ANADROMOUS FISH SURVEYS WITHIN THE BROOKS EAST CORRIDOR SURVEY AREA, ALASKA

Prepared for

DOWL HKM 4041 B Street

Anchorage, AK 99503

by

Jena L. Lemke Joel M. Gottschalk Dorte Dissing Robert M. Burgess and John C. Seigle

ABR, Inc.—Environmental Research & Services

P.O. Box 240268 Anchorage, AK 99524 (This Page Intentionally Left Blank)

EXECUTIVE SUMMARY

- With the Ambler Mining District Access project, the State of Alaska proposes to identify, design, and construct an access and transportation corridor to the Ambler mineral belt.
- The Brooks East corridor, which extends east from the Ambler mineral belt through Bettles to the Dalton Highway, is being evaluated as a potential corridor. Empirical data documenting the distribution of anadromous fish species within the Brooks East Corridor survey area are limited.
- The objectives of the current survey were to: 1) document the distribution of anadromous fish species within Brooks East Corridor survey area; and 2) provide updated, spatially-explicit fish distribution data.
- Surveys to determine the presence of anadromous fish species within water bodies of the Brooks East Corridor survey area were conducted in July and September 2012. Field sampling was conducted 13–26 July 2012. Additional field sampling was conducted within Gates of the Arctic National Park and Preserve 4–9 September 2012.
- Along the proposed corridor route, 40 major stream or river crossings were identified. Another 3 crossings occurred along the northern option (through the Mauneluk River Valley) and 7 along the southern option (through the Gates of the Arctic National Park and Preserve) for a total of 50 potential major stream crossings. In some cases, the same water body crossed the proposed routes more than once. In July and September 2012, fish sampling or observations were recorded at 65 survey reaches associated with these major stream crossings.
- Anadromous adult or juvenile Pacific Salmon (Chinook, Coho, and Chum Salmon) were
 observed or sampled at 15 survey reaches associated with at least 9 majorstream
 crossings. Over all survey reaches, 178 km of anadromous stream will be nominated for
 inclusion in the AWC records for Pacific Salmon in the Brooks East Corridor project
 area.
- Dolly Varden were sampled at 15 survey reaches associated with at least8 major stream crossings. Over all survey reaches, 268 km of stream will be nominated for inclusion in the AFFI for Dolly Varden in the Brooks East Corridor project area.

• Spawning areas for Chum Salmon were documented in the Upper Kobuk River subbasin the Alatna River subbasinand in the Koyukuk Flats subbasin. Spawning Chinook salmon were observed in an unnamed tributary to the Alatna River in the Alatna River watershed.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iii
TABLES	vi
FIGURES	vi
PLATES	vii
APPENDICES	vii
ACKNOWLEDGMENTS	viii
INTRODUCTION	1
BACKGROUND	1
OBJECTIVES	2
STUDY AREA	2
METHODS	3
RECONNAISSANCE AND DESIGNATION OF SURVEY REACHES	3
FIELD SAMPLING	4
RESULTS	6
CHUM SALMON	7
COHO SALMON	7
CHINOOK SALMON	7
DOLLY VARDEN	8
ANADROMOUS SPECIES IN SUBBASINS AND WATERSHEDS	8
Middle Kobuk River	
Upper Kobuk River	
Koyukuk Flats	
Alatna River	

Allakaket	
Upper Koyukuk River	
South Fork Koyukuk River	
SUMMARY	13
REFERENCES	14
PLATES	

TABLES

Table 1.	Waterbodies in 7 subbasins and 19 watersheds crossed by the proposed Brooks East Corridor, Alaska, and the presence or absence of fish species observed during summer 2012 sampling
Table 2.	Number of reaches (and percent of total reaches overall and by month) in which each of 8 species of fish were observed in the Brooks East Corridor survey area, Alaska, July and September
Table 3.	Survey reaches and the corresponding length of stream or river to be nominated for inclusion in the AWC/AFFI (based on GIS analysis) in the Brooks East Corridor survey area, Alaska
	FIGURES
Figure 1.	Subbasins and watersheds traversed by the proposed Brooks East Corridor, including the northern and southern options
Figure 2.	Major river and stream crossing locations identified in the Brooks East Corridor, including the northern and southern options
Figure 3.	Survey reach locations in the Brooks East Corridor in July and September 2012 22
Figure 4.	Survey reaches in the Brooks East Corridor where Pacific Salmon (<i>Oncorhynchus spp.</i>) were observed in July and September 2012
Figure 5.	Survey reaches in the Brooks East Corridor where Dolly Varden (<i>Salvelinus malma</i>) were observed in July and September 2012
Figure 6.	Survey reaches in the Brooks East Corridor where Burbot (<i>Lota lota</i>), Northern Pike (<i>Esox lucius</i>) and Slimy Sculpin (<i>Cottus cognatus</i>) were observed in July and September 2012

PLATES

- Plate 1. Aerial view of the Chum Salmon spawning area documented within an unnamed tributary to the Mauneluk River, Alaska, July 2012.
- Plate 2. Unidentified salmon carcass observed on a gravel point bar on Beaver Creek, Alaska, September 2012.
- Plate 3. Chum Salmon spawning area documented within the Reed River, Alaska, July 2012.
- Plate 4. Chum Salmon within a Reed River spawning area, Alaska, September 2012.
- Plate 5. Female Chum Salmon carcass observed near a spawning area in the Kobuk River, Alaska, September 2012.
- Plate 6. Chum Salmon spawning area documented within the Hogatza River, Alaska, July 2012.
- Plate 7. Aerial view of a Chum Salmon spawning area documented within an unnamed tributary to the Alatna River, Alaska, July 2012.
- Plate 8. Chum Salmon in a spawning area documented within an unnamed tributary to the Alatna River, Alaska, September 2012.
- Plate 9. Aerial view of a Chinook Salmon spawning area documented within an unnamed tributary to the Alatna River, Alaska, July 2012.
- Plate 10. Chinook Salmon in a spawning area documented within an unnamed tributary to the Alatna River, Alaska, September 2012.

APPENDICES

- Appendix B. Water chemistry and physical habitat data from survey reaches associated with river and stream crossings in the proposed Brooks East Corridor, Alaska, 2012. 43

ACKNOWLEDGMENTS

DOWL HKM Environmental Specialist Jessica Christianson accompanied the ABR survey crew during the reconnaissance survey and field sampling trips. Her assistance with trip and survey logistics, permitting, and field sampling was greatly appreciated and contributed to the success of this survey. Pilot Karl Terry of the Bristow Group Inc. provided safe transport to and from the survey reaches for the majority of the field sampling. His knowledge of the survey area and assistance with survey logistics was also greatly appreciated and contributed to the success of this survey. Jay and Judy Jespersen of Brooks Range Aviation provided storage for field sampling gear while the crew was stationed in Bettles, Alaska. Accommodations were provided by the Bettles Lodge and the NOVAGOLD Dahl Creek Camp. ABR Biological Technicians Liz Miner and Matthew Apling assisted with the reconnaissance survey and field sampling.

INTRODUCTION

With the Ambler Mining District Access project, the State of Alaska proposes to identify, design, and construct an access and transportation corridor to the Ambler mineral belt. Of the 8 preliminary corridors that are being evaluated, one has been selected for field work in preparation for the future NEPA process. This corridor, referred to as Brooks East, extends east from the Ambler mineral belt through Bettles to the Dalton Highway.

Anadromous fish have been documented in portions of the Brooks East Corridor project area in the Anadromous Waters Catalog (AWC) maintained by the Alaska Department of Fish and Game (ADFG 2012a). A number of tributaries to these larger rivers are assumed to support anadromous fish species based on a GIS analysis of locations and stream gradients. However, limited data are available on the distribution of anadromous fish at proposed river crossings for the Brooks East Corridor.

DOWL HKM contracted ABR, Inc.—Environmental Research & Services (ABR) to conduct surveys to assess use of the Brooks East Corridor survey area by anadromous fish. The focus of this effort was to sample for the presence or absence of anadromous fish species in those streams that would be crossed by the proposed corridor. Field surveys were timed to coincide with the period when multiple species of Pacific Salmon were likely to be found on the spawning grounds and during which other facultatively anadromous species such as Dolly Varden Char (Salvelinus malma) were likely to be present in streams in the Brooks East Corridor survey area.

BACKGROUND

Salmon and other anadromous fish migrate from natal fresh waters to salt water and return to fresh waters to spawn. Anadromous fish import marine-derived nutrients and energy into fresh waters, frequently playing an important role in enriching otherwise unproductive aquatic and adjacent terrestrial ecosystems (Cederholm et al. 1999). The maintenance of properly functioning and connected aquatic habitats, along with proper management of harvests, is critical to preserving sustained yields of anadromous fish, as required by the Alaska Constitution. Consequently, in Alaska, habitats that are used by migrating, spawning, or rearing anadromous fish are protected under multiple administrative jurisdictions (Buckwalter 2010). Alaska Statute (AS) 16.05.877 (the Anadromous Fish Act) affords special protection to waterbodies used by anadromous fish for migration, spawning, and/or rearing. The Alaska Department of Fish and Game (ADFG) records anadromous fish data in "The Catalog of Waters Important for the Spawning, Rearing or Migration of Anadromous Fishes," known as the Anadromous Waters Catalog (AWC) (ADFG 2012b).

The Magnuson-Stevens Fishery Conservation and Management Act is federal legislation designed to protect Essential Fish Habitat (EFH) for federally managed species, including freshwater habitats used by anadromous salmon. The responsible agency is the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service (NOAA Fisheries), which relies on the AWC to designate waterbodies in Alaska to be managed as EFH. It is critical that water bodies used by anadromous fish are listed in the AWC, as only these listed water bodies are afforded state and federal protected status with consequent permit requirements and related liabilities. The following survey was conducted with the notion that the state and federal permits necessary to proceed with the Ambler Mining District Access Project will require knowledge of potential impacts on any fish bearing waterbodies that may be traversed by the project corridor.

OBJECTIVES

Objective 1: Document the distribution of anadromous fish within Brooks East Corridor survey area

Objective 2: Provide updated, spatially-explicit fish distribution data

STUDY AREA

The Brooks East Corridor crosses 7 subbasins (subbasins are based on the 8th level Hydrological Unit Code (HUC) boundaries; USGS, NRCS, and EPA[http://nhd.usgs.gov/]): the Middle Kobuk River, Upper Kobuk River, Alatna River, Allakaket, Upper Koyukuk River, Koyukuk Flats and South Fork Koyukuk River subbasins (Table 1, Figure 1). The proposed corridor crosses 19 watersheds (watersheds are based on the 10th level HUC boundaries) (Table 1, Figure 1). Within the project corridor there are 2 proposed alternative routes: the Northern Road Alternative which passes entirely within the "Outlet Mauneluk River" watershed and the Southern Road Alternative which traverses the Beaver Creek, Reed River, Kobuk Canyon– Kobuk River, Headwaters Hogatza River, Chebanika Creek–Alatna River and Helpmejack Creek–Alatna River watersheds (Figure 1).

METHODS

RECONNAISSANCE AND DESIGNATION OF SURVEY REACHES

A 5-day reconnaissance survey was conducted 8–12 June 2012. The primary goal of the reconnaissance survey was to identify stream and river crossing locations for sampling in July and September. ABR biologists were assisted by Environmental Specialist Jessica Christianson (DOWL HKM) and local Subsistence Advisor Allen A. Tickett. Helicopter support was provided by Bristow Group, Inc., through an arrangement with the State of Alaska. A Bell 407 helicopter was used for the majority of the survey. Potential stream and river crossing locations were systematically evaluated and fish survey reaches were established during the 5-day survey.

ABR and DOWL HKM staff met in Bettles, Alaska, on 7 June 2012. After reviewing maps and discussing logistics, it was determined that the initial survey should include a flight along the entire proposed corridor route. On 8 June 2012, the crew flew from the eastern edge of the project area near the Jim River, along the northernmost proposed route alternative, to the western edge of the project area near the Ambler River. During the flight, Jessica Christianson of DOWL HKM noted proposed major stream crossing locations, which ABR biologists recorded in booklets of 10 sequential aerial photo maps of the corridor that were provided by DOWL HKM (Appendix A). The major stream crossings had previously been documented by DOWL HKM officials as possible bridge crossings (DOWL HKM personal communication).

Major stream crossing locations were numbered 0–39 from west to east along the proposed route, N1 to N3 along the northern alternative through the Mauneluk River valley, and S1 to S7 along the southern alternative through Gates of the Arctic National Park and Preserve (Table 1; Figure 2). At each major stream crossing location, the most suitable survey reach was selected based on visual inspection of the stream or river from the air and the accessibility and proximity to a safe landing zone. These factors significantly affected the proximity of survey reaches to crossing locations. Once a survey reach was identified, its location was recorded electronically with a handheld GPS unit (Garmin 78s).

3

The survey team made every attempt to document physical habitat parameters at each survey reach. However, due to factors such as weather and helicopter duty-hour constraints this practice was omitted at some survey reaches (See Appendix Table B). The recorded habitat paramaters included wetted width, bankfull width, channel gradient, habitat unit composition (e.g., pools, glides, and/or riffles), and the dominant substrate. Water chemistry parameters were measured in each survey reach and included water temperature, dissolved oxygen saturation, dissolved oxygen concentration, conductivity, specific conductance, and pH (Appendix Table B). If the reach was near a tributary junction with a mainstem river, water chemistry parameters were measured in both the mainstem river and the tributary stream. Photographs of the survey reach also were taken, looking upstream and downstream from the water chemistry monitoring point.

During the June reconnaissance, helicopter landing permits had not yet been acquired and thus no landings were permitted in Gates of the Arctic National Park and Preserve. The survey team documented as much information as possible from the air at potential survey reaches located in the Park. This information included an assessment of the likelihood of fish communities being present in any given survey reach once the survey team returned during July or September. Data gathered during the reconnaissance survey, including antidotal information provided by Subsistence Advisors Allen A. Tickett and MacArthur L. Tickett, were used to prioritize survey reaches for field sampling in July and September 2012. The survey team agreed that the July field sampling effort would focus first on the northernmost proposed road route in areas where data on anadromous fish species were most limited, generally west of the Kobuk River.

FIELD SAMPLING

Fish surveys were conducted in waterbodies of the Brooks East Corridor survey area in July and September 2012. The initial survey effort concentrated on the northernmost proposed route. During these surveys a number of passive and active sampling methods were implemented and included minnow-trapping, backpack electrofishing surveys, small-handled dipnetting and visual observations from the ground and air.

Minnow traps were deployed in the majority of survey reaches. Each minnow trap was baited with raw salmon eggs in a clear, performated ziploc bag which was fastened to the inside of the trap with twine. Raw salmon eggs were disinfected by soaking in a 1/100 Betadyne solution for 10 minutes prior to use. Once baited, the traps were deployed within various habitat types to ensure the highest probability of capture if juvenile fish were present (i.e., under cut banks, near larger woody debris, in deep pools, etc.). In most survey reaches, 3 minnow traps were deployed, but as many as 5 were deployed in larger streams and rivers. Minnow traps deployed within a survey reach were left to soak overnight. The following day, the survey crew relocated and checked each trap, removed any captured fish, and placed them in a holding bucket containing cool, well-oxygenated stream water. All sampled fish were identified to species, measured (salmonids: fork length; other species: total length), and released within the survey reach. In many cases, juvenile Coho Salmon (Oncorhynchus kisutch) and Chinook Salmon (Oncorhynchus tshawytscha) were difficult to differentiate due to the overlap in external morphological characteristics between the 2 species that may result in misidentification in the field. Such fish were documented in the field as undifferentiated juvenile Coho Salmon/Chinook Salmon, photographed and/or collected as a voucher specimen for later identification in the lab. These photographs and voucher specimens were later identified to species with the assistance of the USGS. Alaska Science Center.

Backpack electrofishing methods were based on those used by ADFG for inventory and cataloging of anadromous fish throughout Alaska (Buckwalter 2010). In reaches where backpack electrofishing was the primary sampling method, a survey reach was established with a length equivalent to 40 wetted channel widths or 150 m, whichever was greater (up to 300 m). This reach length ensured adequate sampling in both smaller and larger wadeable streams. The backpack electrofishing unit settings were adjusted prior to sampling based on the conductivity of water in each reach (Buckwalter 2010). The survey crew of either 2 or 3 people began the survey at the downstream end of the reach and proceeded upstream while electrofishing. The crew moved diagonally across the channel from bank to bank to sample all habitat types present. Fish were collected using dip nets and placed in a holding bucket containing cool, well-oxygenated stream water. The water in the holding bucket was refreshed periodically to reduce physiological stress caused by warm water temperatures or low dissolved oxygen saturation. All sampled fish were identified to species, enumerated, measured, and released live downstream of

5

the sampling location. Backpack electrofishing methods were not employed in stream reaches where adult fish were observed.

