Missouri River Recovery Management Plan and Environmental Impact Statement

Navigation Environmental Consequences Analysis

Technical Report

August 2018

Intentionally Left Blank

Table of Contents

1.0	Introduction1					
	1.1	Summa	ary of Alternatives	1		
	1.2	USACE	E Planning Accounts	2		
	1.3		ch for Evaluating Environmental Consequences to Navigation from the P-EIS	3		
	1.4	Assum	ptions	6		
	1.5	Risk an	nd Uncertainty	6		
2.0	Met	hodolog	y and Assumptions	6		
	2.1	Comme	ercial Navigation	7		
		2.1.1	National Economic Development Methodology	8		
		2.1.2	Regional Economic Development Method	16		
		2.1.3	Other Social Effects Methods	18		
	2.2	Comme	ercial Sand and Gravel Dredging	19		
3.0	Nav	igation \$	Service Level and Season Length	20		
	3.1	Service	e Level	20		
	3.2	Seasor	ו Length	21		
4.0	Con	nmercial	Navigation	22		
	4.1	Summa	ary of National Economic Development Results	22		
		4.1.1	Transportation Rate Savings	22		
		4.1.2	Change in Repair, Replacement, and Rehabilitation Costs			
		4.1.3	Navigation National Economic Development Benefits	25		
	4.2	Nationa	al Economic Development Results	26		
	4.3	Region	al Economic Development Results	35		
		4.3.1	Summary of Regional Economic Development Results	35		
		4.3.2	Alternative 1 – No Action (Current System Operation and Current MRRP Implementation)	37		
		4.3.3	Alternative 2 – USFWS 2003 Biological Opinion Projected Actions	37		
		4.3.4	Alternative 3 – Mechanical Construction Only	38		
		4.3.5	Alternative 4 – Spring ESH Creating Release	39		
		4.3.6	Alternative 5 – Fall ESH Creating Release	40		
		4.3.7	Alternative 6 – Pallid Sturgeon Spawning Cue	40		
	4.4	Other S	Social Effects Results	41		
		4.4.1	Commercial Tonnage that Shifts to Alternate Overland Modes of Transportation	41		
		4.4.2	Overview of Other Social Effects Results	43		
		4.4.3	Alternative 1 – No Action (Current System Operation and Current			
			MRRP Implementation)			
		4.4.4	Alternative 2 – USFWS 2003 Biological Opinion Projected Actions			
		4.4.5	Alternative 3 – Mechanical Construction Only	45		

Арр	endix A: Trar	nsportation Savings Value Functions	
6.0	Literature C	ited	53
5.0	Commercia	I Sand and Gravel Dredging Results	
	4.4.8	Alternative 6 – Pallid Sturgeon Spawning Cue	
	4.4.7	Alternative 5 – Fall ESH Creating Release	47
	4.4.6	Alternative 4 – Spring ESH Creating Release	

List of Figures

Figure 1. Flow Chart of Inputs Considered in Navigation Evaluation	4
Figure 2. Approach for Evaluating Environmental Consequences to Navigation	5
Figure 3. Total Navigation Tonnage and System Supported Length of Season (1960– 2016)	7
Figure 4. Commercial Tonnage by Category on the Missouri River, 1960–2016	8
Figure 5. Annual Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 1 (2018\$)	27
Figure 6. Alternative 2 Difference in Navigation National Economic Development Benefits Relative to Alternative 1	29
Figure 7. Alternative 3 Difference in Navigation National Economic Development Benefits Relative to Alternative 1	30
Figure 8. Alternative 4 Difference in Navigation National Economic Development Benefits Relative to Alternative 1	32
Figure 9. Alternative 5 Difference in Navigation National Economic Development Benefits Relative to Alternative 1	33
Figure 10. Alternative 6 Difference in Navigation National Economic Development Benefits Relative to Alternative 1	35

List of Tables

Table 1. Unit Transportation Rate Savings by Commodity Group	10
Table 2. Navigation Service Level Flow Ranges for the Various Navigation Service Levels	11
Table 3. Example - Transportation Rate Savings Ratios for the Various Navigation Service Levels in Kansas City for Petroleum Products	11
Table 4. Example - Unit Transportation Rate Savings by Navigation Service Level inKansas City for Various Commodities in July (2018\$, per Ton)	12
Table 5. Example - Percentage of Days Per Month by Service Level, Alternative 1, 1930	12
Table 6. Commercial Commodities Transported on the Missouri River, 2016 (Tons)	13
Table 7. Example - Monthly Commercial Tonnage Affected for Agricultural Products,Kansas City Reach, 1930, Alternative 1	13
Table 8. Example - Monthly Transportation Rate Savings, Agricultural Products, Kansas City Reach, 1930, Alternative 1	14
Table 9. Example - Results for the Annual Transportation Rate Savings for All Commodity Groups and Service Levels (FY 2018\$)	14
Table 10. Change in Annual Repair, Replacement, and Rehabilitation Cost Estimates by Service Level (Millions of 2018 Dollars per Year)	15
Table 11. Equations for Estimating Repair, Replacement, and Rehabilitation Costs by Navigation Service Level (2018\$)	16
Table 12. Summary of Emissions Rates (Grams per Ton-Mile)	
Table 13. Number of Days at or Above Minimum and Full-Service Levels over the Period of Record	21
Table 14. Season Length over the Period of Record (Months)	22
Table 15. Transportation Rate Savings for the MRRMP-EIS Alternatives (2018\$)	23
Table 16. Transportation Rate Savings for the MRRMP-EIS Alternatives Using 1994 Tonnage (2018\$)	24
Table 17. Repair, Replacement, and Rehabilitation Costs for the MRRMP-EIS Alternatives (2018\$)	24
Table 18. Navigation National Economic Development Benefits for the MRRMP-EIS Alternatives (2018\$)	25
Table 19. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs,and Navigation National Economic Development Benefits for Alternative 1(2018\$)	

Table 20. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs,and Navigation National Economic Development Benefits under Alternative 2	
(2018\$)	27
Table 21. Years with Split Navigation Seasons Simulated under Alternative 2	28
Table 22. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs,and National Economic Development Benefits for Alternative 3 (2018\$)	30
Table 23. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 4 (\$2018)	31
Table 24. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 5 (\$2018)	32
Table 25. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs,and Navigation National Economic Development Benefits for Alternative 6(\$2018)	34
Table 26. Direct, Indirect, and Induced Employment for Waterway Industries under the Alternatives in the MRRMP-EIS	36
Table 27. Direct, Indirect, and Induced Labor Income for Waterway Industries under the Alternatives in the MRRMP-EIS (2018\$)	36
Table 28. Direct, Indirect, and Induced Sales under the Alternatives in the MRRMP-EIS for Waterway Industries (\$2018)	36
Table 29. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 1 (2018 dollars)	37
Table 30. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 2 and Compared toAlternative 1 (2018\$)	38
Table 31. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 3 and Compared toAlternative 1 (\$2018)	39
Table 32. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 4 and Compared toAlternative 1 (2018\$)	39
Table 33. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 5 and Compared toAlternative 1 (2018\$)	40
Table 34. Total Regional Economic Development Benefits Associated with WaterwayIndustries on the Missouri River under Alternative 6 and Compared toAlternative 1 (2018\$)	41

Table 35. Commercial Tonnage Estimated to Shift Modes under the MRRMP-EIS	
Alternatives	42
Table 36. Air Emissions for Commodities that Shift Mode in the Kansas City Reach (kg)	43
Table 37. Air Emissions for Alternative 1 by Reach (kg)	44
Table 38. Air Emissions for Alternative 2 and Relative to Alternative 1 by Reach (kg)	45
Table 39. Air Emissions for Alternative 3 and Relative to Alternative 1 by Reach (kg)	46
Table 40. Air Emissions for Alternative 4 and Relative to Alternative 1 by Reach (kg)	47
Table 41. Air Emissions for Alternative 5 and Relative to Alternative 1 by Reach (kg)	48
Table 42. Air Emissions for Alternative 6 and Relative to Alternative 1 by Reach (kg)	49
Table 43. Prevalence of River Flows Below 26,000 cfs (Days below Threshold) during the Navigation Season (April through November)	51
Table 44. Prevalence of River Stages Above Flood Stage during the Period of Record (Days Above Threshold)	53

Acronyms and Abbreviations

BiOp	Biological Opinion (amended in 2003)
CO	carbon monoxide
cfs	cubic feet per second
EPA	U.S. Environmental Protection Agency
EQ	environmental quality
ER	Engineering Regulation
ESA	Endangered Species Act
ESH	emergent sandbar habitat
FY	fiscal year
H&H	hydrologic and hydraulic
HC	hydrocarbon
HEC-RAS	Hydrologic Engineering Center - River Analysis System
HEC-ResSim	Hydrologic Engineering Center - Reservoir System Simulation
I-O	input-output
kg	kilograms
MRRP	Missouri River Recovery Program
MRRMP-EIS	Missouri River Recovery Management Plan and Environmental Impact Statement
NAAQS	National Ambient Air Quality Standards
NED	national economic development
NO2	nitrogen dioxide
NOx	nitrous oxides
OD	origin destination
OSE	other social effects
P&G PM POR	1983 Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies particulate matter period of record
RED	regional economic development
RR&R	repair, replacement, and rehabilitation
SO ₂	sulfur dioxide
Sox	sulfur oxides
TVA	Tennessee Valley Authority
USACE	U.S. Army Corps of Engineers
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
UT-CTR	University of Tennessee Center for Transportation Research
WCSC	Waterborne Commerce Statistics Center

1.0 Introduction

The Kansas City and Omaha Districts of the U.S. Army Corps of Engineers (USACE), in cooperation with the U.S. Fish and Wildlife Service (USFWS), have developed the Missouri River Recovery Management Plan and Environmental Impact Statement (MRRMP-EIS). The purpose of the MRRMP-EIS is to develop a suite of actions that meets Endangered Species Act (ESA) responsibilities for the piping plover, the interior least tern, and the pallid sturgeon.

The purpose of this Navigation Environmental Consequences Analysis Technical Report is to provide supplemental information on the navigation analysis and results in addition to the information presented in the MRRMP-EIS. Additional details on the national economic development (NED), regional economic development (RED), and other social effects (OSE) methodology and results are provided in this technical report. No environmental quality (EQ) analysis was undertaken for navigation.

1.1 Summary of Alternatives

The MRRMP-EIS evaluates the following alternatives. A detailed description of the alternatives is provided in Chapter 2 of the MRRMP-EIS.

- Alternative 1 No Action. This is the No Action alternative, in which the Missouri River Recovery Program (MRRP) would continue to be implemented as it is currently, including a number of management actions associated with the MRRP and 2003 Amended Biological Opinion (BiOp) compliance. Management actions under Alternative 1 include creation of early life stage habitat for the pallid sturgeon and emergent sandbar habitat (ESH), as well as a spring pulse for pallid sturgeon. The construction of habitat would be focused in the Garrison and Gavins reaches for ESH (an average rate of 164 acres per year) and between Ponca to the mouth near St. Louis for pallid sturgeon early life stage habitat (3,999 additional acres constructed).
- Alternative 2 USFWS 2003 Biological Opinion Projected Actions. This alternative represents the USFWS interpretation of the management actions that would be implemented as part of the 2003 Amended BiOp Reasonable and Prudent Alternative (USFWS 2003). Whereas Alternative 1 only includes the continuation of management actions USACE has implemented to date for BiOp compliance, Alternative 2 includes additional iterative actions and expected actions that the USFWS anticipates would ultimately be implemented through adaptive management and as impediments to implementation were removed. Considerably more early life stage habitat (10,758 additional acres constructed) and ESH (an average rate of 1,331 acres per year) would be constructed under Alternative 2 than under Alternative 1. In addition, a spring pallid sturgeon flow release would be implemented every year if specific conditions were met. Alternative 2 would also modify System operations to allow for summer flows that are sufficiently low to provide for early life stage habitat as rearing, refugia, and foraging areas for larval, juvenile, and adult pallid sturgeon.
- Alternative 3 Mechanical Construction. The USACE would mechanically construct ESH at an average rate of 332 acres per year distributed between the Garrison, Fort Randall, and Gavins Point Reaches. This amount represents the acreage necessary to meet the bird habitat targets after accounting for available ESH resulting from System operations. The average annual construction amount includes replacing ESH lost to erosion and vegetative growth, as well as constructing new ESH. An estimated 3,380

acres of early life stage habitat for the pallid sturgeon would be constructed under Alternative 3. There would not be any reoccurring flow releases or pulses implemented under this alternative; however, should new information be learned through Level 1 and 2 studies over the next 9 years suggesting that spring discharges result in stronger aggregation of adult pallid sturgeon at spawning locations or increased reproductive success, a one-time spawning cue test could be implemented to provide additional information to support or refute this hypothesis. At the present time, it is assumed the test release would be similar to the timing, magnitude, duration, and pattern of the spawning cue included as a recurring release under Alternative 6.

- Alternative 4 Spring ESH Creating Release. The USACE would mechanically construct ESH annually at an average rate of 195 acres per year distributed between the Garrison, Fort Randall, and Gavins Point Reaches. This amount represents the acreage necessary to meet the bird habitat targets after accounting for available ESH resulting from implementation of an ESH-creating reservoir release in the spring. Alternative 4 would be similar to Alternative 1 (the No Action alternative), with the addition of a spring release designed to create ESH for the least tern and piping plover. An estimated 3,380 acres of early life stage habitat for the pallid sturgeon would be constructed under Alternative 4.
- Alternative 5 Fall ESH Creating Release. The USACE would mechanically construct ESH annually at an average rate of 253 acres per year distributed between the Garrison, Fort Randall, and Gavins Point Reaches. This amount represents the acreage necessary to meet the bird habitat targets after accounting for available ESH resulting from implementation of an ESH-creating reservoir release in the fall. Alternative 5 is similar to Alternative 1 (the No Action alternative), with the addition of a release in the fall designed to create sandbar habitat for the least tern and piping plover. An estimated 3,380 acres of early life stage habitat for the pallid sturgeon would be constructed under Alternative 5.
- Alternative 6 Pallid Sturgeon Spawning Cue. The USACE would mechanically construct ESH annually at an average rate of 245 acres per year distributed between the Garrison, Fort Randall, and Gavins Point Reaches. In addition, the USACE would attempt a spawning cue pulse every three years in March and May. These spawning cue pulses would not be started and/or would be terminated whenever flood targets are exceeded. An estimated 3,380 acres of early life stage habitat for the pallid sturgeon would be constructed under Alternative 6.

1.2 USACE Planning Accounts

Alternative means of achieving species objectives will be evaluated including consideration for the effects of each action or alternative on a wide range of human considerations. Human considerations to be evaluated in the MRRMP-EIS alternatives are rooted in the economic, social, and cultural values associated with the natural resources of the Missouri River. The effects to human considerations evaluated in the MRRMP-EIS are required under the National Environmental Policy Act and its implementing regulations (40 CFR Parts 1500-1508). The 1983 Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies (P&G) also served as the central guiding regulation for the economic and environmental analysis included within the MRRMP-EIS. Further guidance that is specific to USACE is described in Engineering Regulation (ER) 1105-2-100, Planning Guidance Notebook (USACE 2000), which provides the overall direction by which USACE Civil Works projects are formulated, evaluated, and selected for implementation. These guidance documents describe

four accounts that were established to facilitate evaluation and display the effects of alternative plans:

- The NED account displays changes in the economic value of the national output of goods and services expressed in monetary units. Contributions to NED are the direct net benefits that accrue in the planning area and the rest of the nation.
- The RED account registers changes in the distribution of regional economic activity (i.e., jobs and income).
- The EQ displays non-monetary effect of significant natural and cultural resources.
- The OSE account registers plan effects from the perspective that is relevant to the planning process, but are not reflected in the other three accounts. In a general sense, OSE refers to how the constituents of life that influence personal and group definitions of satisfaction, well-being, and happiness are affected by some condition or proposed intervention.

The accounts framework enables consideration of a range of both monetary and non-monetary values and interests that are expressed as important to stakeholders, while ensuring impacts are not double counted. USACE planning accounts evaluated for navigation include NED, RED, and OSE.

1.3 Approach for Evaluating Environmental Consequences to Navigation from the MRRMP-EIS

The conceptual flow chart shown in Figure 1 demonstrates, in a stepwise manner, how changes to the physical conditions of the Missouri River and its floodplain lead to changes to the benefits and costs associated with navigation. This figure also shows the intermediate factors and criteria that were applied in assessing the NED, RED, and OSE consequences to navigation.

The environmental consequences analysis included a NED, RED, and OSE assessment. The NED analysis estimated the change in transportation rate savings to navigation under each of the MRRMP-EIS alternatives. The RED analysis used results from the NED analysis to estimate changes in sales, employment, and labor income resulting from each of the MRRMP-EIS alternatives. The OSE analysis considered urban and community impacts and effects on air emissions.

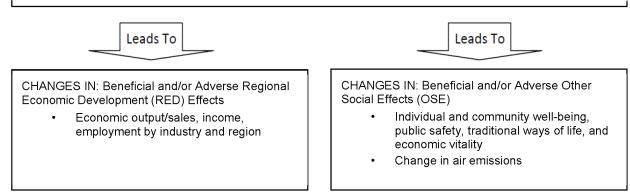
Figure 2 shows the overall approach used to estimate the impacts to navigation from MRRMP-EIS alternatives. The analysis first evaluated changes in Missouri River System operations including reservoir releases and river flows to determine changes in service level and season length under each of the alternatives in the MRRMP-EIS. CHANGES IN: Physical Components of Missouri River Watershed (considering seasonality, timing, and duration)

- River flows
- Water storage in system
- River channel dimensions

Leads To

CHANGES IN: Navigation System Performance (target locations-Sioux City, Omaha, Nebraska City, Kansas City)

- River flows
- Service level
- Navigation season duration
- Frequency, duration, and timing of navigation service disruptions


CHANGES IN: Navigation Activity

- Access to navigation
- Ability to dredge sand and gravel
- Cost of using the waterway
- Tonnage shipped by mode
- Tonnage shipped by origin-destination

Leads To

CHANGES IN: Beneficial and/or Adverse National Economic Development (NED) Effect

- Transportation rate savings, sand and gravel cost savings, repair, replacement, and rehabilitation costs
- Impacts to Middle Mississippi River (see Section 3.24 in the Final EIS)

Figure 1. Flow Chart of Inputs Considered in Navigation Evaluation

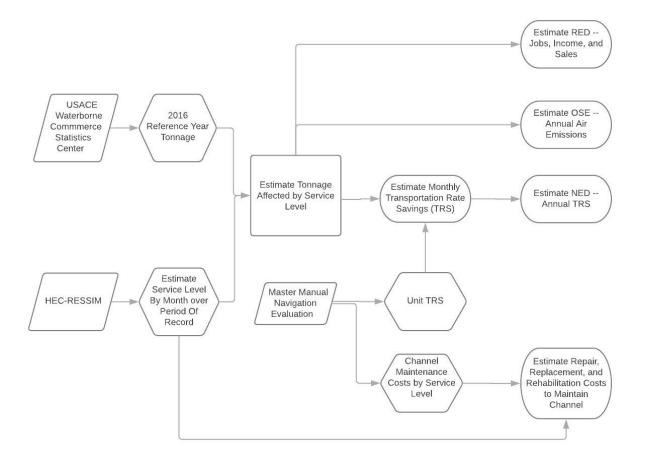


Figure 2. Approach for Evaluating Environmental Consequences to Navigation

The NED evaluation focused specifically on the commercial tonnage being shipped on the Missouri River. For the NED evaluation, the effect on navigation season and service levels for each alternative were integrated into the economic analysis, which calculated changes in transportation rate savings, to evaluate changes in NED to navigation. The NED evaluation also included an estimate of the repair, replacement, and rehabilitation (RR&R) costs of maintaining the navigation channel under the alternatives. Commercial sand and gravel dredging is evaluated in Section 3.11 of the Final MRRMP-EIS. In addition, this technical report also evaluates the impacts of low river flows on commercial sand and gravel dredging in terms of the ability to transport the sand and gravel from the dredging location to the sand plant.

The RED evaluation for navigation used the results from the NED analysis to evaluate how changes in the amount of commercial products transported on the river under the MRRMP-EIS alternatives may affect local economic conditions including sales, labor income, and employment. The OSE evaluation for navigation used tonnage amounts moved off the water for each alternative determined from the NED analysis to determine changes in air emissions and other potential health and safety concerns. The impacts to navigation on the middle Mississippi River are presented in the MRRMP-EIS, Section 3.24.

The calculations are performed over a modeled 82-year period of record (POR). Further details on the methodology are provided in the following sections.

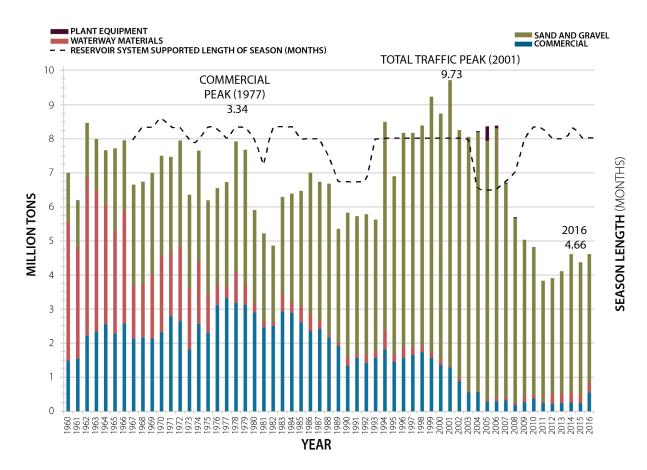
1.4 Assumptions

The following assumptions were used in the evaluation of impacts to navigation from the MRRMP-EIS alternatives.

