juniper	Seedling	Live	31.83
THROS_PCM_0023	silver buffaloberry	Seedling	Live	1368.56
THROS_PCM_0023	silver buffaloberry	Pole	Live	63.69
THROS_PCM_0024	Rocky mountain juniper	Seedling	Live	190.96
THROS_PCM_0024	Rocky mountain juniper	Pole	Live	31.85
THROS_PCM_0024	Rocky mountain juniper	Tree	Live	30
THROS_PCM_0046	chokecherry	Seedling	Live	31.83
THROS_PCM_0046	Rocky mountain juniper	Pole	Live	31.85
THROS_PCM_0046	Rocky mountain juniper	Tree	Live	20

Table 6 (continued). Woody species densities from 10 long-term monitoring plots visited at Theodore Roosevelt National Park in 2019. DBH categories are tree (DBH > 15 cm), pole ($2.54 \text{ cm} \le \text{DBH} \le 15 \text{ cm}$), and seedling (DBH < 2.54 cm).

Dead and downed wood and surface fuels provide foraging habitat and refugia for small wildlife species, as well as substrate for mosses and fungi. Downed wood sometimes also provides "nursery" logs for vascular plant establishment. However, when surface fuels are too abundant in a forest they can increase the risk of high intensity fires. NGPN observed measurable surface fuels in three plots at THRO in 2019 (Table 7).

		Average Tons per Acre							Avg. Depth (in.)				
Macroplot	1-hr	10- hr	100- hr	1- 100- hr	1000- hr sound	1000- hr rotten	1- 1000- hr	Duff	Litter	Total	Duff	Litt	Total
THRON_PCM_ 008	0.01	0.17	0.00	0.17	0.00	0.00	0.17	4.43	4.27	8.88	0.2	0.5	0.8
THROS_PCM_ 0015	0.01	0.84	0.69	1.54	0.35	0.00	1.89	3.83	3.51	9.23	0.2	0.4	0.6
THROS_PCM_ 0024	0.00	0.00	0.00	0.00	0.26	0.00	0.26	0.00	0.88	1.14	0.0	0.1	0.1

Table 7. Surface fuels summary for three plots visited in 2019 at Theodore Roosevelt National Park by

 Northern Great Plains Network.

Disturbances were observed in 12 of the 15 plots visited at THRO by NGPN in 2019 (Table 8). NGPFire did not collect disturbance data at the 9 plots they monitored. The most common disturbances were the results of animal activity, including grazing, animal trails, bison wallows, and prairie dog mounds. All 15 plots visited by NGPN were also assessed for the presence of early detection exotic species, and none were observed in 2019.

Table 8. Disturbance type and size (area in m^2) observed in 12 plots visited at Theodore Roosevelt National Park by Northern Great Plains Network in 2019. The disturbance area was approximated as a proportion of the total plot area of 1000 m^2 or recorded as present.

Plot	Disturbance Type	Area (m ²)
THRON_PCM_005	Fire	Present
THRON_PCM_005	Grazing	300
THRON_PCM_005	Wallow	15
THRON_PCM_005	Soil Disturbance	15
THRON_PCM_005	Animal Trail	10
THRON_PCM_008	Animal Trail	5
THRON_PCM_008	Grazing	5
THRON_PCM_008	Soil Disturbance	3
THRON_PCM_008	Small Mammal	1
THRON_PCM_015	Animal Trail	25
THRON_PCM_015	Soil Disturbance	15
THRON_PCM_015	Wallow	3
THRON_PCM_015	Grazing	2
THRON_PCM_015	Small Mammal	1
THRON_PCM_514	Animal Trail	25
THRON_PCM_514	Small Mammal	2