Voucher fish specimens were retained and preserved in 95% ethanol. Specimens were shipped to the ABR laboratory in Anchorage, AK, where they were transferred to 10% buffered formalin. Each fish specimen was verified to species and retained. Most specimens were <40 mm total length. Additionally, because anadromy cannot be assumed for Dolly Varden, particularly this far inland, in reaches where Dolly Varden were present, two specimens were retained to be made available to the National Park Service or other state or federal agencies for otolith analysis (to investigate anadromy), if required. For AWC nomination, ADFG requires supporting information to substantiate the contention that Dolly Varden are anadromous for any given nominated water body (e.g., otolith chemistry analysis) (Buckwalter 2010). For the purposes of this analysis, ABR treated Dolly Varden as potentially anadromous because they have the potential to go to marine waters. ABR made a distinction between salmonids by categorizing them as known anadromous Pacific Salmon or facultatively anadromous Dolly Varden. Dolly Varden bearing streams in this survey will be nominated to the Alaska Freshwater Fish Index (AFFI) which is managed along with the AWC by ADFG.

RESULTS

Water chemistry, habitat, and fish sampling data from all survey trips, including the June reconnaissance survey, are presented in Appendix B and C. During all sampling periods, water quality data were collected a total of 93 times at 62 distinct survey reaches (Appendix B). Fieldsampling was conducted 13–26 July 2012 at sites outside of Gates of the Arctic National Park and Preserve and 4–9 September 2012 at sites within the Park. During the 14-day field sampling period in July 2012, 56 survey reaches were sampled in 42 different waterbodies. During the 5-day field sampling period conducted in September 2012, 9 survey reaches were sampled in 7 different water bodies.

A total of 65 survey reaches were established during 2012 surveys (Figure 3). Fish were present in 56 of 65 survey reaches sampled in the project area (Table 1). A total of 8 species of fish were observed in the project area, including Coho Salmon, Chinook Salmon Chum Salmon (*Oncorhynchus keta*), Dolly Varden, Arctic Grayling (*Thymallus arcticus*), Northern Pike (*Esox*

6

lucius), Burbot (*Lota lota*), and Slimy Sculpin (*Cottus cognatus*) (Table 2). Pacific Salmon were observed in 14 of the 65 (22%) survey reaches sampled (Table 2; Figure 4). Dolly Varden were observed in 15 of 65 (23%) survey reaches sampled (Table 2; Figure 5). Slimy Sculpin was the most prevalent species observed during surveys, found in 38 of the 65 (58%) survey reaches Table 2; Figure 6). The next most prevalent species was Arctic Grayling, observed in 19 of the 65 (29%) survey reaches (Table 2; Figure 7). Small numbers of Burbot and Northern Pike were also found during surveys (Table 2: Figure 6).

CHUM SALMON

A total of 9 juvenile Chum Salmon were observed in 4 of 65 (6%) survey reaches (Table 2). The average fork length of 9 juvenile Chum Salmon was 47 mm (range 36–58 mm) (Appendix C). Juvenile Chum Salmon were observed in the Mauneluk River and an unnamed tributary of the Mauneluk River (UN29 and MN02), in the Reed River (RD03) and in an unnamed tributary to the Malamute Fork of the Alatna River (UN14) (Table 1; Figure 4). All individuals were sampled in low gradient (<1%) backwater habitats or in isolated pools within mid-channel gravel bars using either dipnets or backpack electrofishers. Adult Chum Salmon were observed in 5 of 65 survey reaches (8%) (Table 2). Adult chum salmon were observed in an unnamed tributary of the Alatna River (UN25a) and an unnamed tributary to the Mauneluk River (UN30), the Reed River (RD04), the Kobuk River (KB01) and the Hogatza River (HG01) (Table 1; Figure 4).

COHO SALMON

A total of 19 juvenile Coho Salmon were captured in 6 of 65 survey reaches (%)using a combination of electrofishers, minnow traps and dipnets (Tables 1 and 2; Appendix C). The average fork length of these 19 fish was 56 mm (range 46–69 mm) (Appendix C). Juvenile Coho Salmon were observed in unnamed tributaries of the Malamute Fork Alatna River (UN14 and UN15), Malamute Fork John River (UN17), and Jim River (UN19 and UN24) as well as in Tobuk Creek (TB01) (Table 1; Figure 4). No adult Coho Salmon were observed during 2012 surveys.

CHINOOK SALMON

Juvenile Chinook Salmon were electrofished in 2 of 65 survey reaches (3%) (Table 2). One individual was caught in Tobuk Creek and another in an unnamed tributary to the Jim River

(Table 1; Appendix C). Spawning adult Chinook Salmon were observed on the Alatna River (UN25b) (Figure 4).

DOLLY VARDEN

Dolly Varden were observed in 15 of the 65 survey reaches (23%) and 15 of 48 water bodies sampled (Table 2; Figure 5). The average fork length of the 80 Dolly Varden captured was 110 mm (range 69–168 mm) (Appendix C). Dolly Varden were observed in the western portion of the survey area; the easternmost extent of the observed distribution was in the Alatna River subbasin in an unnamed tributary to Helpmejack Creek (UN16) (Figure 5). Juvenile Dolly Varden were caught in minnow traps in 13 of the 15 survey reaches where Dolly Varden were observed, while backpack electrofishing methods were used to sample an additional 2 reaches (UN26 and UN31) (Table 1; Appendix C).

ANADROMOUS SPECIES IN SUBBASINS AND WATERSHEDS

MIDDLE KOBUK RIVER

The proposed Brooks East Corridor crosses the Outlet Ambler River and Shungnak River watersheds in the Middle Kobuk River subbasin (Figure 1). While sampling did occur in the Shungnak River watershed, no sampling occurred in the Outlet Ambler River watershed. Sampling did occurr in the Headwater Ambler River watershed nestled between those two watersheds to the north. Though this watershed is not crossed by the proposed road corridor, its waters are accessible to fish moving throughout all three watersheds. Previous AWC survey work found Chum Salmon, Dolly Varden and undifferentiated whitefish at locations on the Ambler River and its tributary, the Redstone River (Figures 4 and 8). No Pacific Salmon were observed at survey reaches associated with this subbasin during 2012 surveys. However, Dolly Varden were observed well upstream of crossing 0 on Ulaneak Creek (UL01) in the Headwater Ambler River watershed, an extension of the range recorded for Dolly Varden by the AFFI of 8 km (Table 3; Figure 5).

UPPER KOBUK RIVER

The Brooks East Corridor crosses 7 watersheds in the Upper Kobuk River subbasin; the Kogoluktuk River, Outlet Mauneluk River, Selby River, Beaver Creek, Reed River, Kobuk

Canyon–Kobuk River, and Headwaters Kobuk River watersheds (Figure 1). The proposed route has 19 major stream crossings within this subbasin (crossings 3–21), 12 of which were associated with nearby survey reaches (Table 1; Figure 2). Prior to the current survey, Chum Salmon, Dolly Varden and undifferentiated whitefish had been documented downstream of the proposed major road crossing on the mainstem of the Kogoluktuk River (crossing 4; AWC 331-00-10490-2307). Chum Salmon and undifferentiated whitefish were documented downstream of the proposed major crossing on the Mauneluk River (crossing 9; AWC 331-00-10490-2335). Chum Salmon were found south of the Selby River (crossing 11; AWC 331-00-10490-2387) and downstream of major crossings on Beaver Creek (crossing 13; AWC 331-00-10490-2437). Chum, King and Pink Salmon as well as Dolly Varden, Sheefish and undifferentiated whitefish have been documented on the mainstem Kobuk River (AWC 331-00-10490) (Figures 4 and 8).

During 2012 surveys, a total of 7 juvenile Chum Salmon were collected using electrofishing techniques in 3 survey reaches (MN02, RD03, UN29) in an unnamed tributary to the Mauneluk River as well as the Mauneluk River and the Reed River in the Upper Kobuk River subbasin. An additional 4 adult Chum Salmon spawning areas were observed in 3 survey reaches (KBO1, RD04, UN30) in the Kobuk River, Reed River and an unnamed tributary to the Mauneluk River (Plates 1–5) (Figure 4; Appendix C). In total, these observations fish add an additional 95 km of stream habitat to the AWC (Table 3). Salmon occurred at survey reaches associated with 3 crossings in the Upper Kobuk River subbasin (crossings 9, 16 and 19).

Dolly Varden were observed in 12 survey reaches (UN03, UN04, UN05, UN06, UN10, UN26, UN31, UN34, UN35, UN37, CN01 and RI01) associated with 6 proposed crossings (1, 5, 9, 11, 15 and S3) within the Upper Kobuk River subbasin (Table 1, Figure 5). The 68 Dolly Varden captured in this subbasin averaged 111 mm (range 69–168 mm). All Dolly Varden were caught with either minnow traps or electrofishing techniques. The majority of these fish (n = 47) were caught in survey reaches associated with unnamed tributaries to the Mauneluk River (Appendix C). These observations represent an additional 218.7 km of streams available to Dolly Varden to be added to the AFFI (Table 3).

9

KOYUKUK FLATS

The southern corridor option crosses only 1 watershed in the Koyukuk Flats subbasin, the Hogatza Hills-River watershed. Previously, Chum, Coho and Chinook Salmon as well as undifferentiated whitefish have been documented on the Hogatza River (AWC 334-40-11000-2125-3355), a considerable distance downstream of the 2012 survey area and just upstream of that point in an unnamed tributary (AWC 334-40-11000-2125-3355-4556). In 2012, adult spawning Chum Salmon were observed just downstream of the proposed major crossing S6 at a survey reach on the Hogatza River (HG01) (Figure 4; Plate 6). This point represents an addition of 27 km of salmon stream habitat to the AWC. No Dolly Varden were documented in the Koyukuk Flats subbasin during 2012 surveys.

ALATNA RIVER

The proposed corridor route crosses 4 watersheds in the Alatna River subbasin (Helpmejack Creek-Alatna River, Chebanika Creek-Alatna River, Tobuk Creek and Malamute Fork Alatna River) with 10 major stream crossings (22-30 and S7) (Figure 1). Survey reaches were located on streams associated with 3 major crossings in the Alatna River subbasin (S7, 24, 25) and included HelpmeJack Creek and its unnamed tributaries as well as the Alatna River, Koyukuk River, Malamute Fork Alatna River and Bedrock Creek (Figures 4 and 8). Chum and Chinook Salmon were previously documented at the confluence of the Alatna River and the Malamute Fork of the Alatna River (AWC 334-40-11000-2125-3661-4100) downstream of proposed crossing 24. Chum and Chinook Salmon were also documented at the confluence of Mettenpherg Creek and the Malamute Fork of the Alatna River (AWC Code 334-40-11000-2125-33661-5055) (Figures 4 and 8).

During 2012 surveys, juvenile Coho and Chum Salmon were captured using dipnets at a survey reach (UN14) in an unnamed tributary to the Malamute Fork Alatna River upstream of crossing 25 (Figure 4). These anadromous fish observations will add only a minor amount (>0.1 km) of stream habitat to the AWC but do serve to identify the outlet of this unnamed tributary as a potential starting point for future surveys. Juvenile Coho and Chinook Salmon were captured using electrofishers at survey reach TBO1, also upstream of crossing 25. An additional 1.8 km of stream habitat will be added to the AWC for anadromous salmon. Juvenile Coho Salmon were

collected in minnow traps on another unnamed tributary to the Malamute Fork Alatna River associated with crossing 25 (UN15) adding another 0.15 km to the AWC (Table 3).

Chum and Chinook salmon spawning areas were visually observed from the air during surveys of an unnamed tributary to the Alatna River (UN25a and UN25b) associated with crossing 24 (Figure 4). The Chum Salmon spawning (UN25a) area was located less than 1 km upstream of the confluence of the unnamed tributary with the mainstem Alatna River and extended approximately 100 m upstream (Figure 4; Plates 7 and 8). The Chinook Salmon spawning area was documented approximately 1.8 km upstream (UN25b) (Figure 4; Plates 9 and 10). In total, these two observations of salmon spawning will add another 53.7 km of stream habitat to the AWC (Table 3; Figure 4).

Juvenile Dolly Varden were collected with electrofishers and minnow traps in 2 survey reaches upstream of the S7 crossing and which ultimately flow into the Alatna River. These survey reaches were located in an unnamed tributary (UN16) to Helpmejack Creek as well as Helpmejack Creek itself (HJ01). Together, these observations will add 41.5 km of stream habitat to the AFFI for Dolly Varden (Table 3).

ALLAKAKET

The proposed route crosses two watersheds in the Allakaket subbasin (East Fork Henshaw Creek and Hawzerah Creek-Koyukuk River watersheds) (Figure 1). The proposed corridor route runs along the boundary between the northern portion of the Allakaket subbasin and the southern portion of the Upper Koyukuk River subbasin, occasionally reentering the Allakaket subbasin in the Hawzerah Creek-Koyukuk River watershed. However, no major stream crossings were identified on the Allakaket subbasin for the proposed corridor and thus only limited sampling occured in the subbasin (Table 1; Figure 1). Chum Salmon have previously been documented in East Fork Henshaw Creek (AWC 334-40-11000-2125-3701-4080) and Chum, Coho, Chinook and Sockeye Salmon as well as Sheefish and undifferentiated whitefish have been observed within the mainstem Koyukuk River in the Hawzerah Creek-Koyukuk River watershed (Figures 4 and 8). No Pacific Salmon or Dolly Varden were captured during limited 2012 sampling at the single survey reach (SZ01) in the East Fork Henshaw Creek watershed in East Fork Sozhekla Creek (Table 1; Appendix C).

UPPER KOYUKUK RIVER

The proposed route follows the southern boundary of the Upper Koyukuk River subbasin. Three major stream crossings were identified in the Upper Koyukuk River subbasin (32–34) (Figures 1 and 2). Although it crosses 3 watersheds, proposed major stream crossings only occur in 2, the Malemute Fork John River watershed and Timber Creek John River watershed. Minnow trapping and dipnetting were conducted at just one survey reach (UN17) and yielded juvenile Coho Salmon (Figure 4; Appendix C). The proposed major crossings of the Koyukuk River (33) and a side channel of the Koyukuk River (34) are the largest proposed crossings in the subbasin. Sampling reaches were not established in relation to these major crossings because anadromous fish presence had been previously documented upstream of each crossing on the Koyukuk River and most of its major tributaries (Figures 4 and 8).

SOUTH FORK KOYUKUK RIVER

At the east end of the Brooks East Corridor, the proposed road corridor enters the South Fork Koyukuk River subbasin, traversing portions of 3 different watersheds (Lower South Fork Koyukuk River, Middle South Fork Koyukuk River, and Jim River watersheds). The eastern terminus of the proposed corridor at the Dalton Highway lies just inside a fourth watershed, Prospect Creek. Five major stream crossings were identified in the South Fork Koyukuk River subbasin (35-39) and 4 crossings were associated with nearby survey reaches (survey reaches were not established near crossing 37 because AWC records document anadromous fish presence upstream at numerous locations. Prior to the current survey, the presence of anadromous salmon was documented upstream of proposed major stream crossing 39 on the mainstem of the Jim River (AWC 334-40-11000-2125-3740-4080). A total of 11 juvenile Coho Salmon and 1 juvenile Chinook Salmon were captured using electrofisers at 2 survey reaches (UN19 and UN24) on unnamed tributaries of the Jim River. Both survey reaches were upstream of locations previously recorded, adding 0.12 km to the AWC. No Dolly Varden were observed in this subbasin.

SUMMARY

Field surveys documenting the distribution of anadromous fish species within the Brooks East Corridor survey area has been limited to date. Stream surveys documented in this report represent only a small portion of available waters in the project area, but illustrate an efficient, practical method for sampling many waterbodies in a short period of time todocument anadromous fish bearing waters in large and remote areas of Alaska. These methods, largely developed by the Alaska Department of Fish and Game, have played an important role in managing fishery resources in Alaska.

Anadromous Pacific Salmon species were observed in 15 of the 65 survey reaches (23%) and 9 of 17 watersheds surveyed (53%) within the survey area, adding 178 km of stream stream habitat to the AWC (Table 3; Figure 8). These segments provide spawning, rearing, and/or migration habitats for anadromous salmon. Spawning areas were documented in 3 subbasins (Upper Kobuk River, Alatna River, and Koyukuk Flats subbasins) on unnamed tributaries to the Alatna River and the Mauneluk River and mainstem Reed River, Kobuk River, and Hogatza River. Spawing chum salmon occurred in all of these sites, while spawning Chinook salmon were observed only in an unnamed tributaries, the Reed River, Juvenile salmon were documented in the Mauneluk River and tributaries, the Reed River, unnamed tributaries to the Malamute Fork of the Alatna River the Koyukuk River, Tobuk Creek and unnamed tributaries to the Jim River. Dolly Varden occurred in 15 of the 65 survey reaches (23%), adding 268 km of stream to the AFFI. Dolly Varden were observed only in the Middle Kobuk River, Upper Kobuk River, and Alatna River subbasins.