- The economic analysis uses data from the hydrologic and hydraulic (H&H) modeling of the river and reservoir System. The analysis assumes that the H&H models reasonably estimate river flows and reservoir levels over the 82-year POR under each of the MRRMP-EIS alternatives as well as Alternative 1 (No Action).
- The analysis evaluates impacts to navigation during the time period when USACE is
 providing flows in support of navigation (March 14 to an end date which varies by year).
 During the modeled POR between 1934 to 1942, under all alternatives, no navigation
 service is provided by the USACE since this is an extreme drought period. During these
 years, it is assumed that no tonnage is transported on the Missouri River and would all
 shift to alternate overland modes.
- Because commercial sand and gravel navigation moves sand and gravel from the dredging location to the port, it is assumed that there are no alternative modes that can be used to ship the sand and gravel. Therefore, a separate analysis was conducted to assess the potential impacts to commercial sand and gravel dredging associated with access to the resource through navigation.

1.5 Risk and Uncertainty

Risk and uncertainty are inherent in any model that is developed and used for water resource planning. Much of the risk and uncertainty with the overall MRRMP-EIS is associated with the operation of the Missouri River System and the extent to which flows and reservoir levels will mimic conditions that have occurred over the 82-year POR. Unforeseen events such as climate change and weather patterns may cause river and reservoir conditions to change in the future. For more discussion on climate change impacts is provided in the Hydrologic and Hydraulic Technical Report Climate Change. The project team has attempted to address risk and uncertainty in the MRRMP-EIS by defining and evaluating a reasonable range of plan alternatives that include an array of management actions within an adaptive management framework for the Missouri River. In addition, Section 3.15.2.10 of the MRRMP-EIS discusses potential navigation impacts associated with climate change.


A source of uncertainty associated with the navigation analysis is predicting how the navigation industry would react to long-term changes in river and reservoir conditions. The transportation value functions used in this analysis represent how shippers would respond to various flow levels. However, while these functions capture responses that may be reasonable under current conditions or in the near future, unforeseen conditions may arise that may alter the response to changing conditions.

2.0 Methodology and Assumptions

This section describes the methods used to evaluate: (1) commercial navigation (not including sand and gravel); and (2) commercial sand and gravel dredging.

2.1 Commercial Navigation

The types of commodities traveling on the Missouri River are typically grouped into four broad categories (USACE 2006, Appendix G-1.1): sand and gravel, waterway improvement materials, commercial commodities, and oversized goods (plant equipment). Figure 3 presents tonnage levels for these four commodity groups from 1960 to 2016 along with the USACE System-supported navigation season length. The commercial traffic has generally been declining since 1977 and recent traffic has been dominated by sand and gravel.

Source: USACE 2018

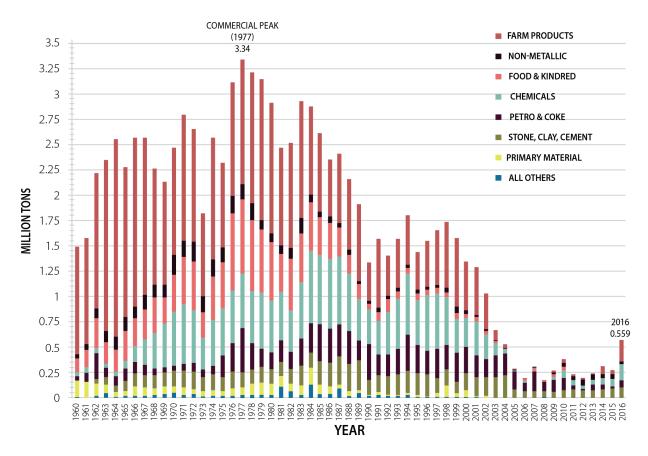

Figure 3. Total Navigation Tonnage and System Supported Length of Season (1960–2016)

Figure 4 summarizes the commercial commodities moved on the Missouri River, which can be associated with the following eight categories:

- Farm products, such as corn, sorghum, wheat, and soybeans.
- Non-metallic products, such as clays, salt including sea water, and limestone flux.
- Food and kindred materials, such as molasses, bran, sharps, and other cereal residue.
- Chemical products, including urea fertilizers, ammonium nitrate fertilizers, and sodium hydroxide.
- Petroleum products and coke, including pitch and pitch coke, fuel oils, and asphalt.

- Primary metals, such as iron and steel wire, flat rolled iron and steel, and aluminum.
- Stone, clay, and cement types, including Portland, aluminous, slag, or super sulfate.
- All other commercial cargo, including coal, wood, autos, machinery, and other materials.

Farm products were the main commercial commodities moving on the Missouri River from 1960 to 1992, accounting for 71 percent of total commercial tonnage in 1960. By 1992, the percentage for farm products had fallen to 29 percent of total commercial tonnage. From 1992 to 1997, slightly more chemical products, including fertilizers (an average of 0.51 million tons), were shipped on the Missouri River than farm products (an average of 0.46 million tons). However, farm products were the primary commodity shipped again from 1997 to 2002. From 2003 to 2010, petroleum products including pitch coke were the leading commodity moving on the Missouri River. From 2012 to 2016, the leading commercial commodity was stone, clay, and cement, which accounted for 29 percent of commercial cargo tonnage. Farm products accounted for 19 percent of the commercial commodities between 2012 and 2016.

Source: USACE 2018.

2.1.1 National Economic Development Methodology

The navigation NED evaluation for commercial commodities estimates the changes in NED values that may result from implementing the MRRMP-EIS alternatives. The analysis is based on the guidance developed under the Principles and Guidelines (U.S. Water Resources Council

1983). The NED analysis for navigation is based on two components: (1) the transportation rate savings; and (2) the change in RR&R costs. Evaluation of transportation rate savings considers how changes in navigation season length and service levels under each alternative affect the cost of moving commodities by barge on the river. The evaluation of RR&R costs focuses on changes in repair, replacement and rehabilitation costs that result from changes in river conditions. The net NED for navigation for each alternative is calculated by subtracting the RR&R costs from the transportation rate savings. Further details on estimating transportation rate savings and RR&R costs are provided in this section.

Transportation Rate Savings

The transportation rate savings represents the difference in costs between water transportation and the next least costly transportation alternative. Transportation rate savings vary depending on the following conditions:

- Change in service level (same origin-destination; same mode). Transportation rate savings for water navigation are maximized when the waterway is operating at full service rather than at less-than-full service. Operating at less-than-full service increases the cost of using the waterway. For example, reduction in navigation flow targets produces higher costs due to the need to light load barges and the potential need for additional barges for a given trip.
- Shift of mode (same origin-destination; different mode). When opportunities to ship goods via waterway navigation decrease, a modal shift can occur (e.g., commodities that were formerly moved by barge are now moved by truck or rail). Transportation by truck or rail typically costs more than navigation, resulting in higher transportation costs for industries that ship their commodities. Modal shifts represent a cost difference between shipping freight on the waterways and shipping the freight overland with the least cost transportation mode.

Estimate Transportation Rate Savings by Service Level

The navigation evaluation used the unit transportation rate savings from the Transportation Rate Analysis: Master Manual Review from 2002 as the basis for the unit rate savings, updated to 2018 dollars. Because the Missouri River Master Manual transportation rate savings reflect the shipping characteristics and competitive influences specific to the Missouri River, the updated rates were determined to be the best estimates for transportation rate savings for this analysis (Burton pers. comm. 2017).

The transportation rate savings estimates were based on a transportation rate analysis for the Missouri River conducted by the TVA using inputs on commodity movements from the Waterborne Commerce Statistics Center (WCSC). The rate analysis calculated full transportation costs for a sampling of shipments with varying origin and destinations along the Missouri River.

For the transportation rate savings evaluation, freight rates were calculated for each movement for a route traversing the existing waterway system; an alternative route utilizing a least cost alternative mode; and an alternative multi-modal route via the Port of St. Louis on the Mississippi River. TVA estimated transportation rate savings for 283 dock-to-dock pairs according to various service levels on the Missouri River. The analyses included in the Master Manual were primarily drawn from traffic movements in 1992, 1993, and 1994. The transportation rate savings were categorized by commodity groups (Agricultural Products, Petroleum Products, Chemicals, Crude Materials, Manufactured Goods, and Sand / Stone / Rock) and by reach (Sioux City, Omaha, Nebraska City, and Kansas City) and were estimated for flows ranging from 23,000 cfs to 65,000 cfs.

The transportation rate savings analysis was based on a 340 movement survey of barge shipping in 1999 from users of the Missouri River Navigation System (either move in total or part on the Missouri River) for eight commodity groups. TVA and University of Tennessee Center for Transportation Research (UT-CTR) used the Barge Costing Model to calculate the changes in transportation costs due to flow changes. To estimate how costs change by flow level, the Barge Costing Model varies the loading levels of the barges, the number of barges, waterway speeds, horsepower ratios, and tow sizes. While these calculations covered the cost of using the waterway, TVA and UT-CTR examined the list of movements to determine which movements would shift transportation modes and/or shift the origin or destination. The analysis did not consider any new movements along the river.

The navigation NED evaluation used the unit transportation rate savings by commodity and the transportation rate savings by service level (USACE 1998, 2002). To maintain consistency with the WCSC tonnage commodity groups, the transportation rate savings commodity categories estimated by TVA were cross referenced with the new WCSC commodity groups. Table 1 summarizes the transportation rate savings from the Master Manual, the cross reference to the new categories, and the transportation rates savings in 2018 dollars used in this evaluation. The transportation rate savings were adjusted to 2018 dollars with the Producer Price Index for Inland Water Freight Transportation (US Bureau of Labor Statistics 2018).

TVA Commodity Group for Master Manual	Transportation Rate Savings per ton	WCSC Commodity Group	Transportation Rates Savings per ton (FY2018 \$)
Metallic Minerals and Processed Metallic Products	\$19.55 (FY2002 \$)ª	Crude Materials	\$33.91
Other Manufactured Products	\$14.16 (FY1995 \$) ^b	Manufactured Goods ^c	\$25.84
Petroleum & Coke	\$10.96 (FY2002 \$)ª	Petroleum Products	\$19.01
Chemicals	\$11.68 (FY2002 \$)ª	Chemicals	\$20.26
Farm Products	\$12.69 (grain and other farm products) (FY2002 \$)ª	Agricultural Products	\$16.27
	\$6.07 (grain products and other food products) (FY2002 \$)ª		

Table 1. Unit Transportation Rate Savings by Commodity Group

^a Source is Table 2 of Transportation Rate Analysis: Missouri River Master Manual Review, page 25 (USACE 2002). ^b Source is Table 3 for Other Manufactured Products from the Master Manual Navigation Economics Appendix A Transportation Rate Analysis, page 15, titled "NED Shipper Savings" (USACE 1998).

c The unit transportation rate savings for other manufactured goods from the 1998 analysis was used.

The NED transportation rate savings reflect differences in flow or service level. Table 2 summarizes the river flow ranges that correspond to the navigation services levels used in the analysis. The flow support for navigation provided by the USACE varied by year and was estimated with the Hydrologic Engineering Center – Reservoir System Simulation (HEC-ResSim) data.

River Flow Ranges (cfs)	Navigation Service Description
<23,000	Navigation support flows not provided
> 23,000, < 25,999	Minimum Service Level -8,000 cfs
>26,000, < 28,999	Minimum Service Level −3,000 cfs
>29,000, < 31,999	Minimum Service Level
> 32,000, < 34,999	Reduced Service Level
>35,000, < 44,999	Full Service Level
> 45,000, < 54,999	Full Service Level +10,000 cfs
> 55,000, < 64,999	Full Service Level +20,000 cfs
> 65,000	Full Service Level +30,000 cfs

Sources: Missouri River Mainstem Reservoir System Master Water Control Manual Missouri River Basin (USACE 2006), Appendix G: Navigation, pg G-2.

Table 10: Typical Draft (ft.) and Barge Loadings (Tons) of the Missouri River Master Water Control Manual Review and Update Study: Volume 6A-R Economic Studies Navigation Economics (Revised), pg 19.

Table 25 in the Missouri River Master Water Control Manual Volume 6A-R: Economic Studies Navigation Economics (Revised) (1998), titled "Transportation Savings Value Functions" was used to index the full service (>35,000 <44,999) unit transportation rate saving values noted in Table 1 to the appropriate service levels by river reach and by month for each of the commodities. This allows the use of the 2002 Master Manual unit transportation rate savings, along with the transportation rate savings by service level to provide updated transportation rates savings by service level. Table 3 provides an example of the ratios used to index the unit transportation rate savings noted in Table 1.

 Table 3. Example - Transportation Rate Savings Ratios for the Various Navigation Service Levels

 in Kansas City for Petroleum Products

	Service Level (cfs)						
Month	>26,000, < 28,999	>29,000, < 31,999	> 32,000, < 34,999	>35,000, < 44,999	> 45,000, < 54,999	> 55,000, < 64,999	> 65,000
Mar	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Apr	0.692	0.763	0.889	1.000	1.050	1.050	0.889
May	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Jun	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Jul	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Aug	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Sep	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Oct	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Nov	0.692	0.763	0.889	1.000	1.050	1.050	0.889
Dec	0.844	0.875	0.938	1.000	1.031	1.031	0.938

The result of this calculation (multiplying the unit transportation rate savings values in Table 1 by the ratios in Table 3) is the unit transportation rate savings by navigation service level, by commodity, by river reach, and by month. Table 4 provides an example of the per ton transportation rate savings for commodities in the Kansas City reach in the month of July. For all of the commercial commodities, movements were assumed to shift to alternative overland modes when river flows fall below 26,000 cfs, resulting in no transportation rate savings.

	Service Level (cfs)						
Commodity Group	>26,000, < 28,999	>29,000, < 31,999	> 32,000, < 34,999	>35,000, < 44,999	> 45,000, < 54,999	> 55,000, < 64,999	> 65,000
Chemicals	\$15.7	\$14.6	\$19.4	\$20.3	\$21.6	\$19.8	\$17.7
Agricultural Products	\$9.0	\$10.2	\$12.8	\$16.3	\$18.1	\$17.8	\$14.9
Crude Materials	\$27.0	\$28.6	\$31.5	\$33.9	\$35.0	\$33.9	\$33.9
Manufactured Goods	\$23.0	\$23.9	\$24.6	\$25.8	\$27.0	\$26.0	\$24.1
Petroleum Products	\$13.2	\$14.5	\$16.9	\$19.0	\$20.0	\$20.0	\$16.9

 Table 4. Example - Unit Transportation Rate Savings by Navigation Service Level in Kansas City for Various Commodities in July (2018\$, per Ton)

Estimate Service Level by Month over the Period of Record

Once the unit transportation rate savings were estimated for different services levels, the transportation rate savings were then applied to the tonnage moved by service level expected under each of the alternatives in the MRRMP-EIS. Prior to estimating the tonnage affected, the project team estimated the percentage of days in each month at various service levels using data from the HEC-ResSim model. An example is provided in Table 5 and shows the percentage of days by service level for three months in an example year during the POR.

		Service Level (cfs)							
Month	0 - 22,999	23,000 - 25,999	26,000 - 28,999	29,000 - 31,999	32,000 - 34,999	35,000 - 44,999	45,000 - 54,999	55,000 - 64,999	> 65,000
March	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%
April	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%
May	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%
June	0.0%	0.0%	0.0%	0.0%	3.3%	96.7%	0.0%	0.0%	0.0%
July	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
August	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
September	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
October	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
November	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%

 Table 5. Example - Percentage of Days Per Month by Service Level, Alternative 1, 1930

Use Reference Year Tonnage to Estimate Monthly Tonnage Affected over the Period of Record

The next step in the analysis was to apply the percentage of days per month at various service levels over the POR (Table 5) to the reference-year tonnage by reach, month, and commodity. An assumption for the analysis is that the amount and types of commodities shipped on the river do not change unless flows fall below minimum service levels (e.g., 26,000 cfs) at which point commodities would shift from waterborne transportation to alternate overland modes of transportation. However, the transportation rate savings do change with flows (see Table 4) and

are applied to a fixed volume of commodities that are allocated by service level from the HEC-ResSim data, by commodity, month, and river reach.

The WCSC provides historical data on Missouri River movements by commodity group by river reach and for each month of the navigation season. The year 2016 of the WCSC data was used as the reference year in the analysis because it was the most recent year of full navigation service that did not experience any interruptions, delays, or shortened navigation season. The 2016 reference year tonnage was allocated by month, commodity, and reach. For comparison, the commercial tonnage that moved on the river in 1994 was also used to provide a sensitivity analysis for the transportation rate savings (see Section 4.1.1). Table 6 provides the tonnage shipped by reach and commodity group on the river in 2016.

The percentage of time by service level over the POR for each of the alternatives (Table 5) was applied to the reference year tonnage (Table 6) to estimate the tonnage affected by service level, commodity group, month, and reach. Table 7 provides an example of the estimated monthly tonnage moved by service level for agricultural products in the Kansas City reach in 1930.

Commodity	2016 Tons
Agricultural Products	231,000
Chemicals	140,000
Crude Materials	W
Manufactured Goods	98,000
Petroleum Products	W
TOTAL	559,000

 Table 6. Commercial Commodities Transported on the Missouri River, 2016 (Tons)

W = Withheld for proprietary reasons

Table 7. Example - Monthly Commercial Tonnage Affected for Agricultural Products, Kansas City Reach, 1930, Alternative 1

		Service Level (cfs)								
Month	0 – 25,999	26,000 - 28,999	29,000 - 31,999	32,000 - 34,999	35,000 - 44,999	45,000 - 54,999	55,000 - 64,999	>65,000		
March	10,747	0	0	0	14,881	0	0	0		
April	0	0	0	0	15,824	0	0	0		
Мау	0	0	0	0	18,165	0	0	0		
June	0	0	0	280	8,111	0	0	0		
July	0	0	0	42,112	0	0	0	0		
August	0	0	0	17,193	0	0	0	0		
September	0	0	0	1,533	0	0	0	0		
October	0	0	0	36,551	0	0	0	0		
November	0	0	0	60,456	0	0	0	0		

Apply Unit Transportation Rates Savings to Tonnage at Each Service Level under the MRRMP-EIS Alternatives

Once the commercial tonnage was estimated by service level over the POR (Table 7), the tonnage was multiplied by the unit transportation rate savings by month, reach, and commodity group to estimate the transportation rate savings for each of the MRRMP-EIS alternatives. Table 8 provides an example of the transportation rate savings by service level for agricultural products in the Kansas City reach in 1930 for Alternative 1.

		Service Level (cfs)								
Month	0 – 25,999	26,000 - 28,999	29,000 - 31,999	32,000 - 34,999	35,000 - 44,999	45,000 - 54,999	55,000 - 64,999	>65,000		
March	\$0	\$0	\$0	\$0	\$242,092	\$0	\$0	\$0		
April	\$0	\$0	\$0	\$0	\$257,433	\$0	\$0	\$0		
May	\$0	\$0	\$0	\$0	\$295,518	\$0	\$0	\$0		
June	\$0	\$0	\$0	\$3,262	\$131,959	\$0	\$0	\$0		
July	\$0	\$0	\$0	\$536,895	\$0	\$0	\$0	\$0		
August	\$0	\$0	\$0	\$236,946	\$0	\$0	\$0	\$0		
September	\$0	\$0	\$0	\$18,458	\$0	\$0	\$0	\$0		
October	\$0	\$0	\$0	\$449,699	\$0	\$0	\$0	\$0		
November	\$0	\$0	\$0	\$723,383	\$0	\$0	\$0	\$0		

Table 8. Example - Monthly Transportation Rate Savings, Agricultural Products, Kansas City Reach, 1930, Alternative 1

Annual Transportation Rate Savings

The final step in the process was to estimate the annual transportation savings for each alternative. The annual transportation savings is a summation of the monthly savings for all commodities shipped for all navigation service levels. Table 9 provides an example of the annual results. In addition to the annual results, the average annual navigation NED value is also provided in the evaluation.

Table 9. Example - Results for the Annual Transportation Rate Savings for All Commodity Groups and Service Levels (FY 2018\$)

Year	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
2000	\$9,914,449	\$9,914,449	\$9,914,449	\$9,914,449	\$9,914,449	\$8,867,840
2001	\$7,516,932	\$7,516,932	\$7,516,932	\$7,516,932	\$7,516,932	\$7,516,932
2002	\$6,461,436	\$5,457,281	\$6,461,436	\$6,461,436	\$6,461,436	\$6,461,436
2003	\$6,461,436	\$5,457,281	\$6,461,436	\$6,407,759	\$6,461,436	\$6,461,436
2004	\$6,007,621	\$6,007,621	\$6,083,257	\$5,629,442	\$6,083,257	\$5,629,442
2005	\$6,141,439	\$6,205,438	\$6,205,438	\$5,629,442	\$6,205,438	\$5,629,442
2006	\$5,993,440	\$6,253,438	\$6,045,439	\$5,629,442	\$6,045,439	\$5,629,442
2007	\$6,295,038	\$6,419,837	\$6,295,038	\$5,795,841	\$6,295,038	\$5,920,640
2008	\$6,434,598	\$6,461,436	\$6,461,436	\$6,193,051	\$6,461,436	\$6,273,567

Year	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
2009	\$7,516,932	\$8,563,541	\$7,516,932	\$7,200,284	\$7,516,932	\$7,516,932
2010	\$11,715,211	\$12,283,723	\$11,715,211	\$11,662,691	\$11,715,211	\$12,284,619
2011	\$11,964,938	\$11,568,304	\$11,876,955	\$11,956,947	\$11,816,392	\$11,876,955
2012	\$9,914,449	\$9,914,449	\$9,914,449	\$9,914,449	\$9,914,449	\$9,914,449

Repair, Replacement, and Rehabilitation Costs

The second part of the NED analysis is the RR&R costs. The RR&R costs include: (1) support for field offices and staff; (2) RR&R of river structures; and (3) emergency dredging that is required for extreme river conditions. The RR&R costs for a range of flows and season lengths are based on the estimates from the Master Manual updated to fiscal year (FY) 2018 prices.¹ The analysis assumes that usable navigation depth decreases as releases in support of navigation decrease. As such, it is expected that costs would increase if dredging was required to maintain the authorized depth (9.0 feet) when flow to support navigation is reduced. Such cost estimates are somewhat uncertain and depend on the amount of dredging needed. The RR&R cost estimates for a range of flows and season lengths are shown in Table 10.