Plot	Disturbance Type	Area (m²)
THRON_PCM_514	Soil Disturbance	2
THRON_PCM_519	Animal Trail	20
THRON_PCM_519	Soil Disturbance	10
THROS_PCM_0013	Soil Disturbance	15
THROS_PCM_0013	Soil Disturbance	15
THROS_PCM_0014	Small Mammal	5
THROS_PCM_0014	Soil Disturbance	5
THROS_PCM_0015	Animal Trail	20
THROS_PCM_0015	Soil Disturbance	12
THROS_PCM_0015	Erosion	10
THROS_PCM_0019	Animal Trail	50
THROS_PCM_0019	Soil Disturbance	28
THROS_PCM_0023	Animal Trail	2
THROS_PCM_0046	Animal Trail	20
THROS_PCM_0046	Grazing	5
THROS_PCM_0046	Soil Disturbance	3
THROS_PCM_0046	Erosion	2
THROS_PCM_1032	Flood	1000
THROS_PCM_1032	Soil Disturbance	215
THROS_PCM_1032	Wallow	15
THROS_PCM_1032	Grazing	10

Table 8 (continued). Disturbance type and size (area in m2) observed in 12 plots visited at Theodore Roosevelt National Park by Northern Great Plains Network in 2019. The disturbance area was approximated as a proportion of the total plot area of 1000 m2 or recorded as present.

Further Analysis

This 2019 Data Summary Report is intended to provide a basic review of the data collected during the NGPN team's 2019 visit to Theodore Roosevelt National Park. All data included in this report is available upon request from the Northern Great Plains Inventory and Monitoring Network, and it is archived at <u>https://irma.nps.gov/DataStore</u>. For an in-depth data analysis on long-term trends at THRO, refer to the 2011–2016 summary report (Ashton and Davis 2017).

Literature Cited

- Amberg, S., K. Kilkus, M. R. Komp, A. J. Nadeau, K. Stark, L. Danielson, S. Gardner, E. Iverson, E. Norton, and B. Drazkowski. 2014. Theodore Roosevelt National Park: Natural resource condition assessment. Natural Resource Report NPS/THRO/NRR--2014/776. National Park Service, Fort Collins, CO.
- Ashton, I. W. and C. J. Davis. 2017. Plant community composition and structure at Theodore Roosevelt National Park: 2011-2016 summary report. Natural Resource Report NPS/NGPN/NRR—2017/1497. National Park Service, Fort Collins, Colorado.
- Ashton, I., M. Prowatzke, M. Bynum, T. Shepherd, S. K. Wilson, and K. Paintner-Green. 2012. Theodore Roosevelt National Park plant community composition and structure monitoring: 2011 annual report. Natural Resource Technical Report NPS/NGPN/NRTR—2012/545. National Park Service, Fort Collins, CO.
- Brown, J. K. 1974. Handbook for inventorying downed material. General Technical Report INT-16. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.
- Brown, J. K., R. D. Oberhue, and C. M. Johnston. 1982. Inventorying surface fuels and biomass in the Interior West. General Technical Report INT-129. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.
- R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria. <u>https://www.R-project.org</u>
- Stevens, D. L. and A. R. Olsen. 2003. Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14:593-610.
- Stevens, D. L. and A. R. Olsen. 2004. Spatially balanced sampling of natural resources. Journal Of The American Statistical Association 99:262-278.
- Symstad, A. J., R.A. Gitzen, C. L. Wienk, M. R. Bynum, D. J. Swanson, A. D. Thorstenson, and K. J. Paintner. 2012a. Plant community composition and structure monitoring protocol for the Northern Great Plains I&M Network-Standard Operating Procedures: version 1.01. Natural Resource Report NPS/NGPN/ NRR-2012/489.1.
- Symstad, A. J., R.A. Gitzen, C. L. Wienk, M. R. Bynum, D. J. Swanson, A. D. Thorstenson, and K. J. Paintner. 2012b. Plant community composition and structure monitoring protocol for the Northern Great Plains I&M Network: version 1.01. Natural Resource Report NPS/NGPN/ NRR-2012/489.
- USDA-NRCS. 2017. The PLANTS Database (<u>http://plants.usda.gov</u>, 06 February 2017). National Plant Data Team, Greensboro, NC 27401-4901 USA.

The Department of the Interior protects and manages the nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its special responsibilities to American Indians, Alaska Natives, and affiliated Island Communities.

NPS 387/165868, December 2019

National Park Service U.S. Department of the Interior

Natural Resource Stewardship and Science 1201 Oakridge Drive, Suite 150 Fort Collins, CO 80525