REFERENCES

- ADFG (Alaska Department of Fish and Game). 2012a. Anadromous waters catalog. Available online at: [http://www.sf.adfg.state.ak.us/SARR/awc/]. November 2012.
- ADFG. 2012b. Interactive Mapping. Available online at: [http://www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG=maps.interactive] November 2012.
- Buckwalter, J. D. 2010. Anadromous cataloging and fish inventory in the middle Kuskokwim and Unalakleet River drainages. Unpublished report by Alaska Department of Fish and Game, 136pp.
- Cedarholm, J. C., M. D.Kunze, T. Murota, and A. Sibatani. 1999. Pacific salmon carcasses: Essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24(10): 6–15.

Table 1. Waterbodies in 7 subbasins and 19 watersheds crossed by the proposed Brooks East Corridor, Alaska, and the presence or absence of fish species observed during summer 2012 sampling. Each survey reach is associated with a nearby stream crossing number along the proposed access corridor (see Figures 2 and 3).

SUBBASIN										
Watershed	Waterbody	Tributary to	Survey Reach	Crossing Number	Date	Latitude	Longitude	Pacific Salmon	Dolly Varden	Other Fish
ALATNA RIVER										
Helpmejack Creek-Alatna River	Helpmejack Creek	Alatna River	HJ01	S7	7/16/2012	67.05835	-153.79528	No	Yes	No
Helpmejack Creek-Alatna River	Helpmejack Creek	Alatna River	HJ02	S7	7/16/2012	67.04015	-153.66203	No	No	GRAY
Helpmejack Creek-Alatna River	Unnamed trib	Helpmejack Creek	UN16	S7	7/16/2012	67.04146	-153.66153	No	Yes	SLSC
Helpmejack Creek-Alatna River	Alatna River	Koyukuk River	AL01	24	7/23/2012	67.18136	-153.48386	No	No	SLSC
Helpmejack Creek-Alatna River	Unnamed trib	Alatna River	UN25a	24	7/23/2012	67.22524	-153.55644	CHUM	No	No
Helpmejack Creek-Alatna River	Unnamed trib	Alatna River	UN25b	24	7/23/2012	67.22868	-153.59320	KING	No	No
Malamute Fork Alatna River	Unnamed trib	Malamute Fork Alatna River	UN13	25	7/16/2012	67.06966	-153.11984	No	No	SLSC
Malamute Fork Alatna River	Unnamed trib	Malamute Fork Alatna River	UN14	25	7/16/2012	67.11074	-152.93070	COHO, CHUM	No	No
Malamute Fork Alatna River	Unnamed trib	Malamute Fork Alatna River	UN15	25	7/16/2012	67.10036	-152.74847	СОНО	No	No
Malamute Fork Alatna River	Bedrock Creek	Malamute Fork Alatna River	BD01	25	7/17/2012	67.09796	-152.60043	No	No	No
Malamute Fork Alatna River	Unnamed trib	Bedrock Creek	UN18	25	7/17/2012	67.09319	-152.72504	No	No	No
Tobuk Creek	Tobuk Creek	Malamute Fork Alatna River	TB01	25	7/16/2012	67.07944	-153.18635	COHO, KING	No	No
ALLAKAKET										
East Fork Henshaw Creek	East Fork Sozhekla Creek	Sozhekla Creek	SZ01	31	7/17/2012	67.03600	-152.41211	No	No	GRAY
JPPER KOYUKUK RIVER										
Malamute Fork John River	Unnamed trib	Malamute Fork John River	UN17	32	7/17/2012	67.04867	-152.12669	СОНО	No	No
SOUTH FORK KOYUKUK RIVER										
Jim River	Unnamed trib	Jim River	UN19	38	7/20/2012	66.78889	-150.85132	COHO, KING	No	SLSC, GRA
Jim River	Unnamed trib	Jim River	UN24	39	7/23/2012	66.83560	-150.64531	СОНО	No	SLSC
Lower South Fork Koyukuk River	Unnamed trib	South Fork Koyukuk River	UN20	35	7/20/2012	66.67128	-151.48851	No	No	SLSC
Middle South Fork Koyukuk River	Unnamed trib	South Fork Koyukuk River	UN21	36	7/20/2012	66.82559	-151.17087	No	No	SLSC, GRA
KOYUKUK FLATS										
Headwaters Hogatza River	Hogatza River	Koyukuk River	HG01	S 6	7/21/2012	66.82131	-153.99037	CHUM	No	SLSC
Headwaters Hogatza River	Unnamed trib	Hogatza River	UN22	S 6	7/21/2012	66.86933	-154.04053	No	No	SLSC, BUR
Headwaters Hogatza River	Unnamed trib	Hogatza River	UN23	\$5	7/21/2012	66.85331	-154.29780	No	No	GRAY
JPPER KOBUK RIVER										
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN03	9	7/13/2012	67.04256	-156.13206	No	Yes	SLSC
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN04	9	7/14/2012	67.12383	-156.00801	No	Yes	No
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN05	9	7/14/2012	67.05437	-155.81388	No	Yes	No
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN06	9	7/14/2012	67.02217	-155.84178	No	Yes	No
Outlet Mauneluk River	Mauneluk River	Kobuk River	MN02	9	7/25/2012	67.00295	-156.09182	CHUM	No	SLSC
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN29	9	7/25/2012	67.02696	-156.04826	CHUM	No	SLSC, PIK
Outlet Mauneluk River	Unnamed trib	Mauneluk River	UN30	9	7/25/2012	67.03453	-156.03934	CHUM	No	GRAY

Table 1. Continued.

SUBBASIN

Watershed	Waterbody	Tributary to	Survey Reach	Crossing Number	Date	Latitude	Longitude	Pacific Salmon	Dolly Varden	Other Fish
Beaver Creek	Beaver Creek	Kobuk River	BV01	13	7/15/2012	67.07523	-155.27667	No	No	SLSC, GRA
Beaver Creek	Unnamed trib	Beaver Creek	UN08	15	7/15/2012	67.00270	-155.00900	No	No	No
Beaver Creek	Unnamed trib	Beaver Creek	UN10	11	7/15/2012	67.01060	-155.08077	No	Yes	No
Beaver Creek	Unnamed trib	Beaver Creek	UN12	13	7/15/2012	67.07503	-155.27765	No	No	No
Beaver Creek	Unnamed trib	Beaver Creek	UN26	15	7/24/2012	66.98333	-155.02530	No	Yes	SLSC
Beaver Creek	Unnamed trib	Beaver Creek	UN27	13	7/24/2012	67.12892	-155.19577	No	No	SLSC, BUR
Beaver Creek	Unnamed trib	Beaver Creek	UN28	13	7/24/2012	67.12244	-155.21069	No	No	SLSC
Headwaters Kobuk River	Unnamed trib	Kichaiakalea Creek	UN33	S 3	9/4/2012	67.05337	-154.14697	No	No	SLSC
Headwaters Kobuk River	Unnamed trib	Kichaiakalea Creek	UN37	S 3	9/7/2012	67.02964	-154.01124	No	Yes	SLSC
Headwaters Kobuk River	Unnamed trib	Mauneluk River	UN07	9	7/14/2012	67.11058	-155.63781	No	No	SLSC, GRA
Headwaters Kobuk River	Mauneluk River	Kobuk River	MN01	9	7/14/2012	67.11119	-155.63925	No	No	No
Headwaters Kobuk River	Unnamed trib	Mauneluk River	UN31	9	7/26/2012	67.12433	-155.63481	No	Yes	SLSC
Kobuk Canyon-Kobuk River	Kobuk River	None	KB01	S 3	9/4/2012	67.02165	-154.35763	CHUM	No	SLSC
Kobuk Canyon-Kobuk River	Unnamed trib	Kobuk River	UN32	S 3	9/4/2012	66.89105	-154.47314	No	No	SLSC
Kobuk Canyon-Kobuk River	Unnamed trib	Kobuk River	UN34	S 3	9/4/2012	67.01901	-154.44464	No	Yes	No
Kobuk Canyon-Kobuk River	Unnamed trib	Kobuk River	UN35	S 3	9/4/2012	67.00066	-154.55439	No	Yes	SLSC
Kobuk Canyon-Kobuk River	Unnamed trib	Kobuk River	UN36	S 3	9/5/2012	66.91783	-154.48701	No	No	No
Kobuk Canyon-Kobuk River	Unnamed trib	Kobuk River	UN38	S 3	9/7/2012	66.99846	-154.54691	No	No	SLSC, GRA
Kogoluktuk River	Canyon Creek	Kogoluktuk River	CN01	5	7/13/2012	67.02888	-156.66255	No	Yes	SLSC
Kogoluktuk River	Unnamed trib	Kogoluktuk River	UN01	4	7/13/2012	67.01672	-156.44185	No	No	No
Kogoluktuk River	Unnamed trib	Kogoluktuk River	UN02	4	7/13/2012	67.01543	-156.43502	No	No	SLSC, GRA
Kogoluktuk River	Riley Creek	Kogoluktuk River	RI01	1	7/13/2012	67.05552	-156.70256	No	Yes	No
Kogoluktuk River	Kogoluktuk River	Kobuk River	KG01	4	7/26/2012	67.09536	-156.40128	No	No	SLSC, GRA
Kogoluktuk River	Kogoluktuk River	Kobuk River	KG02	6	7/26/2012	67.01372	-156.68225	No	No	SLSC, GRA
Reed River	Unnamed trib	Reed River	UN09	16	7/15/2012	67.19412	-154.88269	No	No	SLSC
Reed River	Reed River	Kobuk River	RD01	16	7/15/2012	67.19318	-154.88084	No	No	No
Reed River	Reed River	Kobuk River	RD02	16	7/21/2012	67.06531	-154.81343	No	No	SLSC, GRA SLSC, GRA
Reed River	Reed River	Kobuk River	RD03	S2	7/21/2012	66.96365	-154.81606	CHUM	No	BURB
Reed River	Reed River	Kobuk River	RD04	S4	9/4/2012	66.88630	-154.83643	CHUM	No	No
Selby River	Unnamed trib	Narvak Lake	UN11	9	7/15/2012	66.99952	-155.61014	No	No	No
IDDLE KOBUK RIVER										
Headwater Ambler River	Ulaneak Creek	Ambler River	UL01	0	7/13/2012	67.39883	-156.81866	No	Yes	SLSC
Shungnak River	Ruby Creek	Shungnak River	RU01	1	7/13/2012	67.09978	-156.92219	No	No	SLSC, GRA
Shungnak River	Ruby Creek	Shungnak River	RU02	1	7/14/2012	67.11267	-156.91756	No	No	SLSC, GRA
Shungnak River	Shungnak River	Kobuk River	SH01	1	7/14/2012	67.11272	-156.91808	No	No	SLSC
Shungnak River	Shungnak River	Kobuk River	SH02	1	7/21/2012	67.11806	-156.83575	No	No	SLSC, GRA
Shungnak River	Shungnak River	Kobuk River	SH03	1	7/21/2012	67.08774	-157.14510	No	No	SLSC
Shungnak River	Shungnak River	Kobuk River	SH04	1	7/21/2012	66.98033	-157.30708	No	No	SLSC, GRA

SLSC = Slimy Sculpin GRAY = Arctic Grayling

BURB = Burbot

PIKE = Northern Pike CHUM = Chum Salmon

KING = Chinook Salmon COHO = Coho Salmon

Brooks East Corridor, Anadromous Fish Survey

		Life	# of Survey	% of Survey	# of Individuals Observed ^a		
Common Name	Scientific Name	History Stage	Reaches Observed	Reaches Observed	July	September	
Chum Salmon	Oncorhynchus keta	Juvenile	4	6%	9 (1.3%)	_	
		Adult	5	8%	4 ^b	3 ^b	
Coho Salmon	Oncorhynchus kisutch	Juvenile	6	9%	19 (2.8%)	_	
Chinook Salmon	Oncorhynchus tshawytscha	Juvenile	2	3%	2 (0.3%)	_	
		Adult	1	2%	1 ^b	_	
Dolly Varden	Salvelinus malma	Any	15	23%	73 (10.7%)	7 (25.9%)	
Arctic Grayling	Thymallus arcticus	Any	19	29%	46 (6.8%)	3 (11.1%)	
Northern Pike	Esox lucius	Any	1	2%	2 (0.3%)	_	
Burbot	Lota lota	Any	3	5%	4 (0.6%)	_	
Slimy Sculpin	Cottus cognatus	Any	38	58%	525 (77.2%)	17 (63.0%)	

Table 2. Number of reaches (and percent of total reaches overall and by month) in which each of 8 species of fish were observed in the Brooks East Corridor survey area, Alaska, July and September.

 ^a Value in parentheses represents percentage of total visually observed or captured fish of all species, exluding adult salmon.
 ^b Represents the number of observations of groups of prespawning, spawning or post-spawning adults and is therefore not calculated as a percentage of total observed organisms.

Survey Reach	Waterbody	Tributary to	Nearest Crossing	Species	Life History Stage	Kilometers to be added to AWC/AFFI
TB01	Tobuk Creek	Malamute Fork Alatna River	25	Coho, Chinook Salmon	rearing, rearing	1.84
UN25a	Unnamed tributary	Alatna River	24	Chum Salmon	spawning	51.82
UN25b	Unnamed tributary	Alatna River	24	Chinook Salmon	spawning	1.84
RD04	Reed River	Kobuk River	S4	Chum Salmon	spawning	17.46
RD03	Reed River	Kobuk River	S2	Chum Salmon	rearing	12.82
HG01	Hogatza River	Koyukuk River	S6	Chum Salmon	spawning	26.99
UN29	Unnamed tributary	Mauneluk River	9	Chum Salmon	rearing	4.42
UN30	Unnamed tributary	Mauneluk River	9	Chum Salmon	spawning	1.11
MN02	Mauneluk River	Kobuk River	9	Chum Salmon	rearing	10.47
KB01	Kobuk River	None	S 3	Chum Salmon	spawning	48.83
CN01	Canyon Creek	Kogoluktuk River	5	Dolly Varden	rearing	7.35
UN03	Unnamed tributary	Mauneluk River	9	Dolly Varden	rearing	10.67
UN04	Unnamed tributary	Mauneluk River	9	Dolly Varden	rearing	12.48
UN06	Unnamed tributary	Mauneluk River	9	Dolly Varden	rearing	19.81
UN05	Unnamed tributary	Mauneluk River	9	Dolly Varden	rearing	3.71
UN31	Unnamed tributary	Mauneluk River	9	Dolly Varden	rearing	30.28
UN35	Unnamed tributary	Kobuk River	S 3	Dolly Varden	rearing	22.74
UN34	Unnamed tributary	Kobuk River	S 3	Dolly Varden	rearing	18.50
UN37	Unnamed tributary	Kichaiakalea Creek	S 3	Dolly Varden	rearing	29.87
UN38	Unnamed tributary	Kobuk River	S 3			0.00
UL01	Ulaneak Creek	Ambler River	0	Dolly Varden	rearing	8.01
UN15	Unnamed tributary	Malamute Fork Alatna River	25	Coho Salmon	rearing	0.15
RI01	Riley Creek	Kogoluktuk River	1	Dolly Varden	rearing	6.64
UN10	Unnamed tributary	Beaver Creek	11	Dolly Varden	rearing	11.03
UN26	Unnamed tributary	Beaver Creek	15	Dolly Varden	rearing	45.57
HJ01	Helpmejack Creek	Alatna River	S7	Dolly Varden	rearing	12.41

Table 3.Survey reaches and the corresponding length of stream or river to be nominated for inclusion in the AWC/AFFI (based on
GIS analysis) in the Brooks East Corridor survey area, Alaska.

Survey Reach	Waterbody	Tributary to	Nearest Crossing	Species	Life History Stage	Kilometers to be added to AWC/AFFI
UN16	Unnamed tributary	Helpmejack Creek	S 7	Dolly Varden	rearing	29.12
UN19	Unnamed tributary	Jim River	38	Coho, Chinook Salmon	rearing, rearing	0.11
UN24	Unnamed tributary	Jim River	39	Coho Salmon	rearing	0.01
UN14	Unnamed tributary	Malamute Fork Alatna River	25	Coho, Chum salmon	rearing, rearing	0.1

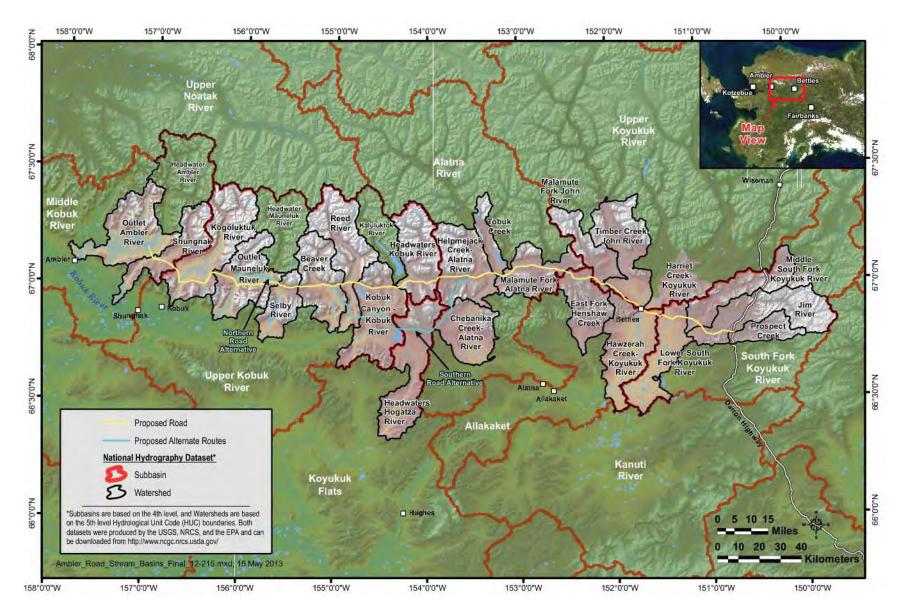


Figure 1. Subbasins and watersheds traversed by the proposed Brooks East Corridor, including the northern and southern options.