Table 10. Change in Annual Repair, Replacement, and Rehabilitation Cost Estimates by Service Level (Millions of 2018 Dollars per Year)

Season Length	Minimum Service (29,000 cfs)	Reduced Service (32,000 cfs)	Full Service (35,000 cfs)	Full Service + 20,000 (55,000 cfs)	Full Service + 30,000 (65,000 cfs)
8 months	\$7.2	\$3.9	\$0.0	\$2.1	\$3.2
7 months	\$6.3	\$3.4	-\$0.4ª	\$1.6	\$2.5
6 months	\$5.2	\$2.7	-\$0.8ª	\$1.0	\$1.9

Source: Based on information included in Table 15: Incremental Annual O&M Cost Function, pg 23 in the Master Water Control Manual Missouri River Review and Update Study, Volume 6A-R: Economic Studies Navigation Economics (Revised) (USACE 1998), updated to FY18 dollars using the USACE Civil Works Construction Cost Index System (USACE 2016).

Notes: A full service at eight months is the reference condition for the RR&R analysis (costs are equal to zero). a: Negative values in this table represent cost savings relative to the reference condition (full service for 8 months).

To estimate RR&R costs for each alternative, the project team used linear regression using the data included in Table 10 adjusted per ton to estimate the cost given varying navigation season months. Table 11 shows the RR&R cost estimates from the regressions by service level. In Table 11, the variable "x" represents the months at a given navigation service level and "y" is the estimated cost for that service level.

¹ The costs were adjusted to 2018 price levels with the USACE Civil Works Construction Cost Index System (USACE 2016).

Table 11. Equations for Estimating Repair, Replacement, and Rehabilitation Costs by Navigation Service Level (2018\$)

Service Level	RR&R Cost Equations
Minimum Service Equation (29,000 cfs)	y = 0.1466x
Reduced Service Equation (32,000 cfs)	y = 0.0791x
Full Service Equation (35,000 cfs)	y = 0.065x - 0.5202
Full Service + 20,000 (55,000 cfs) Equation	y = 0.0375x
Full Service + 30,000 (65,000 cfs) Equation	y = 0.0606x

Note: Estimated with information from the USACE (USACE 1998).

y = RR&R costs (million dollars/year); x = months

The number of months within a service level was estimated from the HEC-ResSim data and used in the equations in Table 11 to estimate the cost by service level annually over the POR. To obtain the annual RR&R, costs by service level were aggregated annually across all service levels.

2.1.2 Regional Economic Development Method

As defined in the Introduction, the RED account evaluates changes in the distribution of regional economic activity. This section describes the results of a qualitative evaluation of water-compelled rates and provides a description of the methodology to evaluate the regional employment and income impacts.

Water Compelled Rate Benefits

Water compelled rate benefits are defined as reduction in rates for overland modes of transportation (particularly railroads) due to competition for transporting goods from the waterway. In other words, the rates charged by railroads in the region are said to be "water compelled" because they are theoretically lower than if the navigation channel were not available. If changes to navigation season or service levels reduce the ability to use the Missouri River for navigation, then it is suggested that competition is reduced and rates for alternative modes (i.e., rail and truck) could rise.

The Transportation experts from the UT-CTR provided a review of water-compelled rates for this study. The report includes a historical context of waterway and rail traffic along the Missouri River, noting the relatively recent issues with waterway reliability for navigation; describes past rail regulatory reforms; provides previous estimates of water-compelled effects; and describes the current rail environment that could have implications for these rates benefits.

The issues are complicated surrounding water-compelled rates and the dynamic economic conditions and context of the rail industry create uncertainties regarding the effect of Missouri River navigation on railroad pricing. However, the authors conclude that unless the reliability and long-run availability for navigation of the Missouri River are improved, water-compelled railroad rates attributable to Missouri River navigation seem improbable. Additional details are available in the "Missouri River Water-Compelled Railroad Rates: Review and Qualitative Update" (Burton and Bray 2016)

Regional Job and Income Impacts

The RED evaluation for navigation used the results from the NED analysis to evaluate how changes in the amount of commercial commodities transported on the river under the MRRMP-EIS alternatives may affect local economic conditions including sales, labor income, and employment. Specifically, this evaluation examined the amount of commercial traffic that would be anticipated to be shipped by navigation on the Missouri River under the MRRMP-EIS alternatives.

The regional economic analysis was conducted using RECONS, which is based on the principles of input-output (I-O) analysis. I-O analysis is a means of measuring the flow of commodities and services among industries, institutions, and final consumers within an economy. An I-O model captures all the monetary market transactions for consumption in a given time period accounting for inter-industry linkages and the availability of regionally produced goods and services. The primary input for I-O analysis is the dollar change in purchases of products or services for final use (i.e., final sales or revenues); this is referred to as "final demand change." IMPLAN® is an I-O data and software system that is widely used by academics, government, and industry. RECONS is a certified USACE model that customizes IMPLAN®'s ratios and multipliers to USACE projects and study areas.

The regional economic impacts can be classified as direct, indirect, or induced sales and are measured through changes in employment, labor income, and sales. Direct effects represent the impacts of the production values or industry sales specified as final demand changes. Indirect effects represent the impacts caused by the iteration of industries purchasing goods and services to support the directly affected industries. Induced effects represent the economic impacts from all affected workers spending their income in the study area economy. The labor income and sales economic impact results were updated to 2018 dollars using the Gross Domestic Product deflator (OMB 2018).

The RED evaluation focused on the impacts to waterway industries using RECONS.² There were five scenarios on which the RED analysis was focused for this evaluation: the best year (highest navigation year); the worst year (the lowest navigation year); the average annual over the 82-year POR; the average of the eight worst years relative to Alternative 1; and the average of the eight best years relative to Alternative 1. The eight worst and best year statistics allow an understanding of the skewness of impacts and magnitude of impacts in the largest difference years.

² The focus of the RED evaluation was on impacts to the waterway industries, which are defined as the navigators and shipping companies, port and warehousing services, and loading and unloading industries. As described in the NED section, overall shipping costs for commercial goods (other than commercial sand and gravel) could increase as shipping by alternate modes increase, or as a result of the higher waterway rates when operators have to light-load barges to navigate during adverse conditions under the alternatives in the MRRMP-EIS. Because of the small amount of non-sand and gravel commodities affected and the relatively small changes in transportation rate savings compared to Alternative 1 in the NED evaluation, RED impacts to industries that ship their products (i.e., fertilizer manufacturers, agricultural producers, utilities, etc.) were not further evaluated in the RED evaluation. However, the transportation rate savings (NED evaluation) provides an estimate of the potential changes in transportation costs.

When navigation is unavailable or reduced, there could be adverse impacts to jobs, income, and sales associated with the waterway industries, including the shipping industries, terminal operators, warehousing services, and loading and unloading services. Although some of the commodities that can no longer be shipped via navigation would likely be shipped using an alternate mode (e.g., by rail or truck), the analysis focused on the change in jobs, income, and sales in the waterway industry, and the resulting multiplier effect of these losses. With the transition of freight to other modes of transportation, there would be gains in employment, income, and sales in the alternative transportation sectors; therefore, the analysis presents a worst-case scenario for changes in regional economic losses in jobs, income, and sales.

The amount and types of commodities that would be affected by changes in navigation on the Missouri River under the MRRMP-EIS alternatives were obtained from the NED evaluation for the four navigation river reaches. There were a few movements in the Nebraska City and Omaha reaches and no shipments in the Sioux City river reach. It was assumed that most of the Nebraska City and Omaha reach shipments were moving through the Kansas City reach (and the tonnage figures supported this assumption), and therefore only the commodities moving on the Kansas City reach were used in the analysis to avoid double counting of impacts. The state of Missouri was used as the study area because the majority of products being shipped are to or from Missouri with the majority of the impact experienced in Missouri. Over the past five years, 91 percent of commercial products traveling on the Missouri River had either an origin or a destination within the state of Missouri. Since most of these commodities are transported to or from Missouri, some of the economic contribution would occur within Missouri, although there may be small economic effects in adjacent states where these commodities would be shipped to or from. The Inland Waterway module of RECONS was used for the analysis. Affected commodities were grouped into categories to be consistent with the Inland Waterway Module of RECONS. RECONS includes transportation costs per ton of commodities shipped that are allocated to both the waterway industries and port services sectors to estimate the economic impacts (USACE IWR n.d. 2013). Tonnage under each commodity category shipped on the river was the input into RECONS to estimate the economic impacts. The economic impacts were estimated for the five scenarios.

2.1.3 Other Social Effects Methods

Burning fossil fuels generates several criteria pollutants including carbon monoxide (CO), nitrous oxides (NOx), and particulate matter (PM) along with hydrocarbons (HC), a precursor to photochemical smog. The Texas A & M University Texas Transportation Institute (2017) estimates the same amount of fuel can move one ton of cargo 576 miles by barge, 413 miles by rail, or 155 miles by truck, so fewer fossil fuels are burned when a commodity is transported by water compared to truck or rail. Since moving commodities on the waterway results in fewer emissions compared to truck and rail, changes to navigation service could potentially affect air emissions and possibly impact health and safety. These types of impacts are considered in the OSE account.

The OSE evaluation focused on changes in air emissions under each of the alternatives. The analysis evaluated the potential changes in emissions using the estimated commercial tonnage that would shift from waterborne transportation to alternate overland modes from the NED evaluation. Published emission factors for inland waterway vessels, trucks, and rail were used from Texas A&M University, Transportation Institute (2017). In general, the changes in air emissions were estimated by multiplying the estimated tonnage that would shift off of the Missouri River by the emission factors for truck and rail transportation (per ton-mile). The air emission factors provided by Texas A & M University, Texas Transportation Institute (2017) are

used in the evaluation and summarized in Table 12. The difference between the air emissions for navigation compared to the air emissions for truck and rail were then estimated.

	Hydrocarbons (HC)	Carbon Monoxide (CO)	Nitrogen Oxides (NOx)	Particulate Matter (PM)
Waterway	0.0094	0.0411	0.2087	0.0056
Railroad	0.0128	0.0558	0.2830	0.0075
Truck	0.0800	0.2700	0.9400	0.0500

Table 12. Summary of Emissions Rates (Grams per Ton-Mile)

Source: Texas A & M University, Texas Transportation Institute. 2017.

The next step in the air emissions evaluation was to multiply the air emissions per-ton mile by the miles traveled. The evaluation used information on the state-to-state origin destination (OD) pairs from the WCSC to estimate a weighted average for the number of miles traveled for the waterway. The weighted average was generated using the 2016 reported tonnage for each OD state pair. For example, if 40 percent of the tonnage travelled within Missouri, the mileage was weighted to reflect this distance. Circuity factors, which are multipliers to estimate distances to approximate actual travel distances, were used from the literature. A circuity factor of 1.3:1 for truck trip length and 1.1:1 for rail trip length were applied to the weighted average distance for the waterway trip (Texas A & M University 2017). The final step in the evaluation was to apply the emissions rates for waterway, railroad, and truck to the tonnage that shifts transportation modes and average mileage traveled to estimate the anticipated change in air emissions.

2.2 Commercial Sand and Gravel Dredging

Commercial sand and gravel dredging occurs on the Missouri River between St. Joseph and St. Louis, Missouri. This section focuses on how river flows and stages affect the ability to access, transport, and extract commercial sand and gravel on the Missouri River. When water levels are low, commercial dredgers need to dredge closer to their sand plants and use their dredges to maintain adequate depths for the dredge barges (USACE 2011, page 3.6-7). Commercial dredging generally occurs year-round when the wind chill is above freezing. During the winter months, during the non-navigation season when river flows are relatively lower, repair and maintenance activities are typically conducted on dredges and sand production is lower than in the spring, summer, and fall. However, at times during the winter months when conditions are favorable, commercial sand and gravel dredgers are able to operate within a limited range of their sand plants. Additional information on commercial sand and gravel dredging is provided in Section 3.11 of the Missouri River Commercial Dredging Final EIS (USACE 2011).

The commercial sand and gravel navigation evaluation used information on river flow and stage thresholds from the Missouri River Master Manual (Master Manual), Water Flow Changes and the Impact on the Missouri River Sand Industry, Appendix 10: Sand and Gravel Dredging (USACE 2002). As part of the Master Manual evaluation, the Tennessee Valley Authority conducted surveys with the sand and gravel companies that operate on the Missouri River. Dredging companies operating downstream of Kansas City noted that 26,000 cfs is a low flow threshold below which dredging operations would be affected. For example, dredgers noted that operations would have to be shifted to the lowest dock on the river to accommodate lower water levels, necessitating more trips and the possibility of purchasing new equipment if conditions persisted.

Dredging operators in the Kansas City and St. Joseph segments can also be affected by relatively higher river stages (USACE 2002); the evaluation assessed the number of days when river stages are above flood stage and above five feet below flood stage in Kansas City and St. Joseph.

USGS river gage data at St. Joseph, Kansas City, Waverly, Glasgow, Booneville, Jefferson City, Hermann, Washington, and St. Charles was reviewed between 2006 and 2016, along with the recorded sand and gravel extraction data to assess how rivers flows and stages affect dredgers. This information was used along with the Hydrologic Engineering Center – River Analysis System (HEC-RAS) data on the prevalence of low and high flows over the period of record under the MRRMP-EIS alternatives to assess potential impacts to commercial sand and gravel dredgers.

These high and low thresholds were compared to HEC-RAS data, showing the number of days when river flows were above and below these thresholds over the POR. An Excel® model was developed to assess how the MRRMP-EIS alternatives affect low river flows in the lower river. The river mile locations were chosen to be consistent with the U.S. Geological Survey gage locations. The data was queried daily and assessed during the navigation season (April through November) and non-navigation season (December through March). To assess the impacts of lower and higher river stages on dredging operations, an evaluation was conducted using the Hydroviz tool (based on HEC-RAS data) to assess the number of days when river flows are below 26,000 cfs and when river stages are above flood stage and above five feet below flood stage in Kansas City and St. Joseph. Lower and higher water levels can impact commercial sand and gravel dredging through the ability to extract material, the need to light-load barges, and the ability to move the dredged material from the barges to the conveyor at the dock.

3.0 Navigation Service Level and Season Length

Since the navigation economic model relies on the output of HEC ResSim model to estimate the impact of the alternatives, it is useful to examine the navigation operation statistics before showing the results of the NED, RED, and OSE analysis. The key navigation operation statistics to consider are service level and season length.

3.1 Service Level

The service level approximates the water volume necessary to achieve a normal 8-month navigation season with average downstream tributary flow contributions. To facilitate appropriate application of System multipurpose regulation criteria, a numeric "service level" has been adopted since the System was first filled in 1967. For the "full-service" level, the numeric service level value is 35,000 cfs. For the "minimum service" level, the numeric service level value is 29,000 cfs. The service level is used for selection of appropriate flow target values at previously established downstream control locations on the Missouri River. There are four flow target locations selected below Gavins Point to assure that the Missouri River has adequate water available for the entire downstream reach to achieve regulation objectives. For additional details on navigation service level, please see Section 3.15.1.2 of the Navigation Affected Environment FEIS.

As shown in Table 13, Alternatives 2, 4, and 6 would result in an average annual decrease in 2 days above minimum service level compared to Alternative 1. In the 8 worst difference years, Alternative 2 would have the largest impacts with an average of 37 fewer days compared to

Alternative 1 at minimum service level or above. When examining the number of days at full service level or above, Alternatives 2, 4, 5, and 6 would result in adverse impacts relative to Alternative 1. Alternative 4 would have the largest adverse impacts compared to Alternative 1, on average 11 fewer days at full service or above. In the average of the 8 worst years compared to Alternative 1, Alternative 4 would result in 104 fewer days at or above full-service levels compared to Alternative 1.

Service Level	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Minimum Service Lev	el or Above (29	9,000 cfs and a	bove)	I	I	I
Average number of days	225	223	225	223	225	223
Change in average number of days from Alternative 1	NA	-2	0	-2	0	-2
Average of the 8 Worst Difference Years from Alternative 1	NA	-37	0	-12	-5	-10
Average of the 8 Best Difference Years from Alternative 1	NA	9	2	0	2	1
Full Service Level or	Above (35,000	cfs and above)				
Average number of days	98	96	99	87	97	93
Change in average number of days from Alternative 1	NA	-2	1	-11	-1	-5
Average of the 8 Worst Difference Years from Alternative 1	NA	-39	-4	-104	-20	-52
Average of the 8 Best Difference Years from Alternative 1	NA	15	10	0	9	5

Table 13 Number of Da	vs at or Above Minimum	and Full-Service Level	s over the Period of Record
	jo at of Above minimum		

3.2 Season Length

The season length represents the number of days that releases from the Mainstem System are operated to support navigation on the Missouri River given water-in-storage checks in March and July. Table 14 presents the average annual number of months of navigation seasons for each alternative over the POR. In addition, the average of the 8 worst and best difference years compared to Alternative 1 are also presented in Table 14. A full navigation season is defined as 8 months. Alternatives 2, 4, and 6 would result in adverse impacts to navigation season length, with these alternatives resulting in an average decrease of 0.1 month (or 3 days). In the 8 worst difference years, Alternative 2 would result in the most adverse impact of the alternatives with an average of 1.1 months shorter season length than under Alternative 1, due to low summer flow events.

Season Length Statistic	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Average annual number of months	6.9	6.8	6.9	6.8	6.9	6.8
Change in average number of months from Alternative 1	NA	-0.1	0.0	-0.1	0.0	-0.1
Shortest season	0	0	0	0	0	0
Longest season	8.3	8.3	8.3	8.3	8.3	8.3
Average of the 8 Worst Difference Years from Alternative 1	NA	-1.1	0.0	-0.4	-0.1	-0.3
Average of the 8 Best Difference Years from Alternative 1	NA	0.3	0.1	0.0	0.1	0.0

Table 14. Season Length over the Period of Record (Months)

4.0 Commercial Navigation

The NED benefits for navigation include two components: (1) the transportation rate savings; and (2) the change in RR&R costs. The RR&R costs are subtracted from the transportation rate savings to estimate the NED benefits for each alternative.

4.1 Summary of National Economic Development Results

This section presents the results of the transportation rate savings, RR&R costs, and navigation NED benefits for all the MRRMP-EIS alternatives.

4.1.1 Transportation Rate Savings

Table 15 presents the results for the transportation rate savings for each of the alternatives using 2016 as the reference tonnage year. Alternative 1 would result in an average annual transportation rate savings of \$8.0 million, ranging from \$0 (in the 1930s and 1940s) to \$12.0 million during a full-service navigation year. Alternatives 2, 4, 5, and 6 show adverse impacts to navigation compared to Alternative 1. Alternative 4 shows the largest relative impact to navigation with a 2.0 percent decrease in average annual transportation rate savings compared to Alternative 1, which would be driven by the 10 years in the POR when a full spring release would reduce service levels in the year of or year following the release. Alternatives 2, 5, and 6 would result in average annual decreases in transportation rate savings of 0.6, 0.6, and 1.5 percent, respectively, compared to Alternative 1, due to the spawning cue releases and low summer flow (Alternative 2), fall releases (Alternative 5), and spawning cue releases (Alternative 6). In general, the releases shorten the navigation season or reduce the navigation service level in the current release year or subsequent years. Alternative 3 would result in a slight increase in transportation rate savings, about 0.2 percent compared to Alternative 1.

Transportation Rate Savings	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Transportation Rate Savings Over the POR	\$654,900,000	\$650,700,000	\$656,400,000	\$641,700,000	\$650,800,000	\$645,100,000
Average Annual Transportation Rate Savings	\$7,990,000	\$7,940,000	\$8,010,000	\$7,830,000	\$7,940,000	\$7,870,000
Maximum Annual Savings	\$12,040,000	\$12,620,000	\$12,040,000	\$12,040,000	\$12,040,000	\$12,280,000
Minimum Annual Savings	\$0	\$0	\$0	\$0	\$0	\$0
Average Annual Change from Alternative 1	NA	-\$51,000	\$19,000	-\$160,000	-\$50,000	-\$119,000
Average Annual Percent Change from Alternative 1	NA	-0.6%	0.2%	-2.0%	-0.6%	-1.5%

Table 15. Transportation Rate Savings for the MRRMP-EIS Alternatives (2018\$)

A sensitivity analysis for transportation rate savings assessed the impacts assuming a higher level of tonnage transported on the Missouri River. The evaluation used 1994 commercial tonnage levels to estimate the transportation rate savings and changes in transportation rate savings under the alternatives. 1994 supported a full navigation season and also resulted in the highest commercial tonnage shipped on the Missouri River since 1990. In 1994, commercial cargo tons were at a peak of 1.8 million tons, which is over 3.2 times greater than the 560,000 tons that traveled on the river in 2016. Given this, it was chosen for comparison with the 2016 reference year transportation rate savings impacts.

As shown in Table 16, the average annual transportation rate savings for each of the alternatives in 1994 increased by greater than \$33.9 million, compared with the 2016 results. For example, the average annual transportation rate savings for Alternative 1 increased from \$7.99 million (with 2016 tonnage) to \$42.66 million (with 1994 tonnage). The difference in the average annual transportation rate savings between the alternatives and Alternative 1 ranged from an increase of \$123,000 (Alternative 3) to a decrease of \$923,000 (Alternative 4). Similar to the 2016 transportation rate savings results, the 1994 analysis shows that Alternatives 2, 4, 5, and 6 would have adverse impacts to navigation compared to Alternative 1, with Alternative 4 showing the largest relative impact (a reduction in transportation rate savings of 2.2%). The decrease in transportation rate savings under Alternatives 2, 4, 5, and 6 compared to Alternative 1 in percentage terms for the 1994 tonnage is slightly larger due to a different mix of commodities shipped in 1994. Overall, the navigation NED evaluation using the 1994 and 2016 tonnage levels would result in similar percent change from Alternative 1 and the same ranking of the alternatives.

Table 16. Transportation Rate Savings for the MRRMP-EIS Alternatives Using 1994 Tonnage
(2018\$)

Transportation Rate Savings	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Transportation Rate Savings Over the POR	\$3,498,100,000	\$3,450,500,000	\$3,508,200,000	\$3,422,400,000	\$3,471,500,000	\$3,443,300,000
Average Annual Transportation Rate Savings	\$42,660,000	\$42,080,000	\$42,780,000	\$41,740,000	\$42,340,000	\$41,990,000
Maximum Annual Savings	\$66,860,000	\$67,270,000	\$66,860,000	\$66,860,000	\$66,860,000	\$66,860,000
Minimum Annual Savings	\$0	\$0	\$0	\$0	\$0	\$0
Average Annual Change from Alternative 1	NA	-\$581,000	\$123,000	-\$923,000	-\$324,000	-\$669,000
Average Annual Percent Change from Alternative 1	NA	-1.4%	0.3%	-2.2%	-0.8%	-1.6%

4.1.2 Change in Repair, Replacement, and Rehabilitation Costs

Table 17 summarizes the impacts to RR&R costs. Alternative 1 would result in an average annual RR&R cost of \$570,000, ranging annually from \$0 to \$1.26 million. Alternative 2 would result in a small decrease (\$16,000) in average annual RR&R costs compared to Alternative 1, which is driven by the reduced USACE costs for the split and shortened navigation season. The low summer flow would result in higher service levels and season length in the year that the low summer flow event is simulated from small increases in System storage, resulting in lower RR&R costs to maintain the navigation channel compared to Alternative 1. In comparison, Alternatives 4, 5, and 6 would cause higher RR&R costs than Alternative 1 because the spring releases and spawning cues on average would result in reduced System storage and more periods of minimum or reduced service compared to Alternative 1, which would require higher costs to maintain the navigation channel. Using the 1994 tonnage levels for comparison, the RR&R costs were the same as those costs given the 2016 tonnage levels.

RR&R Costs	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Total RR&R Costs Over the POR	\$46,500,000	\$45,100,000	\$46,300,000	\$48,100,000	\$47,000,000	\$47,200,000
Average Annual RR&R Costs	\$570,000	\$550,000	\$570,000	\$590,000	\$570,000	\$580,000
Maximum Annual Cost	\$1,260,000	\$1,260,000	\$1,260,000	\$1,260,000	\$1,260,000	\$1,260,000
Minimum Annual Cost	\$0	\$0	\$0	\$0	\$0	\$0
Average Annual Change in RR&R costs from Alternative 1	NA	-\$16,000	-\$2,000	\$20,000	\$7,000	\$8,000
Average Annual Percent Change from Alternative 1	NA	-2.9%	-0.3%	3.5%	1.2%	1.4%

4.1.3 Navigation National Economic Development Benefits

Table 20 summarizes the NED benefits for navigation for each of the alternatives. These values are estimated by subtracting the RR&R costs (Table 19) from the transportation rate savings (Table 18). The average annual NED benefits ranged from \$7.2 million under Alternative 4 to \$7.4 million under Alternatives 1 and 3.

The following provides a summary of the results.

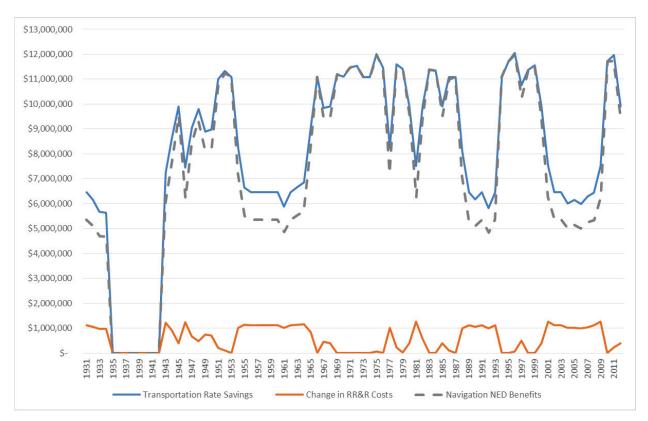
- All alternatives show less than a 2.5 percent change in average annual NED benefits relative to Alternative 1 (ranging from an increase under Alternative 3 of 0.3 percent to a decrease of 2.4 percent under Alternative 4).
- All alternatives would experience no navigation in eight years during extreme droughts years, as simulated in 1935-1942.
- Alternative 4 would result in the largest decrease in transportation rate savings and an increase in RR&R costs, resulting in the largest adverse impacts compared to Alternative 1. Similarly, Alternative 6 would result in decreased transportation rate savings and an increase in RR&R costs, resulting in an overall average annual decrease of 1.7 percent in navigation NED benefits compared to Alternative 1.
- Alternative 2 would result in a decrease in transportation rate savings and a decrease in RR&R costs, resulting in a decrease in average annual navigation NED benefits of \$35,000 (0.5%).
- Alternative 3 would result in very small increases in navigation NED benefits compared to Alternative 1.

NED Benefits	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Total NED Benefits over the POR	\$608,400,000	\$605,500,000	\$610,100,000	\$593,600,000	\$603,710,000	\$598,000,000
Average Annual NED Benefits	\$7,420,000	\$7,380,000	\$7,440,000	\$7,240,000	\$7,360,000	\$7,290,000
Maximum Annual NED Benefit	\$11,980,000	\$12,560,000	\$11,980,000	\$11,980,000	\$11,980,000	\$12,270,000
Minimum Annual NED Benefit	0	0	0	0	0	0
Average Annual Change from Alternative 1	NA	-\$35,000	\$21,000	-\$181,000	-\$57,000	-\$127,000
Average Annual Percentage Change from Alternative 1	NA	-0.5%	0.3%	-2.4%	-0.8%	-1.7%

Table 18. Navigation National Economic Development Benefits for the MRRMP-EIS Alternatives (2018\$)

4.2 National Economic Development Results

4.2.1 Alternative 1 – No Action (Current System Operation and Current MRRP Implementation)


Under Alternative 1, the MRRP would continue its current implementation actions, which are in compliance with the BiOp. Management actions that may have impacts to navigation include the spring plenary pulse, which could affect the level of navigation service provided by the USACE.

As shown in Table 19 and Figure 5, the annual NED benefits for Alternative 1 would range between \$0 and \$12.0 million with an average of \$7.4 million. Figure 3 shows annual transportation rate savings, RR&R costs, and navigation NED benefits for Alternative 1. The 82-year POR covers a broad range of water conditions as simulated based on historic hydrology, including droughts in the 1930s and early 1940s where no navigation was supported. Other notable drought periods include the mid-1950s to early 1960s, the late 1980s to early 1990s, and the mid-2000s.

Table 19. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 1 (2018\$)

NED Benefits	Transportation Rate Savings	RR&R Costs	Navigation NED Benefits
Total NED Benefits over the POR	\$654,900,000	\$46,500,000	\$608,400,000
Average Annual NED Benefits	\$7,990,000	\$570,000	\$7,420,000
Highest Annual NED Benefits over the POR	\$12,040,000	\$1,260,000	\$11,980,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

Figure 5. Annual Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 1 (2018\$)

4.2.2 Alternative 2 – USFWS 2003 Biological Opinion Projected Actions

Alternative 2 management actions include spawning cue releases and low summer flows that can result in split navigation seasons when fully implemented. The management actions under Alternative 2 would result in average annual NED benefits of \$7.4 million, a decrease in NED benefits of 0.5 percent compared to Alternative 1. Alternative 2 would result in an average annual decrease of \$35,000 per year in NED benefits driven by the split navigation season during the low summer flow events. The NED analysis for Alternative 2 is summarized in Table 20.

NED Benefits	Transportation Rate Savings	RR&R Costs	NED Benefits
NED Benefits over the POR	\$650,700,000	\$45,100,000	\$605,500,000
Average Annual NED Benefits	\$7,940,000	\$550,000	\$7,380,000
Highest Annual NED Benefits Over the POR	\$12,620,000	\$1,260,000	\$12,560,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0
Average Annual Change from Alternative 1	-\$51,000	-\$16,000	-\$35,000

Table 20. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits under Alternative 2 (2018\$)

NED Benefits	Transportation Rate Savings	RR&R Costs	NED Benefits
NED Benefits over the POR	\$650,700,000	\$45,100,000	\$605,500,000
Average Annual NED Benefits	\$7,940,000	\$550,000	\$7,380,000
Highest Annual NED Benefits Over the POR	\$12,620,000	\$1,260,000	\$12,560,000
Average Annual Percent Change from Alternative 1	-0.6%	-2.9%	-0.5%

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

Table 21 identifies the years with a split navigation season, which would occur in the years when the full bi-modal spawning cue release is implemented and in the subsequent year. The low summer flow and associated split navigation season would occur for approximately 10 weeks in the last week of June, July, and August. In addition, there are 31 years when partial releases would occur, which is defined as when one of the March or May spawning cues is fully implemented or when the March and/or May spawning cues is partially implemented. It should be noted that the "year after a full release" is also when a partial release and a low summer flow would occur under Alternative 2 (see Figures 4 and 5 below).

Table 21. Years with Split Navigation Seasons Simulated under Alternative 2

1	1	1	1	1	1
1963	1964	1988	1989	2002	2003

When evaluating the impacts from each of the alternatives in the MRRMP-EIS, it is helpful to examine the annual impacts. The annual differences in NED benefits between Alternative 1 and Alternative 2 over the POR for navigation NED benefits are shown in Figure 6. The difference in NED benefits for each year is color-coded based on the type of release occurring each year.

The six split navigation season years as simulated under Alternative 2 would result in adverse impacts to navigation NED benefits compared to Alternative 1 (Figure 6). These adverse impacts would be due to decreased transportation rate savings from split and shorter navigation seasons. When commodities can no longer be shipped during the summer season, they would be shipped via truck or rail, with no transportation rate savings accruing during this period. The years with full spawning cue releases and low summer flows and the year after when low summer flows would occur would result in an annual reduction of up to \$2.0 million (24% decrease compared to Alternative 1 in those years) in transportation rate savings compared to Alternative 1.

The annual difference in navigation NED benefits are generally slightly greater than the transportation rate savings because the reduced RR&R costs under Alternative 2 would slightly offset the reductions in transportation rate savings. Under the years with low summer flows, the shorter season and higher service level under Alternative 2 causes greater RR&R cost savings compared to Alternative 1, partially offsetting the decrease in transportation rate savings.

Of the 31 partial releases simulated over the POR, nine would have an adverse impact on navigation NED benefits with the largest annual decrease (\$1.2 million) occurring during conditions similar to those simulated for 1964. In general, the release of water in the spring would reduce the water in System storage compared to Alternative 1 during the criteria check in July 1, resulting in lower service levels and lower transportation rate savings and higher RR&R

costs compared to Alternative 1. However, the partial releases in some years would result in small increases in NED benefits. For example, in the simulated years of 1965, 1982, and 2009, navigation NED benefits would increase between \$843,000 and \$1.4 million in these simulated years compared to Alternative 1. In 1965 and 1982 the partial releases increase the service level during the release in May. In addition, in 1965, the low summer flows in 1963 increase System storage slightly in 1965, increasing the service level for navigation compared to Alternative 1. The low summer flows in 2002 and 2003 would result in slightly higher System storage in the mid to late 2000s under Alternative 2 compared to Alternative 1, with small increases in service levels relative to Alternative 1.

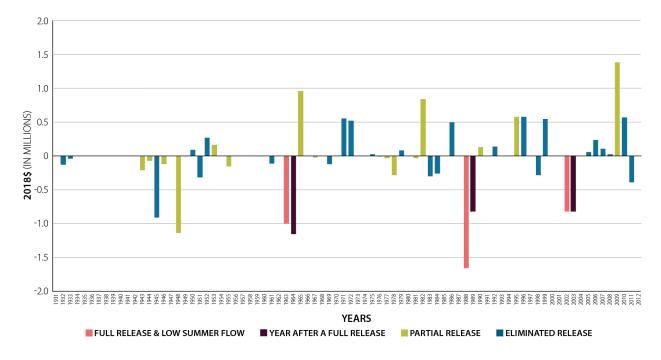


Figure 6. Alternative 2 Difference in Navigation National Economic Development Benefits Relative to Alternative 1

4.2.3 Alternative 3 – Mechanical Construction Only

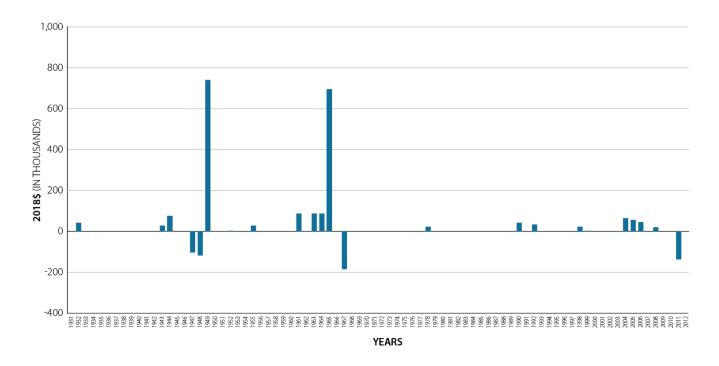

Management actions included under Alternative 3 would include the creation of ESH through mechanical means. In addition, the spring plenary pulse under Alternative 1 would not take place under Alternative 3. The NED results for Alternative 3 are summarized in Table 22. Overall, Alternative 3 results in a very small average annual increase in navigation NED benefits (\$21,000 or 0.3%) due to a slight increase in System storage relative to Alternative 1 because the spring plenary pulse does not occur under Alternative 3.

Table 22. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and
National Economic Development Benefits for Alternative 3 (2018\$)

NED Benefits	Transportation Rate Savings	Change in RR&R Costs	NED Benefits
Total NED Benefits over the POR	\$656,400,000	\$46,300,000	\$610,100,000
Average Annual NED Benefits	\$8,010,000	\$570,000	\$7,440,000
Highest Annual NED Benefits over the POR	\$12,040,000	\$1,260,000	\$11,980,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0
Average Annual Change from Alternative 1	\$19,000	-\$2,000	\$21,000
Average Annual Percent Change from Alternative 1	0.2%	-0.3%	0.3%

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

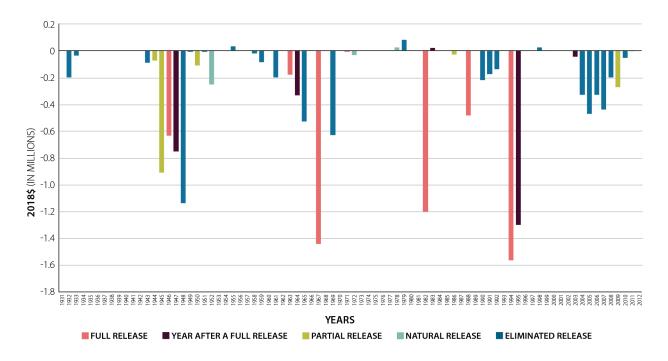
Figure 7 shows the change in navigation benefits by year for Alternative 3 relative to Alternative 1. In most years, Alternatives 1 and 3 have very similar navigation NED benefits. In general, transportation rates saving would increase and RR&R costs would decrease under Alternative 3 compared to Alternative 1. In 1949 and 1965, Alternative 3 would result in an increase of approximately \$700,000 in annual navigation NED benefits relative to Alternative 1 because there was a slightly higher navigation service level under Alternative 3 due to the lack of spring plenary pulse compared to Alternative 1.

Figure 7. Alternative 3 Difference in Navigation National Economic Development Benefits Relative to Alternative 1

4.2.4 Alternative 4 – Spring ESH Creating Release

Alternative 4 management actions include the development of ESH habitat through both mechanical means and spring releases. As shown in Table 23, relative to Alternative 1, Alternative 4 has average annual navigation NED benefits of \$7.2 million, an average annual decrease in navigation NED benefits of \$181,000 or 2.4 percent. The annual navigation NED benefits would range from \$0 to \$12.0 million under Alternative 4.

NED Benefits	Transportation Rate Savings	Change in RR&R Costs	NED Benefits
Total NED Benefits over the POR	\$641,700,000	\$48,100,000	\$593,600,000
Average Annual NED Benefits	\$7,830,000	\$590,000	\$7,240,000
Highest Annual NED Benefits over the POR	\$12,040,000	\$1,260,000	\$11,980,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0
Average Annual Change in NED Benefits from Alternative 1	-\$160,000	\$20,000	-\$181,000
Average Annual Percentage Change in Alternative 1	-2.0%	3.5%	-2.4%


 Table 23. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and

 Navigation National Economic Development Benefits for Alternative 4 (\$2018)

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

Figure 8 presents the annual differences in navigation NED benefits between Alternative 1 and Alternative 4. The difference in NED benefits for each year is color-coded based on the type of release occurring each year. Under conditions similar to those modeled in 1967, 1982, and 1994, full releases under Alternative 4 would result in the greatest decreases of total NED benefits, more than \$1,000,000 per year, compared to Alternative 1. While the length of the supported navigation season between Alternative 1 and Alternative 4 during these simulated years would usually be the same, the full releases cause reductions in System storage, which reduces the navigation service level provided by the USACE. The reduction in service level would increase the RR&R costs and reduce the transportation rate savings resulting in a decrease in the NED benefits compared to Alternative 1. Of the nine years when full implementation of the releases would be simulated, six years would experience decreases in NED benefits, while the other years had minimal to no changes compared to Alternative 1.

The years following a full release would result in adverse impacts to navigation through reduced System storage and navigation service levels. For example, conditions similar to those modeled for 1947 and 1964 would result in annual decreases of over \$330,000 in navigation NED benefits. In these years, the partial spring releases reduce the service level, which decreases transportation rate savings under Alternative 4 compared to Alternative 1, with decreases in navigation NED benefits.

4.2.5 Alternative 5 – Fall ESH Creating Release

Alternative 5 management actions include developing ESH habitat through both mechanical and fall releases from Gavins Point Dam. The navigation NED results for Alternative 5 are summarized in Table 24. Alternative 5 results in some very small changes compared to Alternative 1. On average, there are slightly lower transportation rate savings and slightly higher RR&R costs, resulting in a small decrease in navigation NED benefits compared to Alternative 1 (-\$57,000 or -0.8%).

NED Benefits	Transportation Rate Savings	Change in RR&R Costs	NED Benefits
Total NED Benefits over the POR	\$650,800,000	\$47,050,000	\$603,700,000
Average Annual NED Benefits	\$7,940,000	\$574,000	\$7,360,000
Highest Annual NED Benefits over the POR	\$12,040,000	\$1,260,000	\$11,980,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0
Average Annual Change from Alternative 1	-\$50,000	\$7,000	-\$57,000
Average Annual Percentage Change from Alternative 1	-0.6%	1.2%	-0.8%

 Table 24. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 5 (\$2018)

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

Figure 9 presents the annual navigation NED benefits for Alternative 5; each year is color-coded based on the release event. Most of the annual NED benefits are very similar for Alternative 5 and Alternative 1. Alternative 5 includes fall releases that would be fully implemented in seven years and partially implemented in two years over the POR. There are two years in which there are notable adverse impacts to navigation NED benefits: 1988 and 1995. The simulated years of 1988 and 1995 are years that follow a fully implemented fall release. In these years, the decreased NED benefits were caused by lower System storage levels and navigation service levels in subsequent years, resulting in relatively higher RR&R costs and decreases in transportation rate savings.

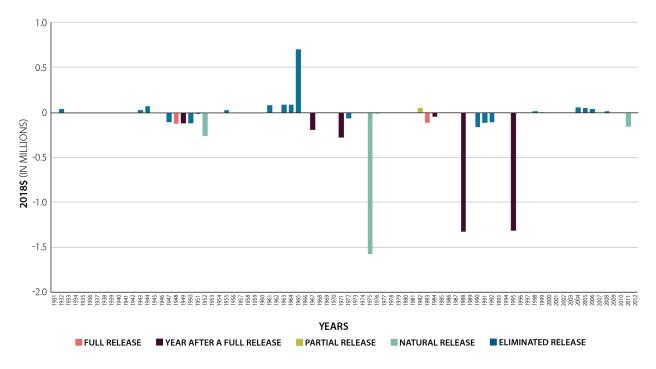
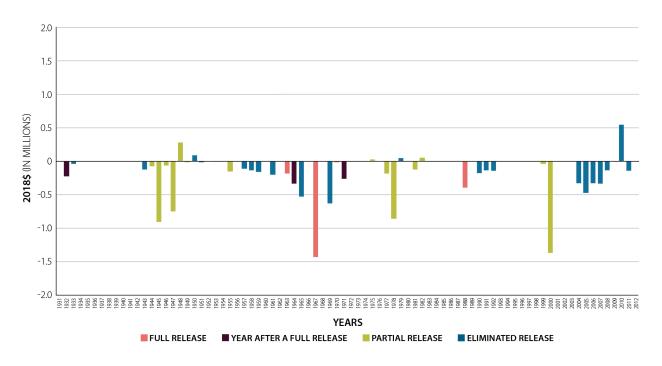


Figure 9. Alternative 5 Difference in Navigation National Economic Development Benefits Relative to Alternative 1

4.2.6 Alternative 6 – Pallid Sturgeon Spawning Cue

The management actions under Alternative 6 include developing ESH habitat through mechanical means and bi-modal spawning cue flow releases in March and May. The navigation NED results for Alternative 6 are summarized in Table 25. Relative to Alternative 1, Alternative 6 would reduce average annual transportation rate savings by \$119,000 and increase RR&R costs by \$8,000, with an average annual decrease in navigation NED benefits of \$127,000 or - 1.7 percent.