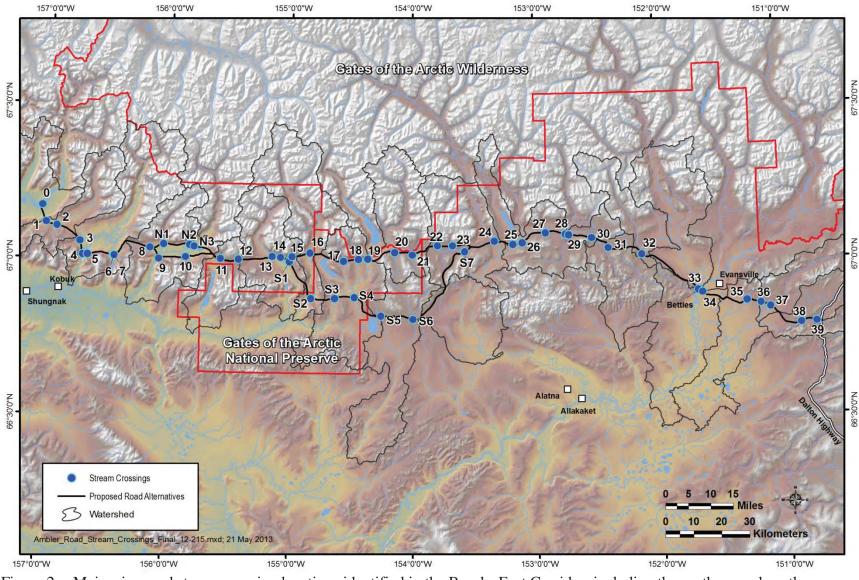


Figure 2. Major river and stream crossing locations identified in the Brooks East Corridor, including the northern and southern options.

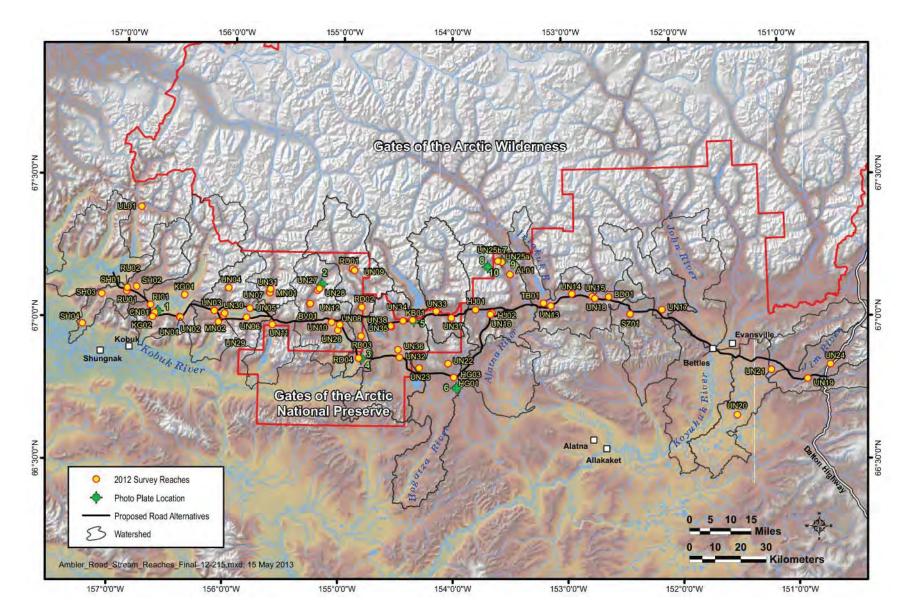


Figure 3. Survey reach locations in the Brooks East Corridor in July and September 2012.

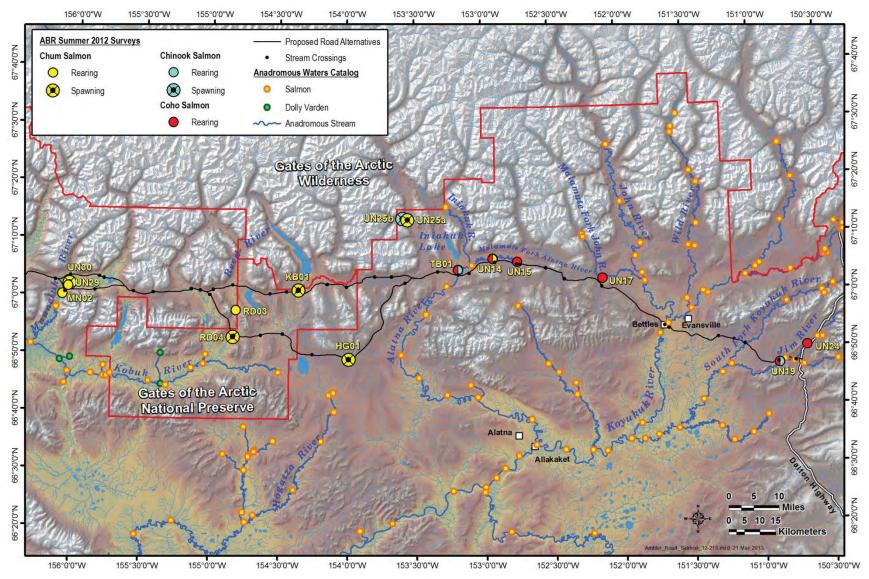


Figure 4. Survey reaches in the Brooks East Corridor where Pacific Salmon (*Oncorhynchus spp.*) were observed in July and September 2012.

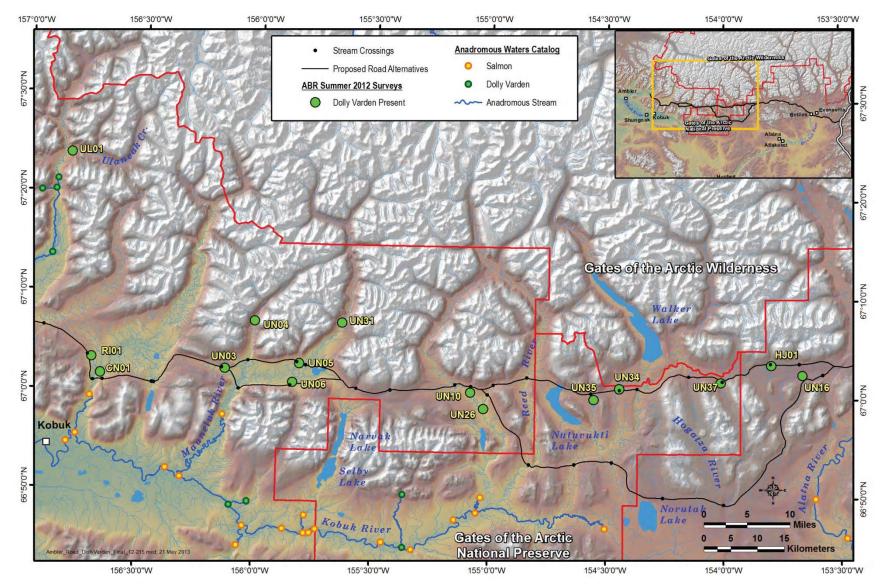


Figure 5. Survey reaches in the Brooks East Corridor where Dolly Varden (*Salvelinus malma*) were observed in July and September 2012.

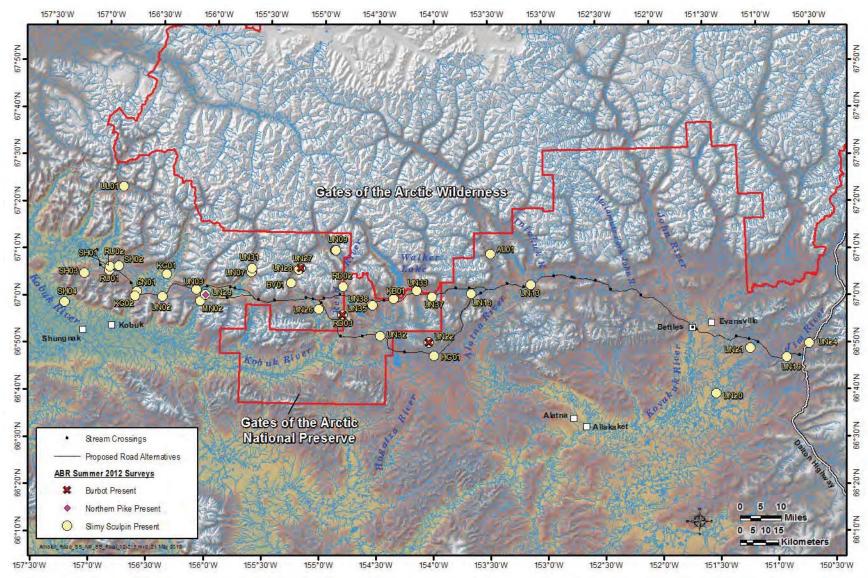


Figure 6. Survey reaches in the Brooks East Corridor where Burbot (*Lota lota*), Northern Pike (*Esox lucius*) and Slimy Sculpin (*Cottus cognatus*) were observed in July and September 2012.

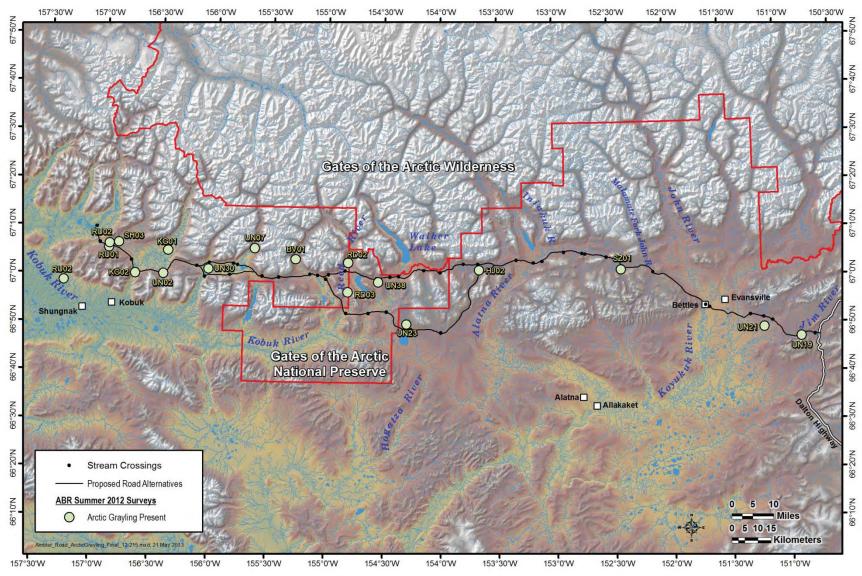


Figure 7. Survey reaches in the Brooks East Corridor where Arctic grayling (*Thymallus arcticus*) were observed in July and September 2012.

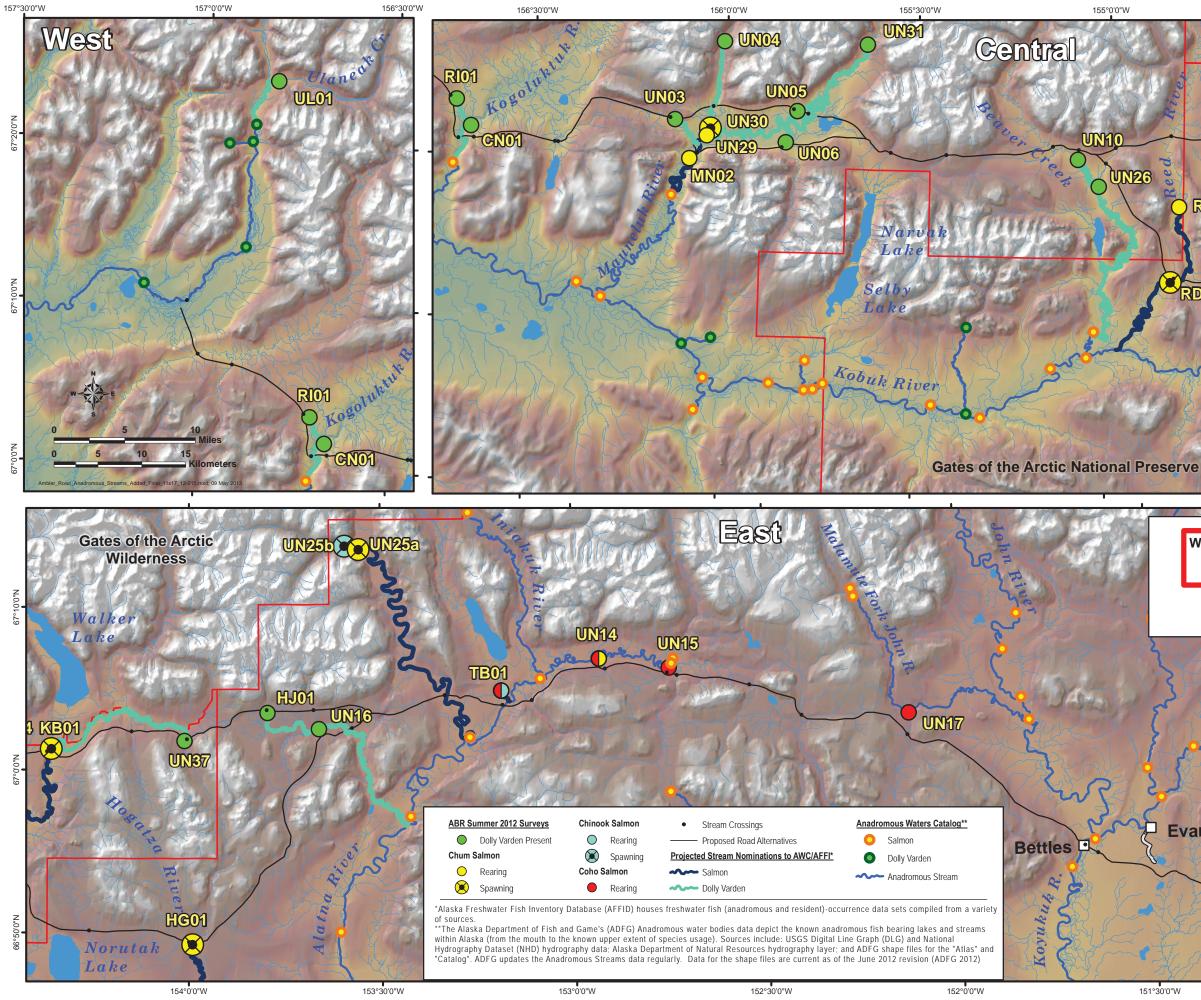


Figure 8. Survey reaches in the Brooks East Corridor where Dolly Varden and anadromous Pacific salmon were observed in July and September 2012 along with the relative location of salmon- and Dolly Varden-bearing reaches previously included in the ADFG Anadromous Waters Catalog.

UN34 KE01 UN3 UN35 **RD03** utuvukti RD04 HC01 Norutak Lake West East Central **Evansville** UN19. 151°30'0"W 151°0'0"W

(This Page Intentionally Left Blank)

PLATES

Plate 1. Aerial view of the chum salmon spawning area documented within an unnamed tributary to the Mauneluk River, Alaska, July 2012.

Plate 2. Unidentified salmon carcass observed on a gravel point bar on Beaver Creek, Alaska, September 2012.

Plate 3. Chum salmon spawning area documented within the Reed River, Alaska, July 2012.

Plate 4. Chum salmon within the Reed River spawning area, Alaska, September 2012.

Plate 5. Female chum salmon carcass observed near a spawning area in the Kobuk River, Alaska, September 2012.

29

Plate 6. Chum salmon spawning area documented within the Hogatza River, Alaska, July 2012.

Plate 7. Aerial view of the chum salmon spawning area documented within an unnamed tributary to the Alatna River, Alaska, July 2012.

Plate 9. Aerial view of the Chinook salmon spawning area documented within an unnamed tributary to the Alatna River, Alaska, July 2012.

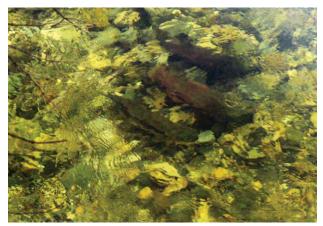


Plate 8. Chum salmon within the spawning area documented within an unnamed tributary to the Alatna River, Alaska, September 2012.