Table 25. Transportation Rate Savings, Repair, Replacement, and Rehabilitation Costs, and Navigation National Economic Development Benefits for Alternative 6 (\$2018)

NED Benefits	Transportation Rate Savings	Change in RR&R Costs	NED Benefits
Total NED Benefits over the POR	\$645,140,000	\$47,200,000	\$598,000,000
Average Annual NED Benefits	\$7,870,000	\$580,000	\$7,290,000
Higher Annual NED Benefits over the POR	\$12,280,000	\$1,260,000	\$12,270,000
Lowest Annual NED Benefits over the POR	\$0	\$0	\$0
Average Annual Change in NED Benefits from Alternative 1	-\$119,000	\$8,000	-\$127,000
Average Annual Percentage Change in NED Benefits from Alternative 1	-1.5%	1.4%	-1.7%

*Numbers may not compute exactly due to rounding. The lowest and highest years for the transportation rate savings, RR&R costs, and navigation NED benefits are not necessarily from one year.

Under Alternative 6, there would be six years with fully implemented spawning cue releases and 29 years of partial implementation, defined as full implementation of one of the spring releases (March or May) or partial release of one or both of the bimodal releases. Figure 10 summarizes the annual difference in navigation NED benefits between Alternative 1 and Alternative 6. Each year is color-coded based on the type of release that occurred in that year.

Adverse impacts occur during some of the full and partial release years, with three years experiencing a decrease of between \$900,000 and \$1.5 million in annual navigation NED benefits compared to Alternative 1. These impacts would be due to the releases reducing System storage, which would affect navigation service level causing a decrease in transportation rate savings and an increase in RR&R costs resulting in an overall decrease navigation NED benefits.

Figure 10. Alternative 6 Difference in Navigation National Economic Development Benefits Relative to Alternative 1

4.3 Regional Economic Development Results

The navigation RED evaluation summarizes the jobs, income, and sales impacts associated with the estimated commercial tonnage transported on the Missouri River. The commercial tonnage (not including sand and gravel) estimated to be transported on the Missouri River was calculated with the baseline tonnage (2016) and the tonnage estimated to shift off of the waterway to alternate overland modes over the period of record. The RED results are summarized in this section.

4.3.1 Summary of Regional Economic Development Results

A summary of the RED impacts for employment, labor income, and sales for all of the alternatives evaluated in the MRRMP-EIS are summarized in Tables 26, 27, and 28, respectively. Alternatives 2, 4 and 6 would result in adverse impacts to RED benefits associated with navigation. Alternative 4 would have the largest adverse impacts on average, with an average reduction in 2 jobs per year and \$94,000 in labor income. In the eight worst change years compared to Alternative 1, Alternative 4 would result in an average annual reduction of 12 jobs and \$666,000 in labor income. The spring release and spawning cue release under Alternatives 4 and 6 would result in lower System storage in the summer and fall as the reservoir System rebalances, with adverse impacts to navigation service level during the fall season, resulting in some of the tonnage shifting off of the river to alternate overland modes when river flows (and service levels) fall below 26,000 cfs. Please refer to Table 37 for a summary by alternatives of the estimated tonnage that would shift off the waterway to alternate overland modes. Alternatives 2, 3 and 5 would result in minimal changes in average annual RED benefits relative to Alternative 1. However, under Alternative 2, in the largest difference years from Alternative 1 during the low summer flow events (average of 8 largest difference years), a reduction in 14 annual jobs and \$790,000 in labor income would occur, which is more adverse than Alternative 4 and 6.

Table 26. Direct, Indirect, and Induced Employment for Waterway Industries under the Alternatives in the MRRMP-EIS

	Alternative					
Year/Scenario	1	2	3	4	5	6
Average Annual Employment	154	154	154	152	154	152
Change in Average Annual Employment	NA	0	0	-2	0	-1
Percent Change in Average Annual Employment	NA	-0.1%	0.1%	-1.1%	-0.1%	-1.0%
8 Worst Years Relative to Alternative 1 (average)	NA	-14	0	-12	-4	-9
8 Best Years Relative to Alternative 1 (average)	NA	8	2	0	2	1

Table 27. Direct, Indirect, and Induced Labor Income for Waterway Industries under the Alternatives in the MRRMP-EIS (2018\$)

	Alternative						
Year/Scenario	1	2	3	4	5	6	
Average Annual Labor Income	\$8,793,396	\$8,782,047	\$8,805,931	\$8,699,195	\$8,784,033	\$8,708,140	
Change in Average Annual Labor Income	NA	-\$11,349	\$12,535	-\$94,201	-\$9,363	-\$85,256	
Percent Change in Average Annual Labor Income	NA	-0.1%	0.1%	-1.1%	-0.1%	-1.0%	
8 Worst Years Relative to Alternative 1 (average)	NA	-\$789,164	\$0	-\$666,422	-\$212,163	-\$527,532	
8 Best Years Relative to Alternative 1 (average)	NA	\$482,404	\$105,871	\$6,737	\$103,963	\$60,301	

Table 28. Direct, Indirect, and Induced Sales under the Alternatives in the MRRMP-EIS for Waterway Industries (\$2018)

	Alternative					
Year/Scenario	1	2	3	4	5	6
Average Annual Sales/Revenues	\$29,414,56 6	\$29,376,603	\$29,456,496	\$29,099,457	\$29,383,246	\$29,129,378
Change in Average Annual Sales/Revenues	NA	-\$37,963	\$41,930	-\$315,109	-\$31,320	-\$285,188
Percent Change in Average Annual Sales	NA	-0.1%	0.1%	-1.1%	-0.1%	-1.0%
8 Worst Years Relative to Alternative 1 (average)	NA	-\$2,639,811	\$0	-\$2,229,231	-\$709,701	-\$1,764,633
8 Best Years Relative to Alternative 1 (average)	NA	\$1,613,679	\$354,149	\$22,536	\$347,763	\$201,710

4.3.2 Alternative 1 – No Action (Current System Operation and Current MRRP Implementation)

Under Alternative 1, RED benefits associated with the value of commercial shipments on the waterway would support on average over the POR 154 direct, indirect, and induced jobs and \$8.8 million in total labor income. During the worst navigation years when there was no navigation, there would be no jobs and income supported when no tonnage is assumed to be transported by waterway, while in the highest navigation year with the greatest tonnage shipped, there would be 173 jobs and \$9.9 million in labor income. Table 29 provides a summary of RED benefits under Alternative 1.

While Alternative 1 would have adverse impacts to the waterway industries when commodities can no longer be shipped via navigation on the Missouri River, these adverse impacts would be at least partially offset by revenue gains and employment growth in other transportation sectors (e.g., truck and rail transport). Since most of these commodities are moved to or from Missouri, the majority of the economic impacts would occur within Missouri, although there may be some small economic impacts to adjacent states where these commodities would be shipped to or from.

Table 29. Total Regional Economic Development Benefits Associated with Waterway Industries on
the Missouri River under Alternative 1 (2018 dollars)

Economic Impact Parameter	Scenario	Regional Economic Contribution
Direct, Indirect, and	Annual Average Employment	154
Induced Jobs	Smallest Annual Movement of Commodities on the Missouri River	0
	Largest Annual Movement of Commodities on the Missouri River	173
Direct, Indirect, and	t, Indirect, and Annual Average Labor Income	
Induced Labor Income	Smallest Annual Movement of Commodities on the Missouri River	\$0
lincome	Largest Annual Movement of Commodities on the Missouri River	\$9,917,027
Direct, Indirect, and	Direct, Indirect, and Annual Average Sales	
Induced Sales	Smallest Annual Movement of Commodities on the Missouri River	\$0
	Largest Annual Movement of Commodities on the Missouri River	\$33,173,196

4.3.3 Alternative 2 – USFWS 2003 Biological Opinion Projected Actions

Under Alternative 2, average annual RED benefits supported by navigation are estimated to be 154 jobs and \$8.8 million in labor income. When compared to Alternative 1, Alternative 2 would result in a negligible change in jobs and \$11,000 less in labor income on average over the POR associated with the reduced ability to navigate on the Missouri River. The eight worst years compared to Alternative 1 include years when a low summer flow would cause a split navigation season. During these years, there would be a reduction of 14 jobs and \$789,000 in labor income on average per year associated with impacts to the waterway industries in the region. Table 30 summarizes the RED impacts under Alternative 2.

 Table 30. Total Regional Economic Development Benefits Associated with Waterway Industries on the Missouri River under Alternative 2 and Compared to Alternative 1 (2018\$)

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect,	Annual Average Employment	154
and Induced Jobs	Change in Annual Average RED Benefits Relative to Alternative 1	0
	Percent Change in Average Annual Employment	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-14
	Average Annual Change in 8 Best Years Relative to Alternative 1	8
Direct, Indirect,	Annual Average Labor Income	\$8,782,047
and Induced Labor Income	Change in Annual Average RED Benefits Relative to Alternative 1	-\$11,349
Income	Percent Change in Average Annual Labor Income	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$789,164
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$482,404
Direct, Indirect,	Annual Average Sales	\$29,376,603
and Induced Sales	Change in Annual Average RED Benefits Relative to Alternative 1	-\$37,963
	Percent Change in Average Annual Sales	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$2,639,811
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$1,613,679

4.3.4 Alternative 3 – Mechanical Construction Only

Under Alternative 3, average annual RED benefits supported by navigation would be 154 jobs and \$8.8 million in labor income. Alternative 3 would result in negligible changes in jobs and income compared to Alternative 1. Table 31 summarizes the RED impacts under Alternative 3.

Table 31. Total Regional Economic Development Benefits Associated with Waterway Industries on the Missouri River under Alternative 3 and Compared to Alternative 1 (\$2018)

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect, and	Annual Average Employment	154
Induced Jobs	Change in Annual Average RED Benefits Relative to Alternative 1	0
	Percent Change in Average Annual Employment	0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	0
	Average Annual Change in 8 Best Years Relative to Alternative 1	2
Direct, Indirect, and	Annual Average Labor Income	\$8,805,931
Induced Labor Income	Change in Annual Average RED Benefits Relative to Alternative 1	\$12,535
	Percent Change in Average Annual Labor Income	0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	\$0
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$105,872
Direct, Indirect, and	Annual Average Sales	\$29,456,496
Induced Sales	Change in Annual Average RED Benefits Relative to Alternative 1	\$41,930
	Percent Change in Average Annual Sales	0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	\$0
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$354,149

4.3.5 Alternative 4 – Spring ESH Creating Release

Under Alternative 4, average annual RED benefits supported by navigation would be 152 jobs and \$8.7 million in labor income. Compared to Alternative 1, Alternative 4 would result in two fewer jobs and \$94,000 less in labor income on average per year over the POR associated with the reduced ability to navigate in some years. There would be small adverse impacts to waterway industries and supporting sectors in the years with the largest reductions in shipments compared to Alternative 1, resulting in a relative decrease of 12 jobs and \$666,000 in labor income compared to Alternative 1. Table 32 summarizes the RED impacts under Alternative 4.

Table 32. Total Regional Economic Development Benefits Associated with Waterway Industries on the Missouri River under Alternative 4 and Compared to Alternative 1 (2018\$)

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect, and	Annual Average Employment	152
Induced Jobs	Change in Annual Average RED Benefits Relative to Alternative 1	-2
	Percent Change in Average Annual Employment	-1.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1 Average Annual Change in 8 Best Years Relative to Alternative 1	
	Annual Average Labor Income	\$8,699,195

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect, and	Change in Annual Average RED Benefits Relative to Alternative 1	-\$94,201
Induced Labor Income	Percent Change in Average Annual Labor Income	-1.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$666,422
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$6,737
Direct, Indirect, and	rect, Indirect, and Annual Average Sales	
Induced Sales	Change in Annual Average RED Benefits over 82 years Relative to Alternative 1	-\$315,109
	Percent Change in Average Annual Sales	-1.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$2,229,231
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$22,536

4.3.6 Alternative 5 – Fall ESH Creating Release

Under Alternative 5, average annual RED benefits supported by navigation would be 154 jobs and \$8.8 million in labor income. Alternative 5 would result in negligible RED impacts compared to Alternative 1. Table 33 summarizes the RED impacts under Alternative 5.

Table 33. Total Regional Economic Development Benefits Associated with Waterway Industries on the Missouri River under Alternative 5 and Compared to Alternative 1 (2018\$)

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect, and	Annual Average Employment	154
Induced Jobs	Change in Annual Average RED Benefits Relative to Alternative 1	0
	Percent Change in Average Annual Employment	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-4
	Average Annual Change in 8 Best Years Relative to Alternative 1	2
Direct, Indirect, and	Annual Average Labor Income	\$8,784,033
Induced Labor Income	Change in Annual Average RED Benefits Relative to Alternative 1	-\$9,363
	Percent Change in Average Annual Labor Income	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$212,163
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$103,963
Direct, Indirect, and	Annual Average Sales	\$29,383,246
Induced Sales	Change in Annual Average RED Benefits Relative to Alternative 1	-\$31,320
	Percent Change in Average Annual Sales	-0.1%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$709,701
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$347,763

4.3.7 Alternative 6 – Pallid Sturgeon Spawning Cue

Under Alternative 6, average annual RED benefits supported by navigation would be 152 jobs and \$8.7 million in labor income. Under Alternative 6, the adverse conditions that would affect

the ability to navigate the Missouri River over the period of record would result in an average annual reduction of one job and \$85,000 in labor income compared to Alternative 1. Reduced navigation service and shortened navigation seasons under Alternative 6 associated with reduced System storage as a result of spawning cue pulses would have an adverse impact on the waterway industries and supporting sectors. In the eight worst years relative to Alternative 1, there would be an average reduction in 9 jobs and \$528,000 in labor income. Table 34 summarizes the RED impacts under Alternative 6.

Economic Impact Parameter	Scenario	Regional Economic Impact
Direct, Indirect, and	Annual Average Employment	152
Induced Jobs	Change in Annual Average RED Benefits Relative to Alternative 1	-1
	Percent Change in Average Annual Employment	-1.0%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-9
	Average Annual Change in 8 Best Years Relative to Alternative 1	1
Direct, Indirect, and	Annual Average Labor Income	\$8,708,140
Induced Labor Income	Change in Annual Average RED Benefits Relative to Alternative 1	-\$85,256
	Percent Change in Average Annual Labor Income	-1.0%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$527,532
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$60,301
Direct, Indirect, and	Annual Average Sales	\$29,129,378
Induced Sales	Change in Annual Average RED Benefits Relative to Alternative 1	-\$285,188
	Percent Change in Average Annual Sales	-1.0%
	Average Annual Change in 8 Worst Years Relative to Alternative 1	-\$1,764,633
	Average Annual Change in 8 Best Years Relative to Alternative 1	\$201,710

Table 34. Total Regional Economic Development Benefits Associated with Waterway Industries on
the Missouri River under Alternative 6 and Compared to Alternative 1 (2018\$)

4.4 Other Social Effects Results

The OSE for commercial navigation includes an assessment of how shifting modes from the waterway to overland could affect air emissions of carbon monoxide (CO), nitrous oxides (NOx), and particulate matter (PM), and hydrocarbons (HC). Section 4.1 summarizes the commercial tonnage (not including sand and gravel) estimated to shift off of the waterway to alternate overland modes over the POR, on which the OSE evaluation is based. A summary of the air emissions results is also presented in this section.

4.4.1 Commercial Tonnage that Shifts to Alternate Overland Modes of Transportation

The annual average amount of commodities shifting from waterway to overland transportation modes ranges from 56,800 tons for the Kansas City reach under Alternative 3 (the least amount of tonnage) to 62,900 tons under Alternative 4 (the greatest amount of tonnage) (Table 35). Drought conditions and relatively lower System storage under Alternative 3 would result. Tonnage is estimated to shift off the river when river flows fall below 26,000 cfs during the

navigation season or when the navigation season is shortened. Alternative 4 would result in the largest shift in mode; an annual average of 980 tons in the Omaha reach, 8,500 tons in the Nebraska City reach, and 62,900 tons in the Kansas City reach would shift transportation modes. Alternatives 4 and 6 would result in commodities being shipped by alternate transportation modes because the pulses and spawning cue releases cause reductions in System storage, causing shorter navigation seasons than experienced under Alternative 1. The split seasons proposed under Alternative 2 would result in an adverse impact to navigation, but would not be as adverse as under Alternative 4 and 6 because Alternative 2 low summer flow events would increase System storage in the months and sometime years following the low summer flow events, extending the navigation season. It should be noted that Alternative 3 would result in slightly less tonnage shifting off the waterway when compared to Alternative 1 due to slightly longer navigation seasons (higher System storage) under Alternative 3.

	Units	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6		
Omaha									
Average Annual Commodities that Shift Mode	Tons	690	650	640	980	690	990		
Average Annual Change in Tonnage Relative to Alternative 1	Tons	NA	-40	-50	290	0	300		
Percent Change in Tonnage Relative to Alternative 1	%	NA	-6.0%	-7.0%	42.0%	0.0%	43.0%		
		Nebrask	a City						
Average Annual Commodities that Shifts Mode	Tons	7,400	7,200	7,300	8,500	7,500	8,400		
Average Annual Change in Tonnage Relative to Alternative 1	Tons	NA	-200	-100	1,100	100	1,000		
Percent Change in Tonnage Relative to Alternative 1	%	NA	-3.0%	-1.0%	15.0%	1.0%	14.0%		
		Kansas	City						
Average Annual Commodities that Shifts Mode	Tons	57,600	58,200	56,800	62,900	58,100	62,400		
Average Annual Change in Tonnage Relative to Alternative 1	Tons	NA	600	-800	5,300	500	4,800		
Percent Change in Tonnage Relative to Alternative 1	%	NA	1.0%	-1.0%	9.0%	1.0%	8.0%		

Table 35. Commercial Tonnage Estimated to Shift Modes under the MRRMP-EIS Alternatives

Note: These figures do not include the tonnage for commercial sand and gravel. The model assessed tonnage if it was transported within or through a river reach. Summing the tonnages across the river reaches would likely result in double counting because most of commodity shipments in the Omaha and Kansas City reach are likely also transported in the Kansas City reach.

4.4.2 Overview of Other Social Effects Results

The vast majority of impacts to air emissions results from tonnage shifting off of the waterway in the Kansas City reach.³ Table 36 presents the average annual emissions of criteria air pollutants within the Kansas City reach if the diverted tonnage would be shipped by truck or rail. The top two rows within each pollutant section of Table 38 shows the change in emissions if all tonnage identified as shifting modes was transported by truck while the lower two rows in each section present the change in emissions if the identified tonnage is transported by rail. Alternatives 4 and 6 would result in very small adverse impacts to HC, CO, NOx, and PM; Alternative 4 would result in the largest increase in emissions compared to Alternative 1. The pollutant most affected by Alternatives 4 and 6 is NOx, with an average annual increase of 2,500 and 2,300 kilograms (kg), respectively, compared to Alternative 1. Alternative 2 would also result in adverse effects to air emissions, but to a lesser extent compared to Alternative 4 and Alternative 6.

	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
Hydrocarbon Emissions						
Annual Average Emissions – Shift in Mode to Truck	2,800	2,800	2,800	3,100	2,800	3,100
Change from Alternative 1		0	0	300	0	300
Annual Average Emissions – Shift in Mode to Rail	100	100	100	100	100	100
Change from Alternative 1	NA	0	0	0	0	0
Carbon Monoxide Emission						
Annual Average Emissions – Shift in Mode to Truck	9,000	9,100	8,900	9,800	9,100	9,700
Change from Alternative 1		100	-100	800	100	700
Annual Average Emissions – Shift in Mode to Rail	300	300	300	400	300	400
Change from Alternative 1	NA	0	0	100	0	100
Nitrous Oxide Emissions						
Annual Average Emissions – Shift in Mode to Truck	27,800	28,100	27,400	30,300	28,000	30,100
Change from Alternative 1		300	-400	2,500	200	2,300
Annual Average Emissions – Shift in Mode to Rail	1,700	1,700	1,600	1,800	1,700	1,800
Change from Alternative 1	NA	0	-100	100	0	100
Particulate Matter Emissions						
Annual Average Emissions – Shift in Mode to Truck	1,800	1,800	1,800	1,900	1,800	1,900
Change from Alternative 1	0	0	0	100	0	100
Annual Average Emissions – Shift in Mode to Rail	0	0	0	0	0	0
Change from Alternative 1	NA	0	0	0	0	0

Note: Numbers may not compute exactly due to rounding.

³ The model assessed tonnage if it is transported within or through a river reach. Summing the tonnages across the river reaches would likely result in double counting because most of commodity shipments in the Omaha and Nebraska City reaches are also likely transported in the Kansas City reach.

4.4.3 Alternative 1 – No Action (Current System Operation and Current MRRP Implementation)

There would be tonnage that shifts off of the river to alternate overland modes of transportation in Omaha, Nebraska City, and Kansas City reaches. There would be only a small amount of affected tonnage in the Omaha and Nebraska City reaches, with negligible changes in air emissions in these reaches. As shown in Table 37, the pollutant with the largest range of emissions is NOx with an annual average change of 1,700 kg (rail) to 27,800 kg (truck) in the Kansas City reach. The second greatest range of emissions is CO with annual average air emissions ranging from 300 kg (rail) to 9,000 kg in the Kansas City reach. The estimates for NOx and CO are also important to consider since these compounds react in the atmosphere to form low-level ozone.

There are only negligible to small changes in emissions when assuming all diverted tonnage shifts to rail. The difference between unit rail emissions and waterway emissions is minimal because the railway emission factors are only slightly higher than the waterway emission factors (see Table 12, Summary of Emission Rates).

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha		·		
Annual Average Emissions – Shift in Mode to Truck	30	110	330	20
Annual Average Emissions – Shift in Mode to Rail	0	0	20	0
Nebraska City		·		
Annual Average Emissions – Shift in Mode to Truck	400	1,200	3,600	200
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Kansas City		·		
Annual Average Emissions – Shift in Mode to Truck	2,800	9,000	27,800	1,800
Annual Average Emissions – Shift in Mode to Rail	100	300	1,700	0

Table 37. Air Emissions for Alternative 1 by Reach (kg)

Note: Numbers may not compute exactly due to rounding.

4.4.4 Alternative 2 – USFWS 2003 Biological Opinion Projected Actions

Alternative 2 management actions include spawning cue releases and low summer flows that can result in split navigation seasons when fully implemented. As shown in Table 38, Alternative 2 would result in slightly less commercial cargo switching transportation modes for the Omaha and Nebraska City reaches than Alternative 1, so these reaches experience little to no change in criteria pollutant emissions. However, in comparison to Alternative 1, the Kansas City reach would experience a 1 percent increase if all affected tonnage shifted to truck for CO, NOx, and PM. Nitrous oxide air emissions would increase 300 kg if all of the diverted tonnage shifted to truck.

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha			·	
Annual Average Emissions – Shift in Mode to Truck	30	100	310	20
Change from Alternative 1	0	-10	-20	0
Percent Change from Alternative 1	0%	-9%	-6%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	20	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Nebraska City			·	
Annual Average Emissions – Shift in Mode to Truck	400	1,100	3,500	200
Change from Alternative 1	0	-100	-100	0
Percent Change from Alternative 1	0%	-8%	-3%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Kansas City			·	
Annual Average Emissions – Shift in Mode to Truck	2,800	9,100	28,100	1,800
Change from Alternative 1	0	100	300	0
Percent Change from Alternative 1	0%	1%	1%	0%
Annual Average Emissions – Shift in Mode to Rail	100	300	1,700	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%

Table 38. Air Emissions for Alternative 2 and Relative to Alternative 1 by Reach (kg)

Note: Numbers may not compute exactly due to rounding.

4.4.5 Alternative 3 – Mechanical Construction Only

Under Alternative 3, management actions would include the creation of ESH through mechanical means. In addition, the spring plenary pulse under Alternative 1 would not take place under Alternative 3. Alternative 3 is estimated to cause slightly less commercial cargo to shift transportation modes than under Alternative 1, so there would be very small changes in air emissions (Table 39).

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha			•	
Annual Average Emissions – Shift in Mode to Truck	30	100	310	20
Change from Alternative 1	0	-10	-20	0
Percent Change from Alternative 1	0%	-9%	-6%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	20	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Nebraska City			•	
Annual Average Emissions – Shift in Mode to Truck	400	1,100	3,500	200
Change from Alternative 1	0	-100	-100	0
Percent Change from Alternative 1	0%	-8%	-3%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Kansas City			•	
Annual Average Emissions – Shift in Mode to Truck	2,800	8,900	27,400	1,800
Change from Alternative 1	0	-100	-400	0
Percent Change from Alternative 1	0%	-1%	-1%	0%
Annual Average Emissions – Shift in Mode to Rail	100	300	1,600	0
Change from Alternative 1	0	0	-100	0
Percent Change from Alternative 1	0%	0%	-6%	0%

Table 39. Air Emissions for Alternative 3 and Relative to Alternative 1 by Reach (kg)

Note: Numbers may not compute exactly due to rounding.

4.4.6 Alternative 4 – Spring ESH Creating Release

Alternative 4 management actions include the development of ESH habitat through both mechanical means and spring releases. The spring releases cause System storage to decrease in some years, shortening the navigation seasons and moving commodities off the waterway to other modes of transportation. As shown in Table 39, Alternative 4 would result in 5,300 tons on average of commercial commodities that would shift from the waterway to alternate overland modes in the Kansas City reach compared to Alternative 1. This change is primarily driven by shorter navigation seasons under Alternative 4. For the Kansas City reach, the increase in NOx emissions under Alternative 4 will range from 100 kg (6%) for rail transport to 2,500 kg (9%) for truck transportation compared to Alternative 1, as shown in Table 40. Similar to the other

alternatives, over 95 percent of the emissions for Alternative 4 will occur within the Kansas City reach, which could have adverse impacts on non-attainment counties. There would be small increases in average annual air emissions in the Nebraska City and Omaha reaches under Alternative 4 compared to Alternative 1; although the percent changes from Alternative 1 are notable, the changes in air emissions would be negligible in magnitude regional context.

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha			-	
Annual Average Emissions – Shift in Mode to Truck	50	150	470	30
Change from Alternative 1	20	40	140	10
Percent Change from Alternative 1	67%	36%	42%	50%
Annual Average Emissions – Shift in Mode to Rail	0	0	30	0
Change from Alternative 1	0	0	10	0
Percent Change from Alternative 1	0%	0%	50%	0%
Nebraska City	· · ·		·	
Annual Average Emissions – Shift in Mode to Truck	400	1,300	4,100	300
Change from Alternative 1	0	100	500	100
Percent Change from Alternative 1	0%	8%	14%	50%
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Kansas City				
Annual Average Emissions – Shift in Mode to Truck	3,100	9,800	30,300	1,900
Change from Alternative 1	300	800	2,500	100
Percent Change from Alternative 1	11%	9%	9%	6%
Annual Average Emissions – Shift in Mode to Rail	100	400	1,800	0
Change from Alternative 1	0	100	100	0
Percent Change from Alternative 1	0%	33%	6%	0%

Table 40. Air Emissions for Alternative 4 and Relative to Alternative 1 by Reach (kg)

Note: Numbers may not compute exactly due to rounding.

4.4.7 Alternative 5 – Fall ESH Creating Release

Alternative 5 management actions include developing ESH habitat through both mechanical and fall releases from Gavins Point Dam. Alternative 5 would result in slightly more commodities shifting to alternate transportation modes than would occur under Alternative 1. As shown in

Table 41, changes in the criteria pollutant emissions under Alternatives 5 would be negligible compared to Alternative 1.

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha				
Annual Average Emissions – Shift in Mode to Truck	30	110	330	20
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	20	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Nebraska City	· · · ·			
Annual Average Emissions – Shift in Mode to Truck	400	1,200	3,600	200
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Kansas City				
Annual Average Emissions – Shift in Mode to Truck	2,800	9,100	28,000	1,800
Change from Alternative 1	0	100	200	0
Percent Change from Alternative 1	0%	1%	1%	0%
Annual Average Emissions – Shift in Mode to Rail	100	300	1,700	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%

Table 41. Air Emissions for Alternative 5 and Relative to Alternative 1 by Reach (kg)	•
Table 41. Air Emissions for Alternative 5 and Relative to Alternative 1 by Reach (kg))

Note: Numbers may not compute exactly due to rounding.

4.4.8 Alternative 6 – Pallid Sturgeon Spawning Cue

The management actions under Alternative 6 include developing ESH habitat through mechanical means and bi-modal spawning cue flow releases in March and May. The spawning cue releases cause System storage to decrease in some years, shortening the navigation seasons in the year(s) following the releases, which increases the commodities that shift from the waterway to alternate modes of transportation. There would be small increases in average annual air emissions in the Nebraska City and Omaha reaches under Alternative 6 compared to

Alternative 1; although the percent changes are noticeable, the change in air emissions is negligible in a regional context.

As shown in Table 37, 62,400 tons would shift off the waterway in the Kansas City reach to alternate modes under Alternative 6, an increase of 8,500 tons (8 percent) compared to Alternative 1. As summarized in Table 42, NOx air emissions would have the largest change from Alternative 1, ranging from 100 kg (6%) for rail transportation to 2,300 kg (8%) for truck transportation in the Kansas City reach.

Reach	Hydrocarbon (HC)	Carbon Monoxide (CO)	Nitrous Oxides (NOx)	Particulate Matter (PM)
Omaha				
Annual Average Emissions – Shift in Mode to Truck	50	150	480	30
Change from Alternative 1	20	40	150	10
Percent Change from Alternative 1	67%	36%	45%	50%
Annual Average Emissions – Shift in Mode to Rail	0	10	30	0
Change from Alternative 1	0	10	10	0
Percent Change from Alternative 1	0%	0%	50%	0%
Nebraska City				
Annual Average Emissions – Shift in Mode to Truck	400	1,300	4,100	300
Change from Alternative 1	0	100	500	100
Percent Change from Alternative 1	0%	8%	14%	50%
Annual Average Emissions – Shift in Mode to Rail	0	0	200	0
Change from Alternative 1	0	0	0	0
Percent Change from Alternative 1	0%	0%	0%	0%
Kansas City				
Annual Average Emissions – Shift in Mode to Truck	3,100	9,700	30,100	1,900
Change from Alternative 1	300	700	2,300	100
Percent Change from Alternative 1	11%	8%	8%	6%
Annual Average Emissions – Shift in Mode to Rail	100	400	1,800	0
Change from Alternative 1	0	100	100	0
Percent Change from Alternative 1	0%	33%	6%	0%

Table 42 Air Emissions for	Altornative 6 and Polative t	Alternative 1 by Peach (kg)
Table 42. All Ellissions for	Allemative 6 and Relative i	o Alternative 1 by Reach (kg)

Note: Numbers may not compute exactly due to rounding.

5.0 Commercial Sand and Gravel Dredging Results

According to the Master Manual (USACE 2002), lower water levels can impact commercial sand and gravel dredging through the ability to extract material as well as the extraction location (i.e., may need to dredge in areas closer to their plant or in relatively deeper river areas); the location for the unloading of the dredged material (i.e., may need to move to downstream docks); the need to light-load barges; and the ability to move the dredged material from the barges to the conveyor at the dock (i.e., may need special equipment for transfer). Higher river flows can affect the ability to dredge because some dredges and equipment are not suited for high flow conditions.

The 2006 recorded sand and gravel extraction data was evaluated when drought conditions caused river flows to drop below 26,000 cfs in the lower river. At some locations on the river, when river flows fell below 26,000 cfs, even when river flows were as low as 21,000 cfs, companies have been able to operate and extract material. However, in the downstream segments, for example in the St. Charles segment, near the confluence with the Mississippi River, some of the permitted dredges operated during low flow conditions in November 2006, while others were not operating.⁴ Based on a review of the recorded sand and gravel extraction data, it is not certain if the reduced extraction volumes were due to the relatively lower river flows or due to other factors or a combination of multiple factors. The recorded extraction data also indicates that there are times during the navigation season when companies are not operating even though river flows are above 26,000 cfs.

On average, there is very little change in the number of days below 26,000 during the navigation season across the alternatives. Even in the eight worst-change years from Alternative 1, there are less than an average of 14 additional days below 26,000 under Alternatives 2, 4, and 6 across the river reaches from St. Joseph downstream (Table 43). In many other years, there are more days above this threshold compared to Alternative 1. On average there is a negligible change in average annual days below 26,000 cfs across all river reaches downstream of St. Joseph.

Given the small amount of change in river flows below 26,000 cfs compared to Alternative 1 and continued dredging extraction during low flow conditions, it's likely that adverse impacts on average across the POR would be negligible; however, there could be small and adverse impacts to dredging operations (e.g., short delays in extraction) and potentially additional dredging operating costs under Alternatives 2, 4, and 6 during relatively drier years following the releases. These impacts would be localized and temporary and would occur in the fall months when the navigation season is coming to an end. There would be no to negligible impacts to dredging operations from low flow conditions under Alternatives 3 and 5 compared to Alternative 1 because of the minor change in the number of days below 26,000 cfs.

⁴ The year 2006 was a relatively drier year, and the minimum navigation service level was provided through October 16th. In November 2006, no navigation service was supported.

Table 43. Prevalence of River Flows Below 26,000 cfs (Days below Threshold) during theNavigation Season (April through November)

			Alterna	atives		
Location and Statistic	1	2	3	4	5	6
St. Joseph	(RM 448)					
Average Annual Days Below Threshold	27	28	26	28	27	28
Change Average Annual Days from Alternative 1	NA	1	0	2	0	2
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	14	0	11	4	9
Average Number of Days in the 8 Best Years, Change from Alternative 1	Na	-4	-2	0	-2	0
Kansas City	y (RM 366))		·		
Average Annual Days Below Threshold	20	20	20	21	20	22
Change Average Annual Days from Alternative 1	NA	0	0	1	0	1
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	7	0	9	4	9
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-7	-2	0	-2	0
Waverly (RM 293)					
Average Annual Days	19	19	19	20	19	20
Change Average Annual Days from Alternative 1	NA	0	0	1	0	1
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	6	0	9	3	8
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-8	-3	0	-3	0
Booneville	(RM 197)					
Average Annual Days Below Threshold	16	15	15	17	16	17
Change Average Annual Days from Alternative 1	NA	-1	0	1	0	1
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	3	0	9	3	9
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-13	-2	0	-1	0
Jefferson Cit	ty (RM 144	4)				
Average Annual Days Below Threshold	15	15	15	16	15	16
Change Average Annual Days from Alternative 1	NA	0	0	1	0	1
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	5	0	9	3	9
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-10	-1	0	-1	0
Hermann	(RM 98)					
Average Annual Days Below Threshold	10	9	10	11	10	11

	Alternatives							
Location and Statistic	1	2	3	4	5	6		
Change Average Annual Days from Alternative 1	NA	-1	0	1	0	1		
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	3	0	7	1	8		
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-11	-1	0	-1	0		
Washington (RM 68)								
Average Annual Days Below Threshold	10	9	10	11	10	11		
Change Average Annual Days from Alternative 1	NA	-1	0	1	0	1		
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	2	1	7	2	7		
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-10	-1	0	-1	0		
St. Charle	s (RM 28)							
Average Annual Days Below Threshold	10	9	10	11	10	11		
Change Average Annual Days from Alternative 1	NA	-1	0	1	0	1		
Average Number of Days in the 8 Worst Years, Change from Alternative 1	NA	3	0	7	2	7		
Average Number of Days in the 8 Best Years, Change from Alternative 1	NA	-10	-2	0	-1	0		

Table 44 summarizes the days above the high river stage thresholds. For dredgers in the upper segments of the river (Kansas City and St. Joseph), relatively higher river flows can affect the ability of the dredgers to extract sand and gravel (USACE 2002). In the Master Manual, the industry noted that they are typically impacted when the river is five feet below flood stage. The flood stage at the USGS St. Joseph gage is 17 feet and 32 feet at the USGS Kansas City gage (National Weather Service 2018). On average, there is very little change in the number of days above flood stage under the alternatives in Kansas City and St. Joseph reaches. Considering the days at five feet below flood stage (27 feet at the Kansas City gage), there is very little change in stages at the Kansas City gage across the alternatives, with at most four more days in one year over the POR under Alternative 2 compared to Alternative 1 (average annual increase compared to Alternative 1 of 0.1 days). There would not be noticeable changes in higher river flows under the action alternatives in the Kansas City reach compared to the Alternative 1, with no to negligible impacts to dredging operators in this segment.

On average at St. Joseph, there would be four additional days under Alternative 4; and two additional days under Alternative 5; and three additional days under Alternative 6 above the river stage of twelve feet (five feet below flood stage) compared to the Alternative 1. An evaluation of the 2011 sand and gravel extraction data indicated that in the St. Joseph segment, dredgers were operating when river stages were between 12 and 17 feet. Because of the minimal change in river flows at flood stage and at five feet below flood stage across the alternatives, and because dredgers in St. Joseph have demonstrated that they can dredge when the river stage is between 12 and 17 feet, there would be negligible impacts to dredgers in the St. Joseph segment under the action alternatives compared to Alternative 1.

Table 44. Prevalence of River Stages Above Flood Stage during the Period of Record (Days Above
Threshold)

	Alternatives								
Location	1	2	3	4	5	6			
St. Joseph									
Days Above Flood Stage over the POR (17 ft)	1,222	995	1,252	1,242	1,224	1,247			
Average Days Above Flood Stage over the POR (17 ft)	14.9	12.1	15.3	15.2	14.9	15.2			
Change in Average Days Above Flood Stage over the POR	NA	-2.8	0.4	0.3	0.0	0.3			
Total Days Above 5 Feet Below Flood Stage over the POR (12 ft)	4,318	3,978	4,385	4,662	4,470	4,575			
Average Days Above 5 Feet Below Flood Stage over the POR (12 ft)	52.7	48.5	53.5	56.9	54.5	55.8			
Change in Average Days Above 5 Feet Below Flood Stage over the POR	NA	-4.0	0.8	4.2	1.9	3.1			
Kansas City									
Days Above Flood Stage over the POR (32 ft)	45	43	44	44	43	44			
Average Days Above Flood Stage over the POR (32 ft)	0.6	0.5	0.5	0.5	0.5	0.5			
Change in Average Days Above Flood Stage over the POR	NA	0.0	0.0	0.0	0.0	0.0			
Days Above 5 Feet Below Flood Stage over the POR (27 ft)	263	269	258	250	259	257			
Average Days Above 5 Feet Below Flood Stage over the POR (27 ft)	3.2	3.3	3.2	3.1	3.2	3.1			
Change in Average Days Above 5 Feet Below Flood Stage over the POR	NA	0.1	-0.1	-0.2	-0.1	-0.1			

6.0 Literature Cited

Burton, Mark. 2017. Personal communication between Chris Bouquot and Mark Burton regarding transportation rate savings on the Missouri River. October 27, 2017.

Burton, Mark and Larry Bray. 2016. Missouri River Water-Compelled Railroad Rates: Review and Qualitative Update, July 2016.

National Weather Service. 2018. Advanced Hydrologic Prediction Service. Available: https://water.weather.gov/ahps2/hydrograph.php?wfo=eax&gage=kcdm7. Accessed on May 18, 2018.

Office of Management and Budget (OMB). 2018. Table 10.1 – Gross Domestic Product and Deflators used in the Historical Tables: 1940-2018.

Texas A & M University, Texas Transportation Institute. 2017. A Modal Comparison of Domestic Freight Transportation Effects on General Public: 2001-2014. Washington, D.C.: U.S. Department of Transportation, Maritime Administration and National Waterways Foundation. Available at: http://www.portsofindiana.com/wp-content/uploads/2017/06/Final-TTI-Report-2001-2014-Approved.pdf.

U.S. Army Corps of Engineers (USACE). 2000. Engineer Regulation 1105-2-100: Planning Guidance Notebook. Available at:

http://planning.usace.army.mil/toolbox/current.cfm?Title=Planning%20Guidance%20Notebook& ThisPage=PlanGuideNotebook&Side=No.

USACE. 2002. Transportation Rate Analysis: Missouri River Master Manual Review. Prepared by the Tennessee Valley Authority, Navigation and Hydraulic Engineering. March.

USACE. 2006. *Missouri River Mainstem Reservoir System Master Water Control Manual River Basin.* Available at: http://www.nwd-mr.usace.army.mil/ *Missouri* mmanual/mast-man.htm.

USACE. 2011. Missouri River Commercial Dredging Final EIS. February.

USACE. 2016. Engineering Manual 1110-2-1304, Civil Works Construction Cost Index System (CWCCIS): Amendment #8 Tables Revised as of 31 March 2016. Available at http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1304.pdf.

USACE, IWR. No date. RECONS Model Methodology Manual. Stemming-from Effects of USACE Programs and Infrastructure.

http://www.iwr.usace.army.mil/Portals/70/docs/missions/RECONS_%20MethodologyManual-2.pdf.

USACE, IWR. 2013. Regional Economic System User Guide. http://www.iwr.usace.army.mil/Portals/70/docs/missions/RECONS_USER_GUIDE.PDF

USACE, Northwestern Division, Missouri River Basin Water Management Division (ND-MRBWMD). 1998 *Missouri River Master Water Control Manual Review and Update Study: Volume 6A-R Economic Studies -- Navigation Economics (Revised)*.

U.S. Bureau of Labor Statistics. 2018. Producer Prices Index for Inland Water Freight Transportation, 2002-2016. Accessed February 12, 2018.

U.S. Fish and Wildlife Service (USFWS). 2003. Amendment to the 2000 Biological Opinion on the Operation of the Missouri River Main Stem Reservoir System, Operation and Maintenance of the Missouri River Bank Stabilization and Navigation Project, and Operation of the Kansas River Reservoir System.

U.S. Water Resources Council. 1983. Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies, March 10, 1983.

Appendix A: Transportation Savings Value Functions

This appendix provides the transportation savings value functions provided in the *Master Water Control Manual Missouri River Review and Update Study, Volume 6A-R: Economic Studies Navigation Economics* (Revised) (USACE 1998). These values were used as a basis for updating the unit transportation rate savings to account for changes in service level.

			FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
COMMODITY	MONTH	REACH	23000	26000	29000	32000	35000	45000	55000	65000
Agricultural Products	Mar	Sioux City		9,409	12,022	15,780	20,155	22,124	22,176	19,051
Agricultural Products	Apr	Sioux City		21,112	26,306	39,128	53,808	60,691	60,706	49,795
Agricultural Products	May	Sioux City		9,190	12,954	16,609	23,645	26,811	26,848	21,764
Agricultural Products	Jun	Sioux City		10,533	14,518	18,181	29,653	35,985	36,013	26,004
Agricultural Products	Jul	Sioux City		1,225	1,793	1,749	7,071	10,658	10,666	5,018
Agricultural Products	Aug	Sioux City		697	1,623	3,270	10,489	15,460	15,465	7,660
Agricultural Products	Sep	Sioux City		2,307	3,360	5,232	10,740	14,376	14,442	8,717
Agricultural Products	Oct	Sioux City					2,013	3,517	3,532	1,169
Agricultural Products	Nov	Sioux City		4,574	6,661	10,372	16,491	20,113	20,206	14,493
Chemicals	Mar	Sioux City		20,110	26,543	40,013	51,625	56,851	51,081	36,288
Chemicals	Apr	Sioux City		53,836	65,260	88,173	107,927	116,816	107,577	82,327
Chemicals	May	Sioux City		27,181	31,401	39,366	46,234	49,324	46,113	37,334
Chemicals	Jun	Sioux City		6,828	10,252	17,753	24,219	27,129	24,103	15,839
Chemicals	Jul	Sioux City			531	1,767	2,832	3,311	2,812	1,451
Chemicals	Aug	Sioux City		14,740	18,246	25,400	31,567	34,342	31,457	23,574
Chemicals	Sep	Sioux City		28,325	36,576	53,845	68,732	75,431	68,466	49,439
Chemicals	Oct	Sioux City		6,924	10,983	19,954	27,688	31,169	27,549	17,665
Crude Materials	Apr	Sioux City		12,008	12,645	13,778	14,755	15,194	14,682	14,682
Crude Materials	Aug	Sioux City		12,280	12,931	14,090	15,089	15,538	15,014	15,014
Crude Materials	Sep	Sioux City		12,078	12,719	13,858	14,841	15,283	14,767	14,767
Manufactured Goods	Jun	Sioux City		5,472	6,323	7,836	9,502	10,570	9,380	7,450
Manufactured Goods	Aug	Sioux City		4,571	5,282	6,545	7,634	8,124	7,610	6,223
Manufactured Goods	Oct	Sioux City		5,565	6,431	7,969	9,295	9,892	9,265	7,576
Manufactured Goods	Nov	Sioux City		4,587	5,300	6,568	7,661	8,153	7,637	6,245
Petroleum Products	May	Sioux City		22,079	25,741	32,333	38,100	40,722	40,722	32,333
Sand/ Stone/ Rock	Apr	Sioux City	23,877	23,877	23,877	23,877	23,877	23,877	23,877	23,877
Sand/ Stone/ Rock	May	Sioux City	47,152	47,152	47,152	47,152	47,152	47,152	47,152	47,152
Sand/ Stone/ Rock	Jun	Sioux City	6,069	6,069	6,069	6,069	6,069	6,069	6,069	6,069
Sand/ Stone/ Rock	Jul	Sioux City	20,824	20,824	20,824	20,824	20,824	20,824	20,824	20,824
Sand/ Stone/ Rock	Aug	Sioux City	8,514	8,514	8,514	8,514	8,514	8,514	8,514	8,514
Sand/ Stone/ Rock	Sep	Sioux City	6,069	6,069	6,069	6,069	6,069	6,069	6,069	6,069
Sand/ Stone/ Rock	Oct	Sioux City	6,244	6,244	6,244	6,244	6,244	6,244	6,244	6,244
SOURCE: Navigation	Economics N	laster Manual	Revised Draft	Environmenta	al Impact State	ement (1998),	Table 25: Trar	sportation Sa	vings Value Fi	unction (pg 31-

SOURCE: Navigation Economics Master Manual Revised Draft Environmental Impact Statement (1998), Table 25: Transportation Savings Value Function (pg 31-33)

			FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
COMMODITY	MONTH	REACH	23000	26000	29000	32000	35000	45000	55000	65000
Agricultural Products	Mar	Omaha			4,961	5,985	6,868	7,265	7,097	6,498
Agricultural Products	Apr	Omaha		15,326	22,734	35,904	47,258	52,367	52,354	44,284
Agricultural Products	May	Omaha		12,839	18,956	29,830	39,204	43,423	43,413	36,749
Agricultural Products	Jun	Omaha		8,222	12,437	19,932	26,393	29,300	29,256	24,671
Agricultural Products	Jul	Omaha		2,194	5,109	10,292	14,760	16,771	16,647	13,504
Agricultural Products	Aug	Omaha		11,306	18,801	32,126	43,613	48,782	48,645	40,448
Agricultural Products	Sep	Omaha		7,507	15,275	29,645	42,246	47,916	47,579	38,704
Agricultural Products	Oct	Omaha		9,196	20,204	42,271	62,245	71,233	70,736	56,63
Agricultural Products	Nov	Omaha		3,275	6,978	14,899	22,237	25,539	25,365	20,174
Chemicals	Mar	Omaha			1,070	3,562	5,709	6,675	5,672	2,926
Chemicals	Apr	Omaha			344	1,145	1,835	2,145	1,822	940
Chemicals	May	Omaha		3,351	5,002	8,547	11,604	12,979	11,370	7,489
Chemicals	Jun	Omaha		5,765	7,111	9,852	12,214	13,386	12,172	9,152
Chemicals	Jul	Omaha		21,860	23,332	35,465	42,723	46,805	42,822	32,54
Chemicals	Aug	Omaha		7,252	9,268	15,001	19,882	22,060	19,799	13,61
Chemicals	Sep	Omaha		21,406	26,439	37,934	47,782	52,196	46,911	34,43
Chemicals	Oct	Omaha		46,342	57,484	88,238	114,442	127,622	114,004	79,78
Chemicals	Nov	Omaha		11,119	12,977	18,502	22,370	24,425	22,040	16,84
Crude Materials	Oct	Omaha		4,744	5,654	7,271	8,666	9,293	8,643	8,643
Manufactured Goods	Mar	Omaha		5,905	7,769	14,169	18,472	22,365	20,192	13,07
Manufactured Goods	Apr	Omaha		15,989	17,536	25,959	33,955	40,111	39,375	25,50
Manufactured Goods	May	Omaha		13,869	15,309	22,128	28,557	33,370	32,620	21,66
Manufactured Goods	Jun	Omaha		12,052	13,218	16,743	19,970	22,078	21,523	16,40
Manufactured Goods	Jul	Omaha				5,758	11,466	16,631	16,631	5,758
Manufactured Goods	Aug	Omaha		12,462	13,667	17,270	20,566	22,707	22,133	16,91
Manufactured Goods	Sep	Omaha		16,737	18,623	27,734	36,332	42,797	41,724	27,06
Manufactured Goods	Oct	Omaha				2,782	5,540	8,035	8,035	2,782
Manufactured Goods	Nov	Omaha				6,821	13,585	19,704	19,704	6,821
Passengers	Apr	Omaha			6,762	6,762	6,762	6,762	6,762	6,762
Passengers	May	Omaha			27,116	27,116	27,116	27,116	27,116	27,11
Passengers	Jun	Omaha			45,093	45,093	45,093	45,093	45,093	45,09
Passengers	Jul	Omaha			55,880	55,880	55,880	55,880	55,880	55,88
Passengers	Aug	Omaha			51,630	51,630	51,630	51,630	51,630	51,63
Passengers	Sep	Omaha			37,003	37,003	37,003	37,003	37,003	37,00
Passengers	Oct	Omaha			7,531	7,531	7,531	7,531	7,531	7,531
Petroleum Products	Apr	Omaha		63,237	73,726	92,605	109,125	116,634	116,634	92,60
Petroleum Products	May	Omaha		22,415	26,133	32,825	38,681	41,342	41,342	32,82
Petroleum Products	Jun	Omaha		18,511	21,581	27,108	31,944	34,142	34,142	27,10
Petroleum Products	Jul	Omaha		41,800	48,733	61,212	72,132	77,095	77,095	61,21
Petroleum Products	Sep	Omaha		20,274	23,636	29,689	34,985	37,393	37,393	29,68
Petroleum Products	Oct	Omaha		58,587	68,304	85,796	101,101	108,057	108,057	85,79
Petroleum Products	Nov	Omaha		37,548	43,776	54,986	64,795	69,253	69,253	54,98

			FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
COMMODITY	MONTH	REACH	23000	26000	29000	32000	35000	45000	55000	65000
Agricultural Products	Mar	Nebraska City		11,526	12,343	14,363	16,291	19,449	18,293	14,816
Agricultural Products	Apr	Nebraska City		21,497	26,860	28,525	40,933	48,822	47,472	36,491
Agricultural Products	Мау	Nebraska City		21,008	29,150	38,405	59,122	68,444	68,167	53,054
Agricultural Products	Jun	Nebraska City		6,230	10,248	14,296	23,867	28,175	27,973	21, 129
Agricultural Products	Jul	Nebraska City		40,839	49,681	58,992	81,529	92,526	92,003	74,539
Agricultural Products	Aug	Nebraska City		52,117	62,055	82,438	110,521	123,855	123,226	102,178
Agricultural Products	Sep	Nebraska City		18,644	21,879	27,347	35,164	38,971	38,821	32,559
Agricultural Products	Oct	Nebraska City		25,390	37,799	74,602	110,783	127,064	126,498	99,792
Agricultural Products	Nov	Nebraska City		27,613	35,809	51,350	71,577	80,679	79,656	65,352
Chemicals	Мау	Nebraska			807	2,686	4,306	5,035	4,160	2,207
Chemicals	Jun	City Nebraska			621	2,065	3,309	3,870	3,288	1,696
Chemicals	Jul	City Nebraska			543	1,806	2,895	3,385	2,876	1,484
Chemicals	Oct	City Nebraska		1,190	1,647	2,459	3,468	4,232	3,187	2,074
Crude Materials	Мау	City Nebraska		29,483	30,994	33,679	35,994	37,036	35,776	35,776
Crude Materials	Jun	City Nebraska		47,941	50,398	54,764	58,528	60,222	58,173	58,173
Crude Materials	Jul	City Nebraska		44,607	46,892	50,955	54,458	56,034	54,127	54,127
Crude Materials	Aug	City Nebraska		31,323	32,927	35,780	38,240	39,347	38,008	38,008
Crude Materials	Sep	City Nebraska		30,925	32,509	35,326	37,754	38,847	37,525	37,525
Crude Materials	Oct	City Nebraska		48,167	50,635	55,022	58,804	60,506	58,447	58,447
Petroleum Products	May	City Nebraska		146,833	158,754	180,213	198,989	207,524	207,524	180,213
Petroleum Products	Jun	City Nebraska		52,570	57,375	66,024	73,592	77,032	77,032	66,024
Petroleum Products	Jul	City Nebraska		38,792	41,371	46,014	50,076	51,923	51,923	46,014
Petroleum Products	Sep	City Nebraska		32,862	35,046	36,979	42,420	43,984	43,984	38,979
Sand/ Stone/ Rock	Apr	City Nebraska	43,420	43,420	43,420	43,420	43,420	43,420	43,420	43,420
Sand/ Stone/ Rock	Мау	City Nebraska	70,373	70,373	70,373	70,373	70,373	70,373	70,373	70,373
Sand/ Stone/ Rock	Jun	City Nebraska	55,525	55,525	55,525	55,525	55,525	55,525	55,525	55,525
Sand/ Stone/ Rock	Jul	City Nebraska	3,540	3,540	3,540	3,540	3,540	3,540	3,540	3,540
Sand/ Stone/ Rock	Aug	City Nebraska	3,198	3,198	3,198	3,198	3,198	3,198	3,198	3,198
Sand/ Stone/ Rock	Sep	City Nebraska	2,738	2,738	2,738	2,738	2,738	2,738	2,738	2,738
Sand/ Stone/ Rock	Oct	City Nebraska	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238
Sand/ Stone/ Rock	Nov	City Nebraska	2,570	2,570	2,570	2,570	2,570	2,570	2,570	2,570
Sand/ Stone/ Rock	Dec	City Nebraska	1,169	1,169	1,169	1,169	1,169	1,169	1,169	1,169
SOURCE: Navigation	Economics N	City /aster Manual	Revised Draf	t Environmenta	al Impact State	ement (1998), "	Table 25: Tran	sportation Sa	vings Value Fi	unction (pg 31