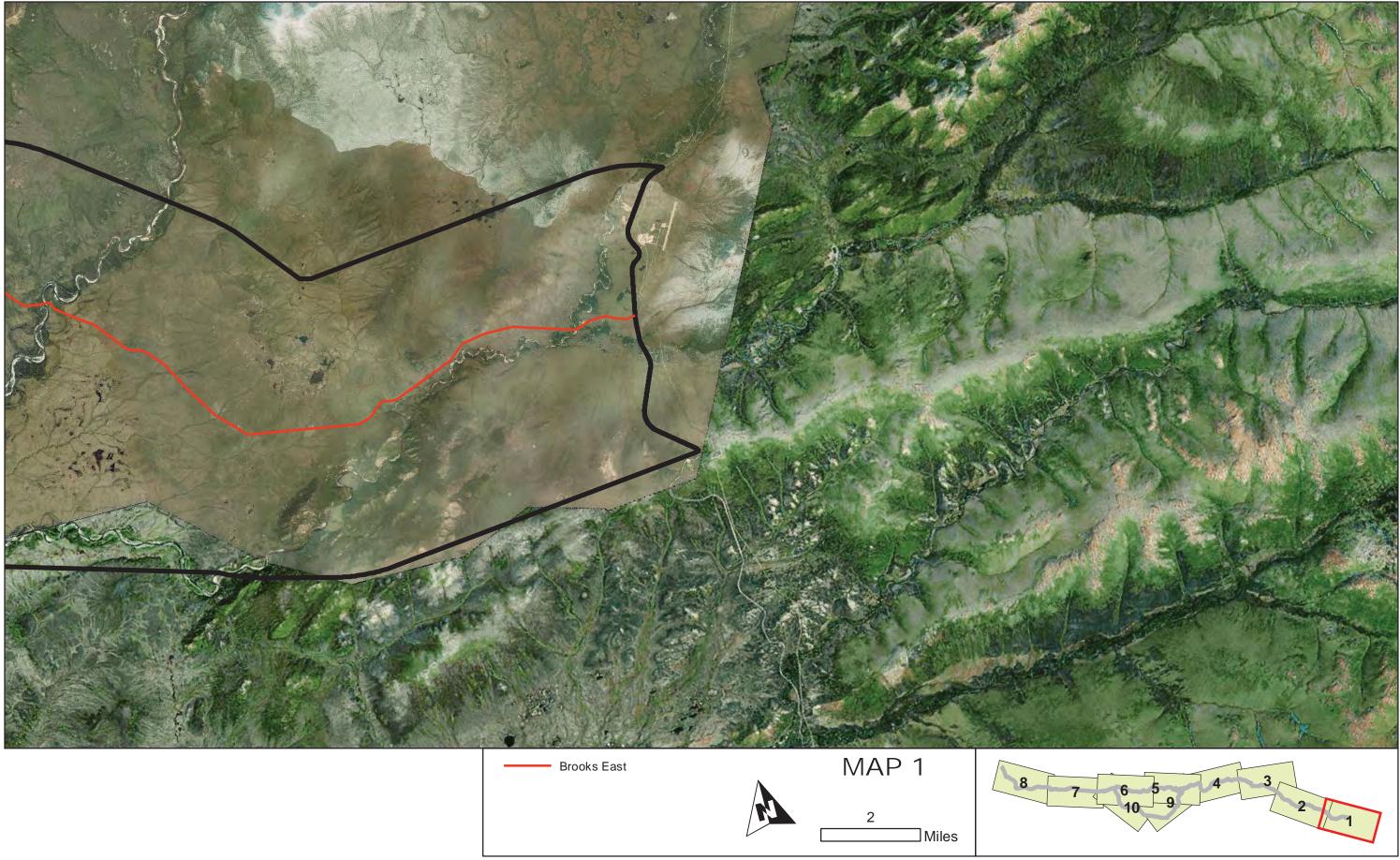
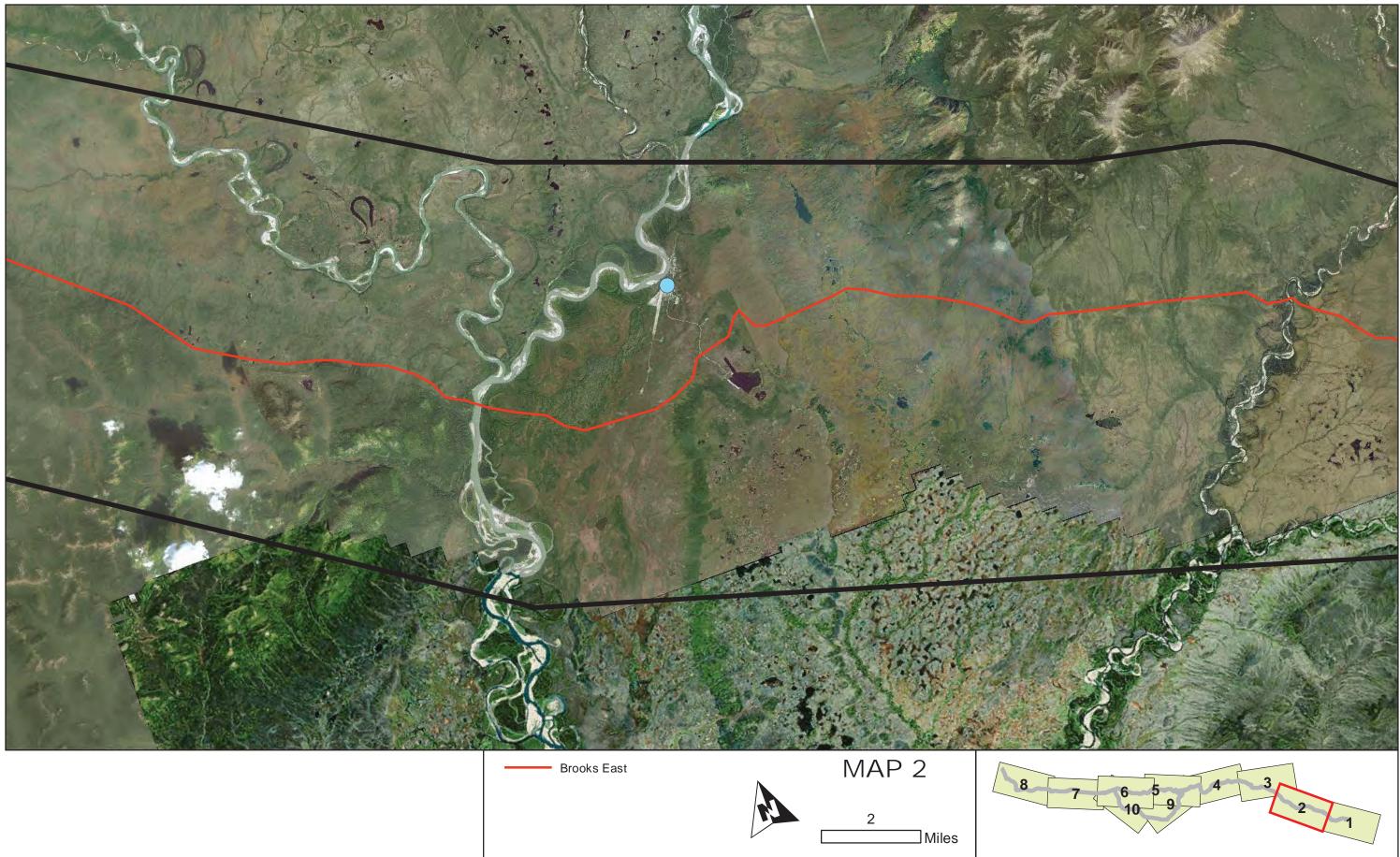
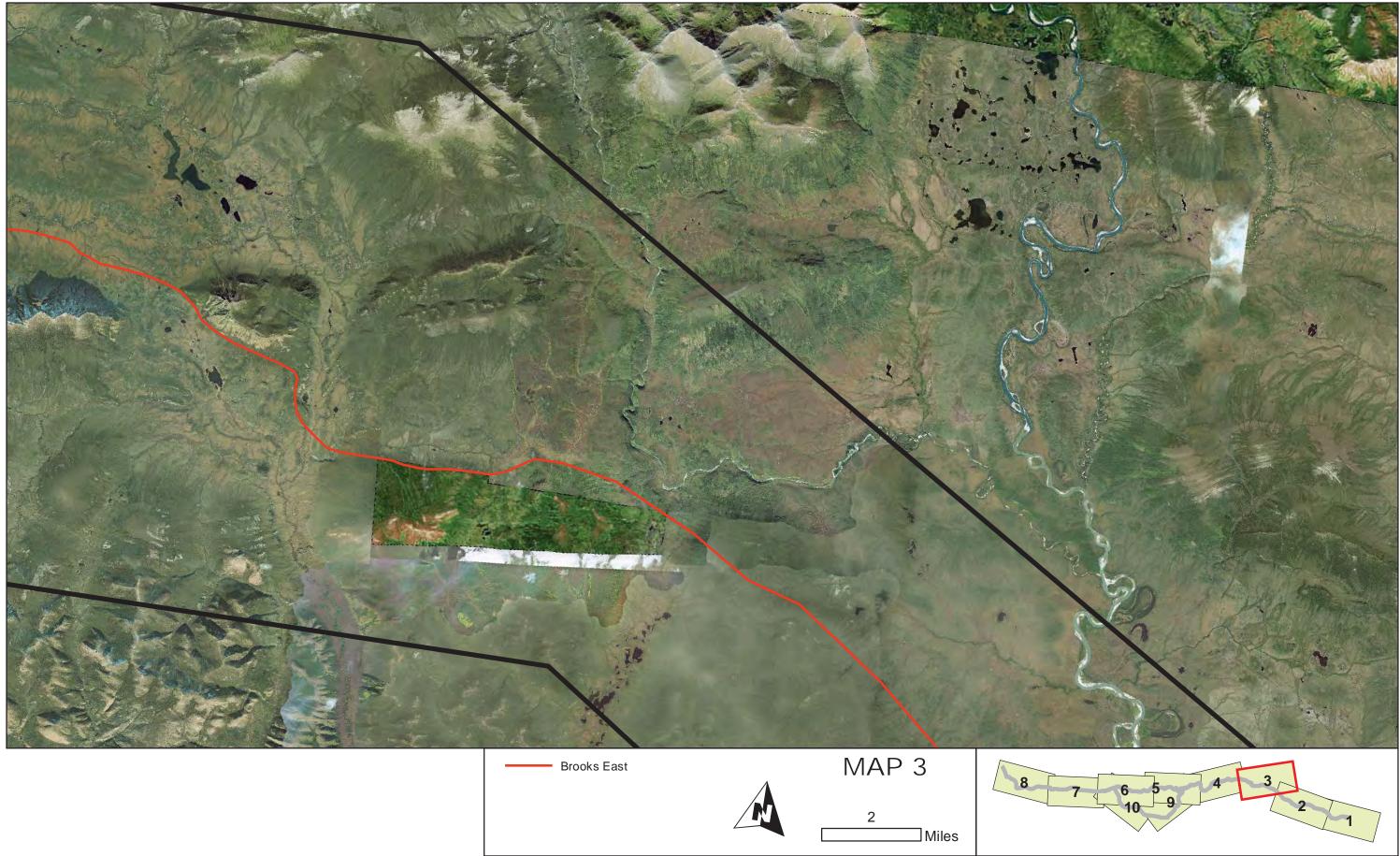
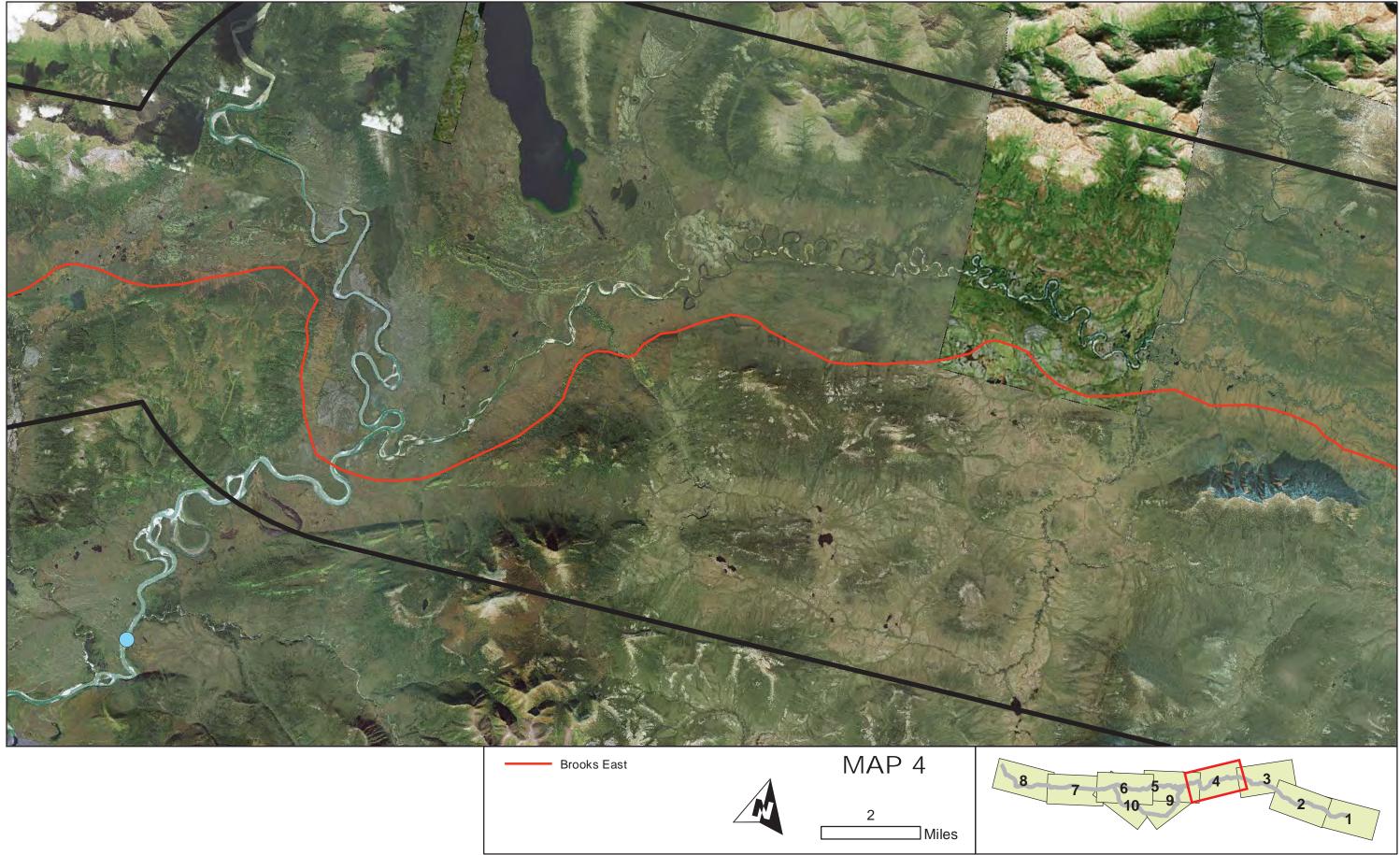


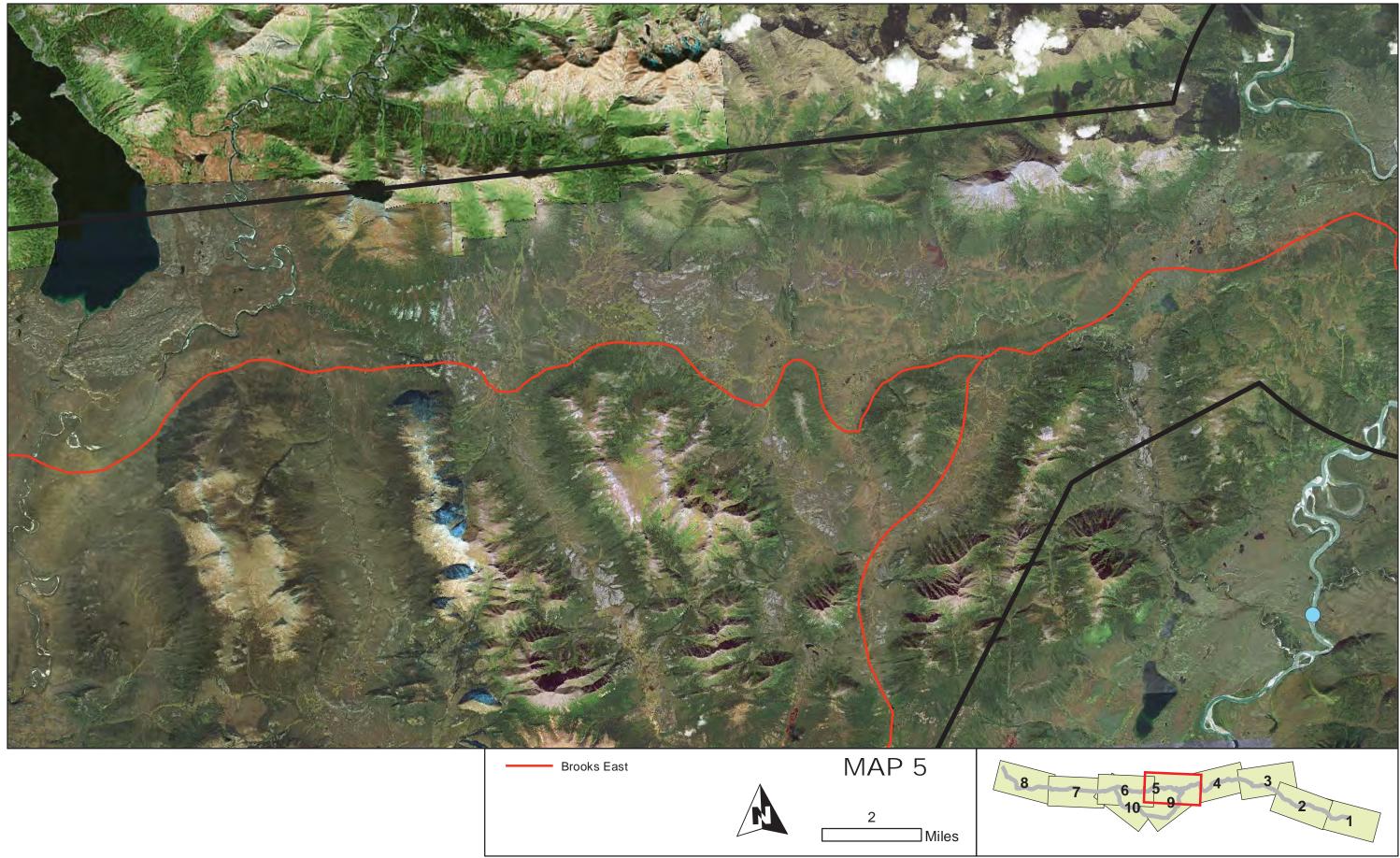
Plate 10. Chinook salmon within the spawning area documented within an unnamed tributary to the Alatna River, Alaska, September 2012.