COMMAN Function NON-TY NON-TY NON-TY Stabol 2000 2000 2000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 5000 70000 <th></th> <th></th> <th></th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th> <th>FLOW</th>				FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
Applicaburg Products Name Karnas City 19.2, 532 16.880 29.4, 244 59, 132 40, 323 40, 323 40, 310 31, 490 Applicaburg Products May Karnas City 50, 317 61, 312 61, 6173 65, 1167 71, 1106 59, 774 72, 774 71, 724 71, 724 71, 716 40, 774 71, 1106 59, 774 71, 724 71, 714 40, 717 72, 724 72, 724 71, 724 71, 714 40, 775 70, 33, 336 77, 43, 33, 30 70, 43, 73 10, 50, 50, 736 66, 736 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 776 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 778 66, 788 678 77	COMMODITY	MONTH	REACH		-				-	-	-
Agendamine Production May Knewse City D, 237 43, 1574 55, 617 73, 717 73, 728 73, 728 748 74, 778		_									
Agenome Provide May Kennes City 60,237 64,312 61,073 60,107 71,106 60,770 65,200 Agricultur Provides Jul Kennes City 10,040 11,428 14,205 18,241 12,368 72,541 21,308 Agricultur Provides Jul Kennes City 11,174 10,775 63,330 37,628 37,208 31,308 37,628 37,208 31,308 37,628 37,208 31,308 37,628 37,208 31,308 37,628 37,408 31,308 37,628 37,428 37,408 31,408	•		,				-	-	- ,		
Agencham Provide Jul Kennes City B, 814 11,097 77,291 24,061 27,461 27,461 27,411 21,038 106,002 Agencham Provide Aug Kennes City 71,174 80,775 86,339 116,002 125,376 123,328 170,038 125,376 123,328 170,038 116,002 125,336 170,283 125,336 170,283 126,338 <	-		,				-				
Appendixed Products H Kernes City 10,000 11,428 14,295 16,291 20,292 19,298 16,899 15,298 16,899 15,298 16,899 15,298 16,895 12,3083 00,090 Apricultur Products Berson City 13,288 17,017 24,171 24,675 0,333 0,814 0,000 Apricultur Products Berson City 13,228 17,078 24,171 24,675 0,528 57,628 37,628 37,628 37,628 37,628 37,628 37,628 37,628 37,628 37,628 36,728 44,610 16,504 16,60 10,300 10,317 4,617 44,660 14,707 44,717 45,727 46,73 30,798 34,747 45,753 47,718 50,728 45,540 41,767 Cimerosite Ari Kernes City 38,257 34,475 47,759 66,305 7,738 45,540 41,320 33,321 15,332 15,332 15,332 15,332 15,332 15,332 <t< td=""><td>-</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>	-	,						-			
Actacular Product Nage Karesa Civ 71,717 40,775 90,359 116,065 125,374 90,878 Apriculture Products Oke Karesa Civ 13,288 71,717 24,711 32,067 39,368 37,628 37,636 30,788 Apriculture Products Dec Karesa Civ 13,228 71,717 24,671 32,067 39,362 36,614 30,624 Apriculture Products Dec Karesa Civ 3,242 3,377 4,637 4,600 5,152 4,405 4,516 Chemitadis Jun Karesa Civ 15,964 16,736 21,872 22,848 25,042 20,150 Chemitadis Jun Karesa Civ 36,825 37,799 46,172 16,460 14,221 90,462 34,450 44,500 44,500 36,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300 46,300	-	Jul									,
Apactomal Product See Kareas City 13.288 17,177 24,772 33.383 37,628 37,620 30,7630 30,77 4,860 51,762 46,860 51,762 46,860 51,762 46,860 51,762 46,860 51,752 46,860 52,762 47,717 52,773 46,860 52,762 40,764 51,762 52,762 47,716 50,773 46,060 41,767 53,773 56,868 81,231 90,862 73,526 60,763 40,600 41,760 73,744 66,027 73,844 71,765 54,71 75,753 70,015 78,444 70,722 55,743 70,015 78,444 70,723 45,723 70,734 44,730 38,755 73,735 68,81 11,77,747 <	-				- /						
Apatochar Product Nov Karasa City 13,228 17,078 24,711 32,075 36,353 36,614 30,0614 Apriculture Trouble Nov Karasa City 3,242 3,377 4,657 4,800 6,152 6,728 Chemicadi Apr Karasa City 30,011 34,444 61,004 60,004 70,082 32,228 45,158 Chemicadi Apr Karasa City 30,111 34,444 61,004 60,004 70,082 32,228 45,158 Chemicadi Apr Karasa City 36,397 34,747 45,779 40,753 50,291 40,753 50,291 40,231 44,450 Chemicadi Sames City 46,575 50,971 40,574 45,77 57,74 82,114 67,323 45,880 Chemicadi Niv Karasa City 43,237 13,448 61,724 45,897 43,844 44,023 47,844 45,032 45,332 15,332 15,332 15,332 15,332 15,332	-	-					-	-	-		
Apachanger Houture New Karasa City 22,0441 29,467 43,200 56,748 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 60,749 71,727 71,828 71,828 71,828 71,828 71,828 71,828 71,829 71,828 71,829 71,828 71,829 71,828 71,829 71,828 71,829 71,828	-	Oct	-				-				
Approx. Dec Karese Gray 3.242 3.277 4.637 4.600 5.122 4.065 4.707 Chemrosine Aur Karese Gray 30,181 54,881 55,282 101,085 114,610 96,661 47.07 Chemrosine Aur Karese Gray 30,181 54,881 51,084 65,904 78,682 62,725 45,156 Chemrosine Jun Guasa City 16,6970 19,526 30,713 44,637 44,562 47,751 96,978 46,049 44,020 38,240 44,075 45,757 28,899 28,889 28,042 40,029 44,024 44,775 45,877 45,867 45,250 57,557 44,803 44,023 44,473 47,476 00,421 75,744 82,103 44,032 44,032 47,831 45,857 55,74 15,332 15,332 15,332 15,332 15,332 15,332 15,332 16,346 46,642 47,831 45,865 45,655 57,574 46,524 47,6331<	-										
Opermensis Name Kimese Gity 54.081 68.272 86.232 101.085 114.082 69.232 101.085 114.082 69.232 101.085 114.082 69.232 101.085 114.082 69.232 65.103 65.031 75.031 75.034	-	Dec	-			- , -	-				
Chemicals Apr Kamas City 30,181 24,444 51,044 65,004 79,087 30,272 45,116 Chemicals Jan Kamas City 15,004 16,707 30,273 44,307 30,272 34,214 54,575 47,719 50,753 45,544 41,757 Chemicals Jul Kamas City 38,976 50,071 60,656 81,331 80,662 75,538 45,575 87,719 50,753 45,575 80,713 50,667 71,313 70,015 78,414 67,622 82,204 Chemicals Sep Kamas City 39,977 35,668 41,707 45,667 42,313 71,602 75,647 74,768 60,703 45,067 44,273 45,067 45,047 44,273 45,067 45,047 44,273 45,067 45,047 44,267 45,097 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047 45,047	-		-							,	
Orientation May Kenese City 16.970 19.584 30.917 40.736 49.898 20.042 29.585 Chemitatis Ju Kenese City 36.976 84.475 45.752 47.719 50.786 46.528 47.719 50.785 46.549 41.1767 Chemitatis Sep Kanese City 46.575 50.971 60.559 81.231 50.462 72.522 52.222 52.224 52.222 52.224 52.22 52.224 52.22 52.224 52.539 70.015 78.414 67.522 55.548 60.767 66.417 73.574 85.518 75.539 70.015 78.414 67.522 55.548 Chemetalis Dec Kanese City 33.627 13.638 43.503 45.305 45.638 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 43.663 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td> , -</td><td></td><td></td><td></td><td></td><td></td></td<>			-			, -					
Chemicals Jun Kamas City 16, 964 16, 768 21, 873 25, 880 28, 042 20, 150 Cimencols Ju Kamese City 36, 375 37, 752 37, 771 50, 753 46, 675 Cimencols Sap Kamasa City 36, 375 50, 991 46, 675 51, 426 51, 426 52, 284 60, 721 Cimencols Det Kamasa City 39, 386 42, 820 57, 539 70, 015 78, 414 67, 622 55, 224 Cimencols Nev Kamesa City 33, 247 38, 884 41, 775 45, 657 45, 537 45, 587 Cinde Moterials Apr Kamesa City 39, 862 41, 175 45, 330 46, 335 47, 369 49, 469 47, 831 Cinde Moterial Jan Kamesa City 38, 415 40, 446 44, 440 47, 891 47, 789 47, 659 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 47, 694 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>- 1 -</td> <td>-</td>			,				-	-		- 1 -	-
Orientalis Jut Kensee City 36,976 44,775 46,779 47,719 50,726 46,649 41,777 Chemicalis Aug Kensee City 46,675 50,971 66,569 81,231 90,862 77,354 60,177 Chemicalis New Kansa City 44,4273 47,476 60,421 73,574 82,181 71,622 55,548 Chemicalis Dec Kansa City 13,327 13,648 14,776 45,607 48,403 44,203 44,500 47,374 45,532 15,332 15,332 15,332 15,332 15,332 15,332 15,332 15,332 15,332 15,332 14,754 45,050 40,965 4,965 4,965 4,966 4,965 4,966 4,965 4,966 4,965 4,966 4,965 4,966 4,964 4,979 46,964 4,979 46,962 47,963 47,969 47,969 47,969 47,969 47,969 47,969 47,969 46,964 46,967 47,969 46,969		-	-								
Chemicals Nurse Sign (2) 37,969 48,016 61,426 52,966 60,266 44,450 Chemicals Bip (Karess City) 39,966 42,500 57,539 70,015 78,414 67,622 52,024 Chemicals Nov Karess City 35,377 35,688 41,775 15,574 82,118 71,629 55,548 Chemicals Apr Karess City 33,827 13,848 41,775 15,541 15,332 15,332 Crude Materials Apr Karess City 30,625 41,175 43,300 40,305 47,784 45,587 Crude Materials Jur Karess City 15,757 2,214 3,350 43,388 2,465 27,449 16,769 17,769 18,462 47,831 47,891 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 47,691 44,610 46,030 47,691 46,610 <td></td> <td></td> <td>-</td> <td></td> <td>- /</td> <td></td> <td></td> <td></td> <td>- /</td> <td></td> <td></td>			-		- /				- /		
Chemronis Ben Karesa City 46,675 50,971 66,669 81,231 90,822 78,358 60,772 Chemronis Out Karesa City 39,966 42,500 75,393 70,015 78,414 71,622 52,202 Chemronis Dev Karesa City 35,377 35,688 41,767 45,667 48,403 44,200 38,896 Crude Materials Jav Karesa City 13,327 13,848 14,776 45,667 48,405 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,669 4,763			,				-	-			
Orient Kamas City 39,996 42,590 57,539 70,015 78,414 67,622 52,548 Chemicals New Kamas City 44,273 47,476 60,421 73,574 82,116 77,620 55,548 Chemicals Avr Kamas City 13,327 13,848 14,776 15,574 15,332 15,332 Chud Materials Avr Kamas City 13,927 13,848 14,776 15,674 15,332 15,332 Cruds Materials Jur Kamas City 39,625 41,175 43,300 43,328 4,769 4,769 Cruds Materials Aur Kamas City 15,777 2,214 26,933 8,389 29,045 27,949 27,949 Cruds Materials Nov Kamas City 16,100 16,707 17,740 18,183 17,789 16,4155 155,815 Mundschued Goods Mar Kamas City 116,714 120,308 122,454 13,330 136,815 137,789 167,123 167,123		-	,								
Chemicals Nov Kareas City 44.273 47.476 60.421 73.574 82.118 71.620 55.648 Cinemicals Dire Kareasa City 13.327 13.848 14.767 45.667 48.403 44.200 35.638 Cinde Miterials May Kareasa City 13.927 13.848 14.776 45.667 48.405 47.374 45.567 45.567 45.567 45.567 45.567 45.567 45.567 45.567 45.567 45.567 47.831 47.866 40.400 42.584 40.300 42.584 40.300 42.584 41.823 41.124 41.824 41.824 41.824 41.824 41.824 41.824 41.825 41.817 41.818 41.10571 11.81.81 11.81.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>								-			
One-methods Dec Kanasa City 36,377 36,688 41,767 46,667 48,403 44,200 38,980 Coulde Materials Airr Karnasa City 39,025 41,176 43,930 46,306 49,655 4,066 4,065 4,065 4,065 4,065 4,065 4,065 4,065 4,065 4,065 4,065 4,065 4,060 4,060 4,060 4,053 4,358 4,053 14,054 41,054 41,052 41,052 41,052 41,052 41,053 41,053 41,053 41,053 41,053 41,053 41,014 40,057 142,060 123,968 123,968 123,968 123,968 123,968 123,968 123,968 124,141 43,100 40,955 111,002 118,992 126,143											
Order Materials Any Kamasa City 13,227 13,248 14,775 15,673 15,932 15,932 16,332 Order Materials May Kamasa City 1,640 2,305 3,487 4,506 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,965 4,769			-								
Could Materials May Kamasa City 39, 6226 41, 775 43, 930 46, 506 47, 374 45, 587 47, 583 47, 789 47, 789 47, 789 47, 789 16, 100 16, 700 17, 251 17, 740 16, 100 40, 555 41, 85, 579 155, 815 35, 379 167, 423 130, 662 132, 719 165, 815 Manufactured Goods May Kamaas City 116, 701 120, 503 113, 530 130, 566 133, 720 167, 503 130, 662 133, 730 136, 766 133, 720 142, 168 120, 162 141, 721 122, 164 110, 100, 103, 103 133, 716 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			-					-			
Could Materials Jun Kareas City 1,640 2,305 3,487 4,505 4,965 4,965 4,965 4,965 Orde Materials Ju Kareas City 1,575 2,214 3,350 4,7299 4,769 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>, -</td><td>-</td><td></td><td>- ,</td><td>-</td></td<>							, -	-		- ,	-
Crude Materiale Jul Karnas City 38,195 40,446 44,449 47,891 47,831 47,831 Crude Materiale Out Karnas City 24,294 25,244 26,933 28,369 29,045 27,949 27,949 Crude Materiale Nov Karnas City 24,294 25,244 28,053 28,367 41,924 41,924 Markfactured Oods Karnas City 116,802 156,240 155,215 155,815 155,815 Markfactured Oods Karnas City 33,061 40,533 41,853 43,040 44,114 43,160 40,957 Markfactured Oods Mar Karnas City 121,004 125,656 129,851 133,702 126,878 170,861 121,1366 120,121 108,656 133,702 136,656 132,702 120,104 103,597 101,397 101,397 101,397 101,397 101,397 101,397 101,302 116,92,791 157,962 46,734 47,931 47,722 Markfactured Goods Karmas City		-				-					
Caude Materials Aug Kareas City 1,575 2,214 3,360 4,769 4,769 4,769 Cuide Materials Oct Kareas City 36,441 37,866 40,400 42,584 43,657 41,924 41,924 Mandactured Coods Mar Kareas City 16,100 16,707 17,7251 17,740 16,183 11,769 41,924 Mandactured Coods Mar Kareas City 136,002 144,208 156,224 183,739 167,623 164,195 155,615 Mandactured Coods Mar Kareas City 112,1004 122,664 123,330 136,656 123,702 126,678 Mandactured Coods Jur Kareas City 103,697 107,505 111,002 118,026 128,646 120,162 108,626 Mandactured Coods Sag Kareas City 113,525 141,774 151,139 157,166 147,722 Mandactured Coods Not Kareas City 135,252 141,737 1,737 1,737 1,737						1		-			
Crude Materialis Oct Kamas City 24,294 25,244 26,933 26,364 43,765 741,924 41,924 41,924 Manufactured Goods Kernas City 16,100 16,707 17,251 17,740 18,183 17,780 16,682 Manufactured Goods Mar Kernas City 148,602 152,926 152,924 163,730 167,782 164,105 155,815 155,815 153,815 153,815 153,815 123,966 122,654 123,906 127,856 122,856 122,856 126,564 126,564 126,564 120,154 133,330 136,666 133,702 126,667 130,102 133,456 134,171 127,323 Manufactured Goods Age Karnas City 103,4567 147,502 148,722 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 147,725 145,721 145,921 Manufactured Goods	-		-			- 1 -			- / -	7	
Caule Maintaila Nov Ramas City 36,441 37,866 40,400 42,564 43,667 41,924 41,924 Manufactured Goods Feb Karasa City 148,602 154,208 159,224 167,740 16,813 17,790 16,813 17,790 16,813 17,790 16,813 17,790 16,813 17,790 16,813 17,790 16,813 17,790 16,813 17,990 165,815 Manufactured Goods May Karnasa City 112,1004 122,566 129,654 133,703 133,706 124,101 126,678 Manufactured Goods Ju Karnasa City 103,597 107,505 111,002 118,902 126,564 120,162 108,626 Manufactured Goods Sop Karnasa City 123,525 141,774 151,139 157,146 162,779 157,962 147,222 Manufactured Goods Nov Karnasa City 113,695 143,619 43,169 43,194 43,194 43,194 43,194 43,194 43,194		_					- ,				,
Manufactured Goods Feb Kamasa City 16,100 16,707 17,251 17,740 18,183 17,780 16,823 Manufactured Goods Apr Kamasa City 148,602 154,208 152,224 163,739 167,823 164,195 155,815 Manufactured Goods Jun Kansas City 1115,714 120,086 123,986 127,015 130,682 127,856 121,031 Manufactured Goods Jul Kansas City 104,446 106,386 111,912 117,966 122,654 120,616 108,625 Manufactured Goods Kansas City 103,497 107,760 111,012 117,986 122,654 120,612 130,109 137,136 134,171 177,92 1,737 <			-				-				
Manufactured Goods Marr Kareas City 148 602 159.224 159.224 167.823 167.823 164.195 159.524 Mandfactured Goods Marr Kareas City 115.714 120.060 122,054 133.042 130.682 127.856 121.331 Manufactured Goods Jun Kareas City 104.446 108.086 111.912 117.366 127.856 133.702 126.674 Manufactured Goods Jun Kareas City 103.597 107.505 111.002 118.921 127.856 120.162 108.626 Manufactured Goods Seg Kareas City 103.597 107.505 111.002 118.921 127.856 120.975 Manufactured Goods Oct Kareas City 133.625 141.774 151.331 137.146 132.930 129.655 120.975 Manufactured Goods Dec Kareas City 113.695 57.950 57.950 57.950 57.950 57.950 57.950 57.950 57.950 57.950 57.950 57.950			-				-			7 -	
Manufactured Goods Apr Kansas City 19,061 40,535 41,853 43,060 14,114 43,160 10,053 Manufactured Goods Jun Kansas City 115,714 120,086 122,986 122,986 122,870 130,685 133,300 126,878 Manufactured Goods Jun Kansas City 104,446 106,386 111,912 117,866 122,454 120,612 108,626 Manufactured Goods Kansas City 102,459 120,010 130,100 137,136 134,171 127,325 Manufactured Goods Kansas City 132,625 141,774 151,139 157,146 162,579 157,962 147,222 Manufactured Goods Nov Kansas City 13,665 13,807 123,822 128,144 123,530 126,561 120,975 Passengers Jan Kansas City 13,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737			-						-,		
Manufactured Goods Jun Karsas City 115,714 20,080 123,986 127,501 130,682 127,856 121,330 Manufactured Goods Jun Karsas City 104,446 108,886 111,912 117,366 122,454 133,300 136,656 133,702 126,878 Manufactured Goods Jun Karsas City 103,507 107,505 111,002 118,992 126,548 122,1422 127,323 Manufactured Goods Neg Karsas City 124,252 141,774 151,139 137,136 134,171 127,323 Manufactured Goods Neg Karsas City 135,252 141,774 151,139 157,146 122,150 147,522 Manufactured Goods Dec Karsas City 138,995 148,007 123,622 128,144 132,530 129,666 120,975 Manufactured Goods Dec Karsas City 113,695 118,807 12,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 1,737 <td< td=""><td>-</td><td></td><td>-</td><td></td><td>148,602</td><td>154,208</td><td>159,224</td><td>163,739</td><td>167,823</td><td>164,195</td><td>155,815</td></td<>	-		-		148,602	154,208	159,224	163,739	167,823	164,195	155,815
Manufactured Goods Jun Karnas City 121/004 125,659 129,654 133,330 136,656 133,702 126,878 Manufactured Goods Aug Karnas City 104,446 108,386 111,912 117,366 122,454 118,082 100,1516 Manufactured Goods Aug Karnas City 112,429 126,010 130,109 133,788 137,136 134,171 127,223 Manufactured Goods Karnas City 121,429 126,010 130,109 133,788 137,136 134,171 127,322 Manufactured Goods Nev Karnas City 123,622 128,614 122,650 15,781 5,781 5,781 5,781 5,781 5,781 5,781 5,781 5,785 5,7950 5,		Apr	,		39,061	40,535	41,853	43,040	44,114	43,160	40,957
Manufactured Goods Jul Kareas City 104,446 108,386 111,912 117,366 122,454 118,088 109,516 Manufactured Goods Say Kareas City 121,429 126,010 130,709 133,786 132,172 127,323 Manufactured Goods Soc Kareas City 121,429 126,010 130,109 133,786 134,171 127,323 Manufactured Goods Oct Kareas City 124,258 144,059 45,493 46,783 47,950 46,913 44,519 Manufactured Goods Dec Kareas City 113,695 118,807 12,737 1,736 1,736	Manufactured Goods	May	Kansas City		115,714	120,080	123,986	127,501	130,682	127,856	121,331
Manufactured Goods Aug Kareas City 102,597 107,505 111,002 126,546 120,162 108,626 Manufactured Goods Oct Kareas City 123,252 141,774 151,139 157,136 137,136 134,171 127,323 Manufactured Goods Nov Kareas City 42,458 44,059 45,493 47,950 46,913 44,519 Manufactured Goods Nov Kareas City 133,692 123,622 128,144 132,502 129,665 120,975 17,37 1,737 1,373 1,377	Manufactured Goods	Jun	-		121,004	125,569	129,654	133,330	136,656	133,702	126,878
Manufactured Goods Sep Kansas City 121,420 126,010 130,100 133,708 137,136 134,171 127,333 Manufactured Goods Korsas City 135,262 141,774 151,139 157,146 162,579 157,962 144,171 127,333 Manufactured Goods Nex Karsas City 113,695 148,007 123,622 128,184 132,530 129,665 120,975 Passengers Jan Karsas City 1,737	Manufactured Goods	Jul	Kansas City		104,446	108,386	111,912	117,366	122,454	118,088	109,516
Manufactured Goods Oct Kansas City 135,252 141,772 151,139 157,146 102,579 157,962 147,222 Manufactured Goods Nov Kansas City 42,458 44,059 45,833 46,783 47,950 46,913 44,519 Manufactured Goods Dec Kansas City 113,695 118,807 123,622 128,184 132,530 129,665 120,975 Passengers Jan Kansas City 1,737 1,307 1,3377 83,377 83,377	Manufactured Goods	Aug	Kansas City		103,597	107,505	111,002	118,992	126,546	120,162	108,626
Manufactured Goods Nov Kansas City 42,483 44,053 45,493 46,783 47,950 46,913 44,519 Manufactured Goods Dec Kansas City 113,695 118,807 123,622 128,184 132,530 129,665 120,975 Passengers Jan Kansas City 5,781 5,781 5,781 5,781 5,781 5,781 5,7950 57,950	Manufactured Goods	Sep	Kansas City		121,429	126,010	130,109	133,798	137,136	134,171	127,323
Manufactured Goods Dec Kareas City 113,665 118,807 123,622 128,184 132,530 129,665 120,975 Passengers Jan Kareas City 1,737 1,748 8,349 8,349 8,349 8,349 8,349 8,349 8,347 101,402 101,402 101,402 101	Manufactured Goods	Oct	Kansas City		135,252	141,774	151,139	157,146	162,579	157,962	147,222
Passengers Jan Kansas City 1,737	Manufactured Goods	Nov	Kansas City		42,458	44,059	45,493	46,783	47,950	46,913	44,519
Passengers Feb Kansas City 5,781 5,7950 <td>Manufactured Goods</td> <td>Dec</td> <td>Kansas City</td> <td></td> <td>113,695</td> <td>118,807</td> <td>123,622</td> <td>128,184</td> <td>132,530</td> <td>129,665</td> <td>120,975</td>	Manufactured Goods	Dec	Kansas City		113,695	118,807	123,622	128,184	132,530	129,665	120,975
Passengers Mar Kansas City 8,349 8,347 101,402 101,402 101,402 101,402 101,402 101,402 101,402 101,402 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,927 115,926 125,785 29,785 29,785 29,785	Passengers	Jan	Kansas City			1,737	1,737	1,737	1,737	1,737	1,737
Passengers Apr Kansas City 57,950 5	Passengers	Feb	Kansas City			5,781	5,781	5,781	5,781	5,781	5,781
Passengers May Kansas City 101,402	Passengers	Mar	Kansas City			8,349	8,349	8,349	8,349	8,349	8,349
Passengers Jun Kansas City 72, 148	Passengers	Apr	Kansas City			57,950	57,950	57,950	57,950	57,950	57,950
Passengers Jut Kansas City Ba,377 83,378 83,787 8	Passengers	May	Kansas City			101,402	101,402	101,402	101,402	101,402	101,402
Passengers Aug Kansas City 115,927	Passengers	Jun	Kansas City			72,148	72,148	72,148	72,148	72,148	72,148
Passengers Oct Kansas City 2,978 29,785 20,735 29,785 20	Passengers	Jul	Kansas City			83,377	83,377	83,377	83,377	83,377	83,377
Passengers Nov Kansas City 15,066 17,067 17,078 17,076 133,020 126,174 127,079 138,573 167,367 188,218 197,695 197,695 167,367 Petroleum Products Jun Kansas City 91,325 100,604 117,306 131,920 138,563 117,306 131,920 138,563 117,306 127,286 126,154 127,039 127,039 192,208 Petroleum Products Sep Kansas City 129,763 </td <td>Passengers</td> <td>Aug</td> <td>Kansas City</td> <td></td> <td></td> <td>115,927</td> <td>115,927</td> <td>115,927</td> <td>115,927</td> <td>115,927</td> <td>115,927</td>	Passengers	Aug	Kansas City			115,927	115,927	115,927	115,927	115,927	115,927
Passengers Dec Kansas City 15,696 16,737 17,859	Passengers	Oct	Kansas City			2,978	29,785	29,785	29,785	29,785	29,785
Petroleum Products Mar Kansas City 64,757 71,336 83,180 93,542 98,253 190,655 167,367 Petroleum Products Ju Kansas City 91,363 145,578 145,558 181,715 190,865 161,585 181,715 190,865 161,585 <td< td=""><td>Passengers</td><td>Nov</td><td>Kansas City</td><td></td><td></td><td>9,888</td><td>-</td><td></td><td></td><td></td><td></td></td<>	Passengers	Nov	Kansas City			9,888	-				
Petroleum Products Mar Kansas City 64,757 71,336 83,180 93,542 98,253 190,655 167,367 Petroleum Products Ju Kansas City 91,363 145,578 145,558 181,715 190,865 161,585 181,715 190,865 161,585 <td< td=""><td>Passengers</td><td>Dec</td><td>Kansas City</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td></td<>	Passengers	Dec	Kansas City			-		-	-		-
Petroleum Products Apr Kansas City 19,776 21,785 25,402 28,567 30,005 30,005 25,402 Petroleum Products May Kansas City 91,325 100,604 117,306 131,920 138,563 138,563 117,306 Petroleum Products Jul Kansas City 91,325 100,604 117,306 131,920 138,563 138,563 117,306 Petroleum Products Aug Kansas City 120,763 133,032 155,118 174,443 183,227 155,118 Petroleum Products Sep Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Nov Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Nov Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/ Stone/Rock Jan Kansas City 51,990					64.757						
Petroleum ProductsMayKansas City130,298143,537167,367188,218197,695197,695167,367Petroleum ProductsJunKansas City91,325100,604117,306131,920138,563138,563117,306Petroleum ProductsJulKansas City149,638164,842192,208216,154227,039227,039192,208Petroleum ProductsAugKansas City120,763133,032155,118174,443183,227183,227155,118Petroleum ProductsSepKansas City126,797138,578161,585181,715190,865190,865161,585Petroleum ProductsNovKansas City99,095109,163127,286143,143150,351150,351127,286Petroleum ProductsDecKansas City99,095109,163127,286143,143150,351150,351127,286Sand/ Stone/RockJanKansas City52,24654,18158,05161,92163,85663,85658,051Sand/ Stone/RockJanKansas City3,888 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Petroleum Products Jun Kansas City 91,325 100,604 117,306 131,920 138,563 138,563 117,306 Petroleum Products Jul Kansas City 149,638 164,842 192,208 216,154 227,039 227,039 192,208 Petroleum Products Aug Kansas City 120,763 133,032 155,118 174,443 183,227 183,227 155,118 Petroleum Products Sep Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Oct Kansas City 99,095 109,163 127,286 143,143 150,351 150,351 127,286 Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/ Stone/ Rock Jan Kansas City 3,888 3,888 3,888 3,888 3,888 3,888 3,888 3,888 3,888 3,888 3,888 3,888			-								
Petroleum ProductsJulKansas City149,638164,842192,208216,154227,039227,039192,208Petroleum ProductsAugKansas City120,763133,032155,118174,443183,227183,227155,118Petroleum ProductsSepKansas City138,475152,544177,869200,028210,101210,101177,869Petroleum ProductsOctKansas City125,797138,578161,585181,715190,865190,865161,585Petroleum ProductsDecKansas City99,095109,163127,286143,143150,351150,351127,286Petroleum ProductsDecKansas City52,24654,18158,05161,92163,85663,85658,051Sand/ Stone/ RockJanKansas City51,99051,99051,99051,99051,99051,99051,99051,99051,990Sand/ Stone/ RockMarKansas City86,266 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>		-							-		
Petroleum Products Aug Kansas City 120,763 133,032 155,118 174,443 183,227 183,227 155,118 Petroleum Products Sep Kansas City 138,475 152,544 177,869 200,028 210,101 210,101 177,869 Petroleum Products Oct Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Dec Kansas City 99,095 109,163 127,286 143,143 150,351 150,351 127,286 Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/ Stone/ Rock Jan Kansas City 3,888											
Petroleum Products Sep Kansas City 138,475 152,544 177,869 200,028 210,101 210,101 177,869 Petroleum Products Oct Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Nov Kansas City 99,095 109,163 127,286 143,143 150,351 150,351 127,286 Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/Stone/Rock Jan Kansas City 3,888								-			
Petroleum Products Oct Kansas City 125,797 138,578 161,585 181,715 190,865 190,865 161,585 Petroleum Products Nov Kansas City 99,095 109,163 127,286 143,143 150,351 150,351 127,286 Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/Stone/Rock Jan Kansas City 3,888 3,88											
Petroleum Products Nov Kansas City 99,095 109,163 127,286 143,143 150,351 150,351 127,286 Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/ Stone/ Rock Jan Kansas City 3,888<		-				-					
Petroleum Products Dec Kansas City 52,246 54,181 58,051 61,921 63,856 63,856 58,051 Sand/ Stone/ Rock Jan Kansas City 3,888 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>										-	
Sand/ Stone/ Rock Jan Kansas City 3,888<											
Sand/ Stone/ Rock Feb Kansas City 51,990			,	2 000							
Sand/ Stone/ Rock Mar Kansas City 197,362											
Sand/ Stone/ Rock Apr Kansas City 86,266			-								
Sand/ Stone/ Rock May Kansas City 84,132 82,053 82,053 82,053			-								
Sand/Stone/Rock Jun Kansas City 37,747								-			
Sand/Stone/Rock Jul Kansas City 206,243		-									
Sand/ Stone/ Rock Aug Kansas City 229,202											
Sand/ Stone/ Rock Sep Kansas City 204,756					-	-			-		
Sand/ Stone/ Rock Oct Kansas City 139,744 149,745 140,745		-									
Sand/ Stone/ Rock Nov Kansas City 83,108			-								
Sand/ Stone/ Rock Dec Kansas City 116,213				139,744	139,744	139,744	139,744	139,744	139,744	139,744	139,744
SOURCE: Navigation Economics Master Manual Revised Draft Environmental Impact Statement (1998), Table 25: Transportation Savings Value Function (pg 31			Kansas City	83,108	83,108	83,108	83,108	83,108	83,108	83,108	83,108
<i>ააյ</i>		conomics N	laster Manual	Revised Draft	Environmenta	al Impact State	ement (1998),	Table 25: Trar	sportation Sa	vings Value Fi	unction (pg 31-
	33)										