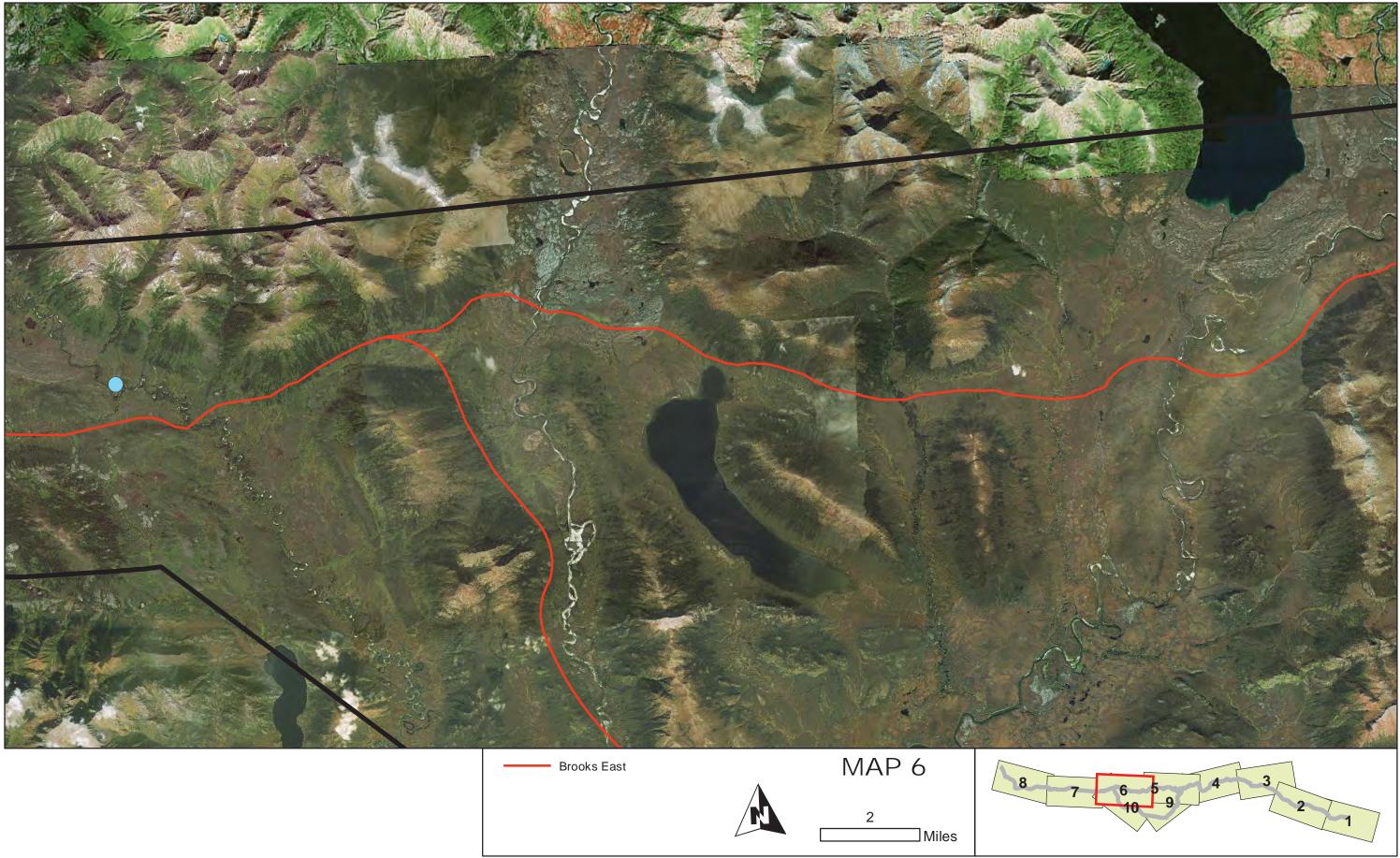

30

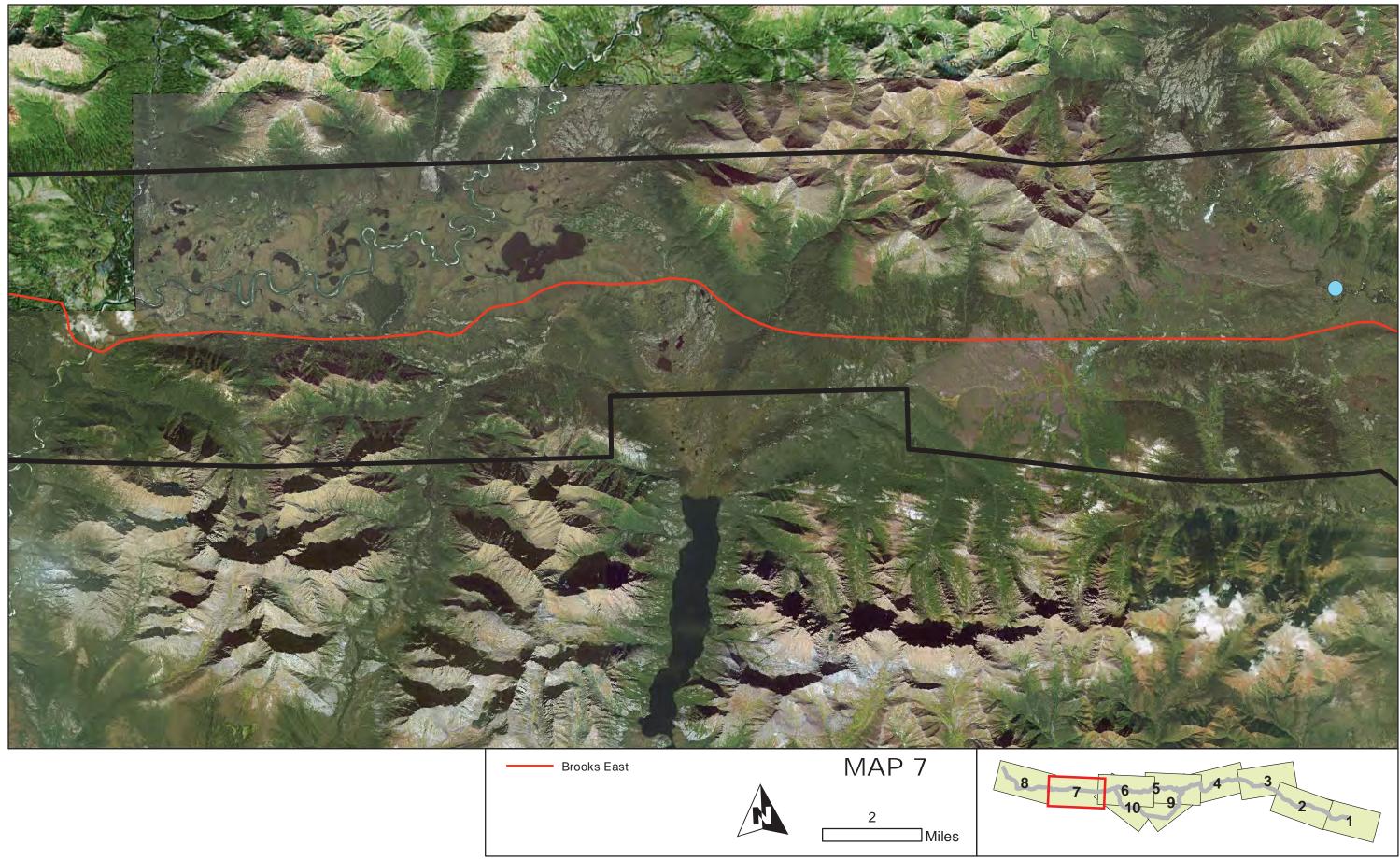
Appendix A. Field maps of the Brooks East Corridor route provided by DOWL HKM and used to locate and identify river crossings and sample reaches for the proposed Brooks Range East corridor, Alaska, 2012.

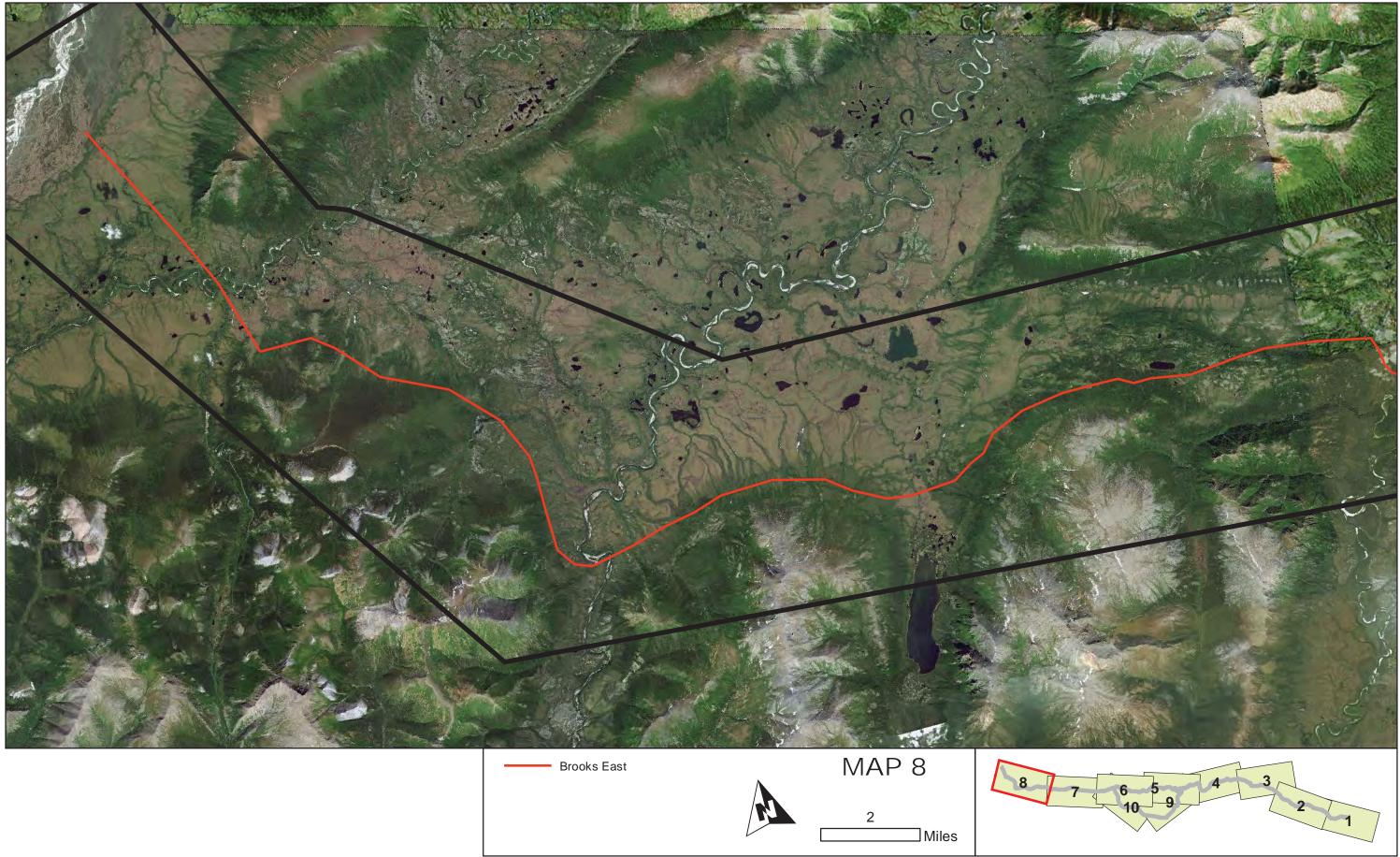

(This Page Intentionally Left Blank)

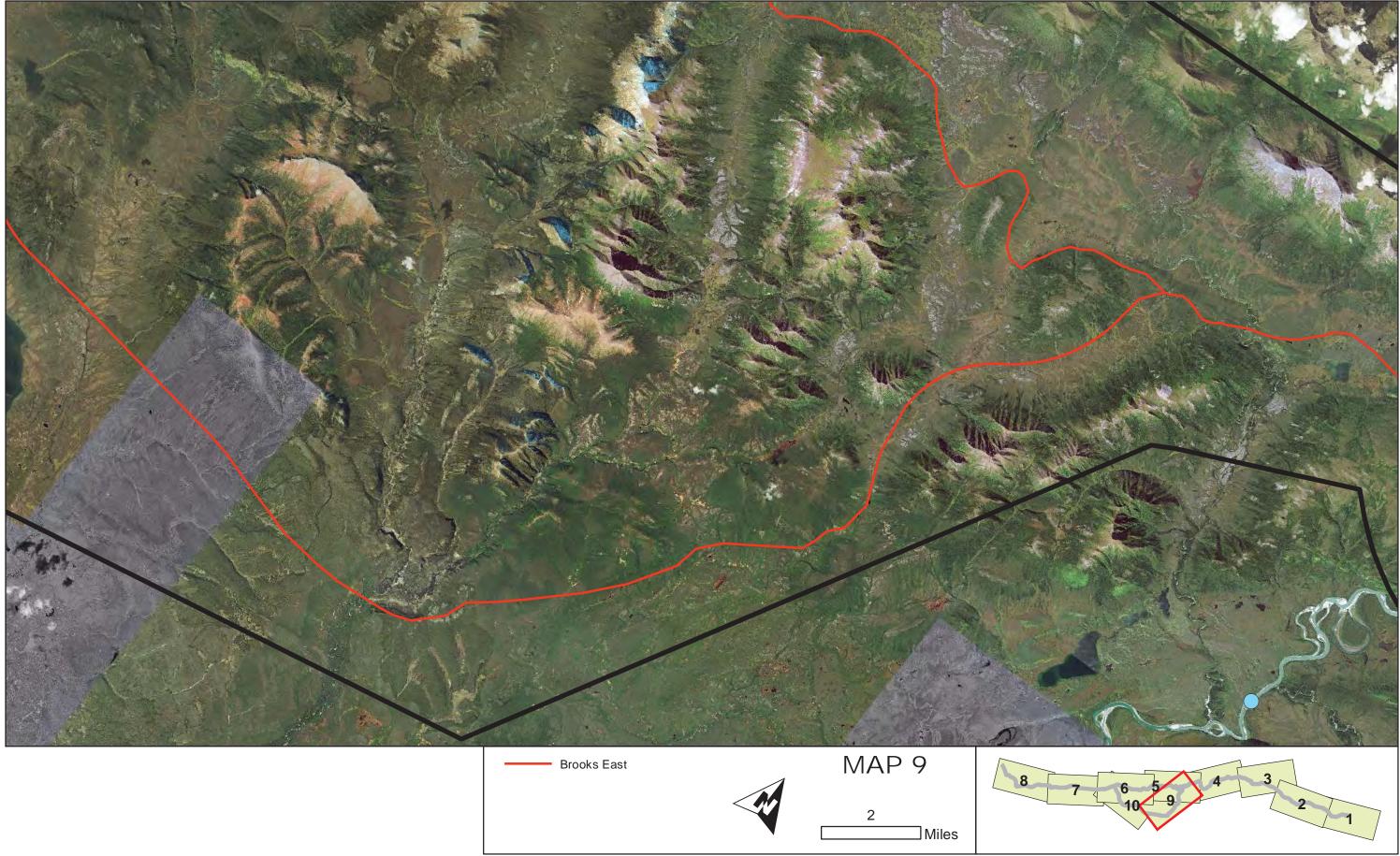

Brooks East		MAP 1	
	A	2 Miles	

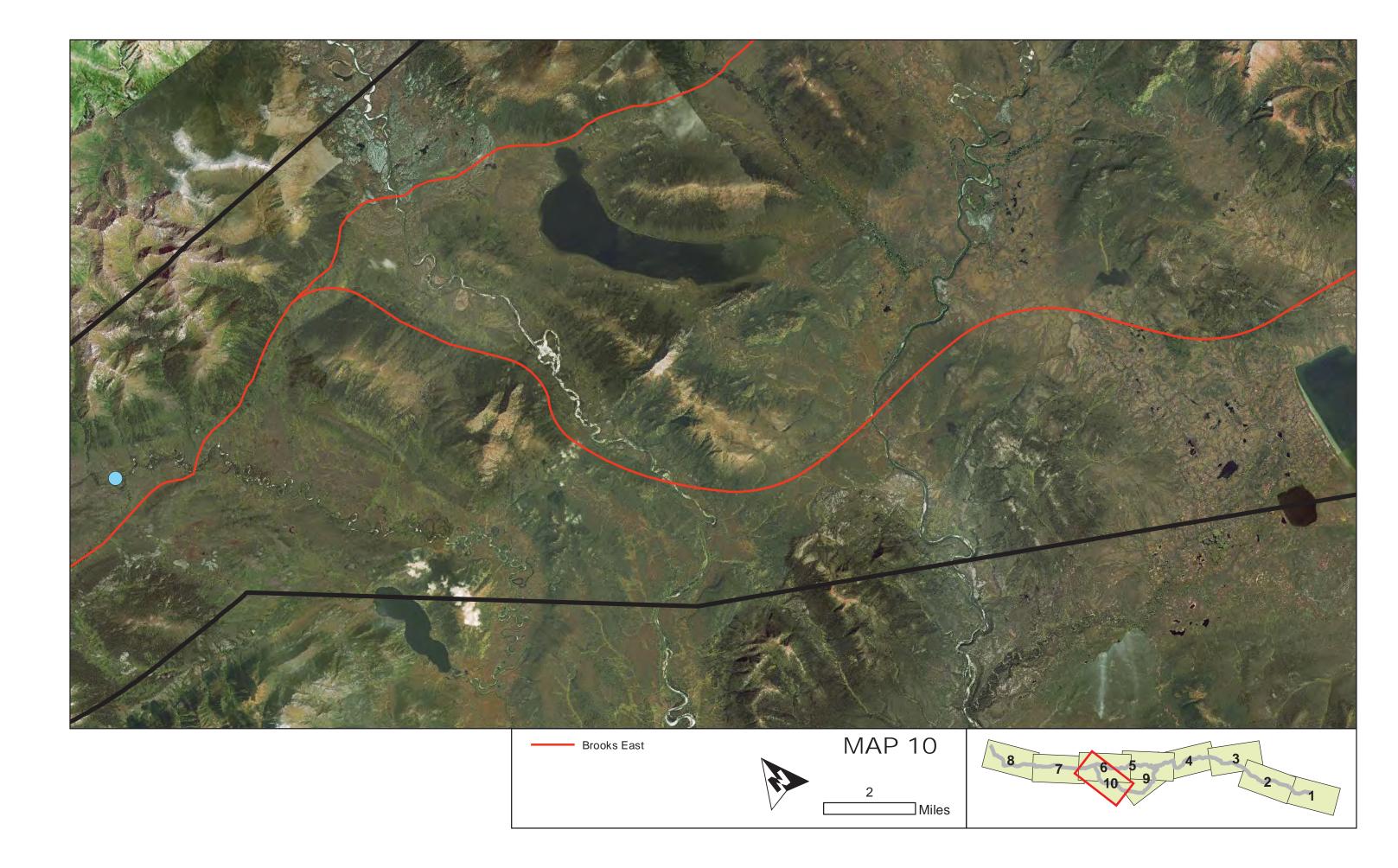

Brooks East	N	MAP 2	
	M	2 Miles	


Brooks East	MAP 3	1
	2	
	Miles	


Brooks East	MAP 4	
	2 Miles	


Brooks East	MAP 5	
	2	
	Miles	;


Brooks East	MAP 6	
		l
	2 Miles	


Brooks East		MAP 7	
	A	2 Miles	

Brooks East	N	MAP 8	
	M	2 Miles	

BIOOKS EASI	IVIAP 9	
	<u> </u>	
	2	
	Miles	

Appendix B. Water chemistry and physical habitat data from survey reaches associated with river and stream crossings in the proposed Brooks East Corridor, Alaska, 2012.

(This Page Intentionally Left Blank)

Survey Reach	Nearest Crossing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Wetted Width (m)	Bankful Width (m)	Gradient (%)	Dominant Substrate ^b	Temperature °C	DO (%)	DO (mg/L)	Conductivity $(\mu S/cm^{-1})$	Specific Conductance (µS/cm ⁻¹)	pН
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	11.8	17.2	0.02	CB	9.5	109.2	12.25	115.6	164.2	nm
BD01	25	Bedrock Creek	Malamute Fork Alatna River	67.09796	-152.60043	6/11/2012	5.5	5.5	2.00	GC	8.0	93.8	10.75	105.3	155.7	6.77
BD01	25	Bedrock Creek	Malamute Fork Alatna River	67.09796	-152.60043	7/17/2012	4.8	6.3	1.25	GC	10.6	nm	nm	204.9	282.4	nm
BV01	13	Beaver Creek	Kobuk River	67.07523	-155.27667	7/15/2012	23.8	33.9	0.01	SA	10.3	51.9	5.76	138.2	191.9	nm
CN01	5	Canyon Creek	Kogoluktuk River	67.02889	-156.66256	6/8/2012	3.4	3.6	2.00	GC	7.3	106.7	12.52	136.8	206.4	7.51
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	3.4	3.6	1.50	nm	6.8	100.7	12.39	156.5	240.5	nm
HG01	S 6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	15.7	15.8	1.50	CB	8.5	101.9	11.89	71.0	103.4	nm
HJ01	S 7	Helpmejack Creek	Alatna River	67.05835	-153.79528	6/9/2012	16.3	18.1	2.00	CB	6.9	105.3	12.05	93.2	143.3	7.40
HJ01	S7	Helpmejack Creek	Alatna River	67.05835	-153.79528	7/16/2012	16.3	18.1	4.50	CB	8.1	91.9	10.87	157.9	233.4	nm
HJ02	S7	Helpmejack Creek	Alatna River	67.04015	-153.66203	6/9/2012	nm	nm	nm	nm	7.9	97.7	10.49	121.5	178.8	7.18
HJ02	S 7	Helpmejack Creek	Alatna River	67.04015	-153.66203	7/16/2012	15.2	31.4	0.01	CB	12.0	92.4	9.96	165.5	220.4	nm
KB01	S 3	Kobuk River	None	67.02165	-154.35763	9/4/2012	16.0	17.0	1.00	GC	10.1	104.1	11.68	112.9	158.1	nm
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	20.0	20+	0.50	CB	10.0	109.2	12.28	185.9	260.7	nm
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	20.0	20+	0.50	SA	12.2	105.3	11.26	75.7	99.9	nm
MN01	9	Mauneluk River	Kobuk River	67.11119	-155.63925	7/14/2012	nm	nm	nm	nm	11.9	106.8	11.24	160.4	213.7	nm
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	12.1	20.3	0.00	SA	4.5	97.1	12.49	69.9	115.2	nm
RD01	16	Reed River	Kobuk River	67.19412	-154.88269	6/10/2012	5.8	13.3	2.00	GC	6.4	99.5	12.07	96.5	157.0	6.93
RD01	16	Reed River	Kobuk River	66.96365	-154.81606	6/10/2012	nm	nm	nm	nm	5.7	99.1	12.21	33.4	52.5	6.35
RD01	16	Reed River	Kobuk River	67.19318	-154.88084	7/15/2012	nm	nm	nm	nm	10.7	92.6	10.81	63.9	88.0	nm
RD01	16	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	20.0	20.0	1.25	CB	13.2	109.3	11.41	103.9	133.9	nm
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	20.0	20.0	0.50	CB	13.2	108.4	11.37	99.8	129.0	nm
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	6/8/2012	8.0	8.0	2.00	CB	7.0	104.5	12.12	122.3	184.8	7.62
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	7/13/2012	8.0	8.0	1.50	CB	6.0	105.7	12.94	138.5	218.0	nm
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	6/8/2012	7.3	11.9	2.00	GC	10.6	100.3	10.47	167.3	235.5	7.48
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	7/13/2012	7.3	11.9	1.25	GC	12.6	93.3	9.91	205.9	269.8	nm
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	7.7	7.7	0.01	GF	13.5	101.5	10.56	208.0	266.2	nm
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	30.0	30.0	0.01	nm	13.6	96.8	9.95	148.2	188.9	nm
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	23.5	39.1	0.50	SA	13.6	110.0	11.42	125.2	160.0	nm
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	21.9	29.2	0.50	GC	15.0	110.4	11.13	134.9	166.8	nm
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	32.4	51.1	1.50	CB	15.2	106.7	10.70	144.0	177.4	nm
SZ01	31	East Fork Sozhekla Creek	Sozhekla Creek	67.03600	-152.41211	6/11/2012	2.6	4.6	2.00	GC	11.4	90.3	8.52	45.2	61.3	6.76
SZ01	31	East Fork Sozhekla Creek	Sozhekla Creek	67.03600	-152.41211	7/17/2012	2.6	4.6	0.50	GC	12.5	nm	nm	25.7	33.4	nm
TB01	25	Tobuk Creek	Malamute Fork Alatna River	67.07949	-153.18606	6/10/2012	18.2	18.2	2.00	CB	5.8	94.0	11.42	173.3	273.5	7.88
TB01	25	Tobuk Creek	Malamute Fork Alatna River	67.07944	-153.18635	7/16/2012	18.2	18.2	1.25	CB	17.0	95.5	9.23	255.6	301.9	nm
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	6/8/2012	17.5	20.0	2.00	CB	10.0	100.0	11.05	127.7	177.5	7.69
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	17.5	20.0	2.00	CB	10.1	98.2	11.03	207.5	288.6	nm
UN01	4	Unnamed trib	Kogoluktuk River	67.01671	-156.44184	6/8/2012	3.1	3.3	2.00	GF	17.5	91.6	8.56	32.9	35.7	6.55
UN01	4	Unnamed trib	Kogoluktuk River	67.01672	-156.44185	7/13/2012	3.1	3.3	0.01	GF	13.8	85.9	8.95	61.5	78.2	nm
UN02	4	Unnamed trib	Kogoluktuk River	67.01543	-156.43502	6/8/2012	4.7	4.9	2.00	GF	6.1	99.3	12.10	16.0	24.7	6.62

Appendix B. Water chemistry and physical habitat data from survey reaches associated with river and stream crossings in the proposed Brooks East Corridor, Alaska, 2012.

Survey Reach	Nearest Crossing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Wetted Width (m)	Bankful Width (m)	Gradient (%)	Dominant Substrate ^b	Temperature °C	DO (%)	DO (mg/L)	Conductivity $(\mu S/cm^{-1})$	Specific Conductance $(\mu S/cm^{-1})$	рН
UN02	4	Unnamed trib	Kogoluktuk River	67.01543	-156.43502	7/13/2012	4.7	4.9	0.01	GF	6.5	97.4	11.78	36.2	56.1	nm
UN03	9	Unnamed trib	Mauneluk River	67.04256	-156.13206	7/13/2012	16.3	16.3	0.02	CB	13.5	97.6	10.12	115.7	148.6	nm
UN04	9	Unnamed trib	Mauneluk River	67.12383	-156.00801	6/9/2012	23.2	23.5	2.00	CB	6.1	98.8	12.03	80.6	128.5	7.36
UN04	9	Unnamed trib	Mauneluk River	67.12383	-156.00801	7/14/2012	19.8	23.5	1.25	CB	11.2	103.2	11.25	152.3	206.9	nm
UN05	9	Unnamed trib	Mauneluk River	67.05437	-155.81388	6/9/2012	7.8	10.7	2.00	GC	5.6	108.4	13.17	64.4	101.8	6.93
UN05	9	Unnamed trib	Mauneluk River	67.05437	-155.81388	7/14/2012	7.8	10.7	1.25	GC	9.1	108.9	12.21	105.4	151.7	nm
UN06	9	Unnamed trib	Mauneluk River	67.02217	-155.84178	6/12/2012	7.8	16.6	2.00	GC	6.0	99.1	12.18	50.6	79.5	6.11
UN06	9	Unnamed trib	Mauneluk River	67.02217	-155.84178	7/14/2012	7.5	14.2	0.02	CB	10.3	109.4	12.09	86.7	121.1	nm
UN07	9	Unnamed trib	Mauneluk River	67.11058	- 155. 63781	6/9/2012	11.5	11.7	2.00	GC	5.6	110.0	13.28	114.3	180.4	6.76
UN07	9	Unnamed trib	Mauneluk River	67.11058	-155.63781	7/14/2012	6.1	7.3	0.02	CB	8.9	100.7	11.63	190.4	276.8	nm
UN08	15	Unnamed trib	Beaver Creek	67.00270	-155.00900	7/15/2012	5.8	7.3	1.50	CB	9.1	94.0	10.79	81.4	116.6	nm
UN09	16	Unnamed trib	Reed River	67.19412	-154.88269	7/15/2012	5.8	13.3	1.25	GC	9.4	95.1	11.12	136.1	194.0	nm
UN10	11	Unnamed trib	Beaver Creek	67.01060	-155.08077	6/9/2012	4.7	4.7	2.00	CB	6.3	107.2	12.55	87.9	133.0	6.93
UN10	11	Unnamed trib	Beaver Creek	67.01060	-155.08077	7/15/2012	4.7	7.7	0.01	CB	9.7	63.1	7.07	126.7	178.9	nm
UN11	9	Unnamed trib	Narvak Lake	66.99952	-155.61014	6/9/2012	5.4	5.6	2.00	GC	6.3	98.8	11.97	284.6	442.7	7.29
UN11	9	Unnamed trib	Narvak Lake	66.99952	-155.61014	7/15/2012	3.8	5.1	0.01	GC	6.0	104.6	12.79	323.3	508.0	nm
UN12	13	Unnamed trib	Beaver Creek	67.07488	-155.28398	6/9/2012	7.0	7.0	2.00	GC	4.3	101.4	12.91	60.7	97.2	6.86
UN12	13	Unnamed trib	Beaver Creek	67.07503	-155.27765	7/15/2012	5.8	6.8	0.01	GC	9.6	65.2	7.38	106.3	151.2	nm
UN13	25	Unnamed trib	Malamute Fork Alatna River	67.06966	-153.11984	6/10/2012	10.2	10.2	2.00	CB	9.2	99.4	11.11	114.4	164.5	7.45
UN13	25	Unnamed trib	Malamute Fork Alatna River	67.06966	-153.11984	7/16/2012	10.2	10.2	1.50	CB	12.4	93.0	9.86	202.0	265.7	nm
UN14	25	Unnamed trib	Malamute Fork Alatna River	67.11074	-152.93070	6/10/2012	3.0	3.1	2.00	GC	7.9	90.3	10.40	83.5	124.5	6.31
UN14	25	Unnamed trib	Malamute Fork Alatna River	67.11074	-152.93070	6/10/2012	nm	nm	nm	nm	9.9	100.5	11.04	139.2	195.7	7.57
UN14	25	Unnamed trib	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	3.0	3.0	0.50	GC	9.6	nm	nm	179.4	254.5	nm
UN15	25	Unnamed trib	Malamute Fork Alatna River	67.10036	-152.74847	6/10/2012	3.9	3.9	2.00	CB	11.8	97.6	10.21	88.1	118.0	6.85
UN15	25	Unnamed trib	Malamute Fork Alatna River	67.10036	-152.74847	7/16/2012	3.7	4.6	0-1%	CB	12.6	nm	nm	108.6	142.0	nm
UN16	S 7	Unnamed trib	Helpmejack Creek	67.04146	-153.66153	6/9/2012	6.1	7.5	2.00	CB	7.3	96.5	11.22	121.7	182.0	7.70
UN16	S 7	Unnamed trib	Helpmejack Creek	67.04146	-153.66153	7/16/2012	6.1	7.5	0.02	CB	8.4	96.0	11.20	141.0	208.7	nm
UN17	32	Unnamed trib	Malamute Fork John River	67.04867	-152.12670	6/11/2012	9.3	8.5	2.00	GC	9.0	92.1	10.27	36.2	52.1	6.41
UN17	32	Unnamed trib	Malamute Fork John River	67.04867	-152.12669	7/17/2012	7.1	7.2	0.50	GC	11.3	nm	nm	128.9	174.5	nm
UN18	25	Unnamed trib	Bedrock Creek	67.09319	-152.72504	6/10/2012	12.8	13.0	2.00	CB	12.0	94.5	9.91	64.5	85.7	7.05
UN18	25	Unnamed trib	Bedrock Creek	67.09319	-152.72504	7/17/2012	12.8	13.0	1.50	CB	13.4	nm	nm	118.3	151.9	nm
UN19	38	Unnamed trib	Jim River	66.78889	-150.85132	6/11/2012	4.1	4.3	2.00	GC	9.2	97.6	10.87	10.6	15.3	5.44
UN19	38	Unnamed trib	Jim River	66.78889	-150.85132	7/20/2012	3.2	4.3	1.00	GC	11.0	80.8	8.90	16.7	22.8	nm
UN20	35	Unnamed trib	South Fork Koyukuk River	66.67128	-151.48851	7/20/2012	23.3	25.5	0.50	GC	13.4	78.3	8.16	140.0	179.8	nm
UN21	36	Unnamed trib	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	3.6	5.0	0.50	GC	8.3	82.5	9.71	125.5	184.2	nm
UN22	S 6	Unnamed trib	Hogatza River	66.86933	-154.04053	6/9/2012	8.8	16.4	2.00	GC	8.7	101.1	11.35	51.0	74.7	6.95
UN22	S 6	Unnamed trib	Hogatza River	66.86933	-154.04053	7/21/2012	5.9	16.4	1.25	GC	8.1	82.1	9.79	69.7	104.5	nm
UN23	S5	Unnamed trib	Hogatza River	66.85331	-154.29780	6/9/2012	3.0	4.1	2.00	GC	13.4	85.7	8.62	94.1	122.2	6.82
UN23	S5	Unnamed trib	Hogatza River	66.85331	-154.29780	7/21/2012	3.2	3.5	0.50	nm	10.5	96.7	10.72	111.1	153.8	nm
UN24	39	Unnamed trib	Jim River	66.83560	-150.64531	7/23/2012	8.2	8.8	0.50	CB	12.9	96.2	10.19	63.1	82.0	nm
UN25a	24	Unnamed trib	Alatna River	67.22524	-153.55644	7/23/2012	22.5	22.5	0.01	CB	10.2	105.3	11.81	176.8	246.4	nm

Survey Reach	Nearest Crossing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Wetted Width (m)	Bankful Width (m)	Gradient (%)	Dominant Substrate ^b	Temperature °C	DO (%)	DO (mg/L)	Conductivity (µS/cm ⁻¹)	Specific Conductance $(\mu S/cm^{-1})$	pН
UN26	15	Unnamed trib	Beaver Creek	66.98333	-155.02530	7/24/2012	5.8	7.6	nm	GC	7.6	103.5	12.34	83.1	124.3	nm
UN27	13	Unnamed trib	Beaver Creek	67.12892	-155.19577	7/24/2012	7.2	8.0	0.50	GC	7.8	106.7	12.65	162.1	241.6	nm
UN28	13	Unnamed trib	Beaver Creek	67.12244	-155.21069	7/24/2012	9.0	10.8	0.03	CB	8.9	106.5	12.33	147.7	213.4	nm
UN29	9	Unnamed trib	Mauneluk River	67.02696	-156.04826	7/25/2012	9.8	10.9	0.50	SA	7.4	65.4	7.84	152.4	230.0	nm
UN30	9	Unnamed trib	Mauneluk River	67.03453	-156.03934	7/25/2012	20.0	20.0	1.00	CB	nm	nm	nm	nm	nm	nm
UN31	9	Unnamed trib	Mauneluk River	67.12433	-155.63481	7/26/2012	6.6	8.3	4.00	CB	8.5	107.6	12.58	108.4	158.2	nm
UN32	S3	Unnamed trib	Kobuk River	66.89105	-154.47314	9/4/2012	5.0	5.0	1.00	nm	6.8	91.5	11.16	45.8	70.2	nm
UN33	S 3	Unnamed trib	Kichaiakalea Creek	67.05337	-154.14697	9/4/2012	5.0	5.0	1.00	GC	6.0	103.5	12.88	64.5	101.3	nm
UN34	S3	Unnamed trib	Kobuk River	67.01901	-154.44464	9/4/2012	nm	nm	1.00	GC	5.5	100.5	12.68	35.7	56.9	nm
UN35	S3	Unnamed trib	Kobuk River	67.00066	-154.55439	9/4/2012	3.0	3.0	0.00	FN	5.1	78.7	9.89	32.0	51.7	nm
UN36	S 3	Unnamed trib	Kobuk River	66.91783	-154.48701	9/5/2012	25.0	12.0	0.50	nm	6.6	93.1	11.37	44.9	69.5	nm
UN37	S 3	Unnamed trib	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	4.0	3.5	1.00	FN	4.7	101.1	12.99	105.6	172.3	nm
UN38	S 3	Unnamed trib	Kobuk River	66.99846	-154.54691	9/7/2012	7.0	7.0	1.00	CB	5.1	100.6	12.80	25.6	41.3	nm

^a Refer to Figure 2 for the location of crossing codes ^b CB, cobble; GC, gravel coarse; GF, gravel fine; SA, sand; FN, fines nm = not measured

(This Page Intentionally Left Blank)

Appendix C. Fishing Results of fishing effort in streams within the proposed Brooks East Corridor survey area, Alaska, July and September 2012.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	76
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	112
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	109
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	108
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	109
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	124
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	87
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	83
UL01	0	Ulaneak Creek	Ambler River	67.39883	-156.81866	7/13/2012	Minnow Trap	Dolly Varden	juvenile	98
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	7/13/2012	Minnow Trap	Dolly Varden	juvenile	108
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	7/13/2012	Minnow Trap	Dolly Varden	juvenile	102
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	7/13/2012	Minnow Trap	Dolly Varden	juvenile	128
RI01	1	Riley Creek	Kogoluktuk River	67.05552	-156.70256	7/13/2012	Minnow Trap	NO FISH	_	_
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	20
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	60
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	7/13/2012	Minnow Trap	NO FISH	_	_
RU01	1	Ruby Creek	Shungnak River	67.09978	-156.92219	7/13/2012	Visual Observation	Arctic Grayling	adult	-
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	Minnow Trap	NO FISH	_	-
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	Minnow Trap	NO FISH	-	_
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	74
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	79
RU02	1	Ruby Creek	Shungnak River	67.11267	-156.91756	7/14/2012	Dipnet	Arctic Grayling	juvenile	85
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	71
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	61
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	74
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	70
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	70

Appendix C. Results of fishing effort in streams within the proposed Brooks East Corridor survey area, Alaska, July and September 2012.

Appendix C. (Continued.
---------------	------------

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	56
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	NO FISH	_	-
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	37
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Dipnet	Arctic Grayling	juvenile	39
SH01	1	Shungnak River	Kobuk River	67.11272	-156.91808	7/14/2012	Dipnet	Arctic Grayling	juvenile	34
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	Minnow Trap	NO FISH	_	_
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	66
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	Minnow Trap	NO FISH	_	-
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	Minnow Trap	NO FISH	_	-
SH02	1	Shungnak River	Kobuk River	67.11806	-156.83575	7/21/2012	Visual Observation	Arctic Grayling	adult	-
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Minnow Trap	NO FISH	_	-
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	52
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Minnow Trap	NO FISH	_	_
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Minnow Trap	NO FISH	_	-
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45

Appe	ndix C. Continued.	
G		

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37

Append	ix C. Contin	ued.	
Survey	Nearest	XX7 / 1 1	T. 'I

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	33
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37

SH03	Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
51105	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
SH03	1	Shungnak River	Kobuk River	67.08774	-157.14510	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	33
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Minnow Trap	NO FISH	_	-
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	61
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Minnow Trap	NO FISH	_	-
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Arctic Grayling	juvenile	57
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Arctic Grayling	juvenile	52
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Arctic Grayling	juvenile	55
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Arctic Grayling	juvenile	53
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Arctic Grayling	juvenile	51
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	38
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	29
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43

Appendix	C.	Continued.
repending	\sim .	continueu.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	34
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	38
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
SH04	1	Shungnak River	Kobuk River	66.98033	-157.30708	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
UN01	4	Unnamed tributary	Kogoluktuk River	67.01672	-156.44185	7/13/2012	Minnow Trap	NO FISH	_	-
UN01	4	Unnamed tributary	Kogoluktuk River	67.01672	-156.44185	7/13/2012	Minnow Trap	NO FISH	_	_
UN01	4	Unnamed tributary	Kogoluktuk River	67.01672	-156.44185	7/13/2012	Minnow Trap	NO FISH	_	-
UN02	4	Unnamed tributary	Kogoluktuk River	67.01543	-156.43502	7/13/2012	Minnow Trap	NO FISH	_	-
UN02	4	Unnamed tributary	Kogoluktuk River	67.01543	-156.43502	7/13/2012	Minnow Trap	NO FISH	_	_
UN02	4	Unnamed tributary	Kogoluktuk River	67.01543	-156.43502	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	70
UN02	4	Unnamed tributary	Kogoluktuk River	67.01543	-156.43502	7/13/2012	Visual Observation	Arctic Grayling	adult	-
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	39
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	33
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	34
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	32
KG01	4	Kogoluktuk River	Kobuk River	67.09536	-156.40128	7/26/2012	Visual Observation	Arctic Grayling	adult	-
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	79
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	61
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Dolly Varden	juvenile	111

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Dolly Varden	juvenile	114
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	67
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	56
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	57
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	63
CN01	5	Canyon Creek	Kogoluktuk River	67.02888	-156.66255	7/13/2012	Minnow Trap	NO FISH	_	-
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	80
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	81
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	79
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Arctic Grayling	juvenile	67
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Arctic Grayling	juvenile	61
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Arctic Grayling	juvenile	59
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	75
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43

KG02 KG02 KG02	6 6	Kogoluktuk River		Latitude °N	Longitude °W	Date	Sampling Method	Species	Stage	(mm)
	6	0	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
KG02		Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	87
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
KG02	6	Kogoluktuk River	Kobuk River	67.01372	-156.68225	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN03	9	Unnamed tributary	Mauneluk River	67.04256	-156.13206	7/13/2012	Minnow Trap	Dolly Varden	juvenile	115
UN03	9	Unnamed tributary	Mauneluk River	67.04256	-156.13206	7/13/2012	Minnow Trap	Dolly Varden	juvenile	122
UN03	9	Unnamed tributary	Mauneluk River	67.04256	-156.13206	7/13/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	85
UN03	9	Unnamed tributary	Mauneluk River	67.04256	-156.13206	7/13/2012	Minnow Trap	Dolly Varden	juvenile	139
UN03	9	Unnamed tributary	Mauneluk River	67.04256	-156.13206	7/13/2012	Minnow Trap	Dolly Varden	juvenile	115
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	87
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	107
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	129
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	112
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	119
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	94
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	101
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	150
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	99

Appendix C. Continued.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	97
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	98
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	102
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	73
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	88
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	87
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	80
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	95
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	96
UN04	9	Unnamed tributary	Mauneluk River	67.12383	-156.00801	7/14/2012	Minnow Trap	Dolly Varden	juvenile	69
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	95
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	114
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	104
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	126
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	117
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	Dolly Varden	juvenile	118
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	NO FISH	-	_
UN05	9	Unnamed tributary	Mauneluk River	67.05437	-155.81388	7/14/2012	Minnow Trap	NO FISH	-	_
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	71
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Minnow Trap	NO FISH	-	_
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Minnow Trap	NO FISH	-	_
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49

Appendix C. Continued.

Appendix C. Continued.	
------------------------	--

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Arctic Grayling	juvenile	109
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	76
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Visual	Arctic Grayling	adult	>300

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
							Observation			
UN07	9	Unnamed tributary	Mauneluk River	67.11058	-155.63781	7/14/2012	Visual Observation	Arctic Grayling	adult	>300
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	110
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	129
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	118
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	111
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	135
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	102
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	100
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	100
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	123
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	117
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	97
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	99
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	125
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	113
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	123
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	114
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	168
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	128
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	122
UN06	9	Unnamed tributary	Mauneluk River	67.02217	-155.84178	7/14/2012	Minnow Trap	Dolly Varden	juvenile	78
MN01	9	Mauneluk River	Kobuk River	67.11119	-155.63925	7/14/2012	Minnow Trap	NO FISH	-	-
MN01	9	Mauneluk River	Kobuk River	67.11119	-155.63925	7/14/2012	Minnow Trap	NO FISH	-	-
MN01	9	Mauneluk River	Kobuk River	67.11119	-155.63925	7/14/2012	Minnow Trap	NO FISH	-	-
UN11	9	Unnamed tributary	Narvak Lake	66.99952	-155.61014	7/15/2012	Minnow Trap	NO FISH	-	-
UN11	9	Unnamed tributary	Narvak Lake	66.99952	-155.61014	7/15/2012	Minnow Trap	NO FISH	-	-
UN11	9	Unnamed tributary	Narvak Lake	66.99952	-155.61014	7/15/2012	Minnow Trap	NO FISH	_	_

Appendix C.	Continued.
-------------	------------

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	82
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Chum Salmon	juvenile	55
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Chum Salmon	juvenile	57
MN02	9	Mauneluk River	Kobuk River	67.00295	-156.09182	7/25/2012	Electrofishing	Chum Salmon	juvenile	41
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Northern Pike	juvenile	193
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Northern Pike	juvenile	145
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	27
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Chum Salmon	juvenile	52
UN29	9	Unnamed tributary	Mauneluk River	67.02696	-156.04826	7/25/2012	Electrofishing	Chum Salmon	juvenile	58
UN30	9	Unnamed tributary	Mauneluk River	67.03453	-156.03934	7/25/2012	Visual Observation	Chum Salmon	adult	-
UN30	9	Unnamed tributary	Mauneluk River	67.03453	-156.03934	7/25/2012	Visual Observation	Arctic Grayling	adult	_
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	75
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Dolly Varden	juvenile	85
UN31	9	Unnamed tributary	Mauneluk River	67.12433	-155.63481	7/26/2012	Electrofishing	Dolly Varden	juvenile	127
UN10	11	Unnamed tributary	Beaver Creek	67.01060	-155.08077	7/15/2012	Minnow Trap	Dolly Varden	juvenile	83
UN10	11	Unnamed tributary	Beaver Creek	67.01060	-155.08077	7/15/2012	Minnow Trap	NO FISH	_	_
UN10	11	Unnamed tributary	Beaver Creek	67.01060	-155.08077	7/15/2012	Minnow Trap	Dolly Varden	juvenile	75
UN10	11	Unnamed tributary	Beaver Creek	67.01060	-155.08077	7/15/2012	Minnow Trap	Dolly Varden	juvenile	144
BV01	13	Beaver Creek	Kobuk River	67.07523	-155.27667	7/15/2012	Minnow Trap	NO FISH	_	-
BV01	13	Beaver Creek	Kobuk River	67.07523	-155.27667	7/15/2012	Minnow Trap	NO FISH	_	-
BV01	13	Beaver Creek	Kobuk River	67.07523	-155.27667	7/15/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	41
BV01	13	Beaver Creek	Kobuk River	67.07523	-155.27667	7/15/2012	Visual Observation	Arctic Grayling	adult	-
UN12	13	Unnamed tributary	Beaver Creek	67.07503	-155.27765	7/15/2012	Minnow Trap	NO FISH	_	-
UN12	13	Unnamed tributary	Beaver Creek	67.07503	-155.27765	7/15/2012	Minnow Trap	NO FISH	_	_

Appendix C. Continued.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN12	13	Unnamed tributary	Beaver Creek	67.07503	-155.27765	7/15/2012	Minnow Trap	NO FISH	_	_
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN27	13	Unnamed tributary	Beaver Creek	67.12892	-155.19577	7/24/2012	Electrofishing	Burbot	juvenile	111
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN28	13	Unnamed tributary	Beaver Creek	67.12244	-155.21069	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
UN08	15	Unnamed tributary	Beaver Creek	67.00270	-155.00900	7/15/2012	Minnow Trap	NO FISH	_	-
UN08	15	Unnamed tributary	Beaver Creek	67.00270	-155.00900	7/15/2012	Minnow Trap	NO FISH	_	_
UN08	15	Unnamed tributary	Beaver Creek	67.00270	-155.00900	7/15/2012	Minnow Trap	NO FISH	_	_
JN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	33
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	91
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	81
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	38
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	38
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	43
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	35
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	41
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Dolly Varden	juvenile	88
UN26	15	Unnamed tributary	Beaver Creek	66.98333	-155.02530	7/24/2012	Electrofishing	Dolly Varden	juvenile	98
UN09	16	Unnamed tributary	Reed River	67.19412	-154.88269	7/15/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	63
UN09	16	Unnamed tributary	Reed River	67.19412	-154.88269	7/15/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	63
UN09	16	Unnamed tributary	Reed River	67.19412	-154.88269	7/15/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	63
UN09	16	Unnamed tributary	Reed River	67.19412	-154.88269	7/15/2012	Minnow Trap	NO FISH	_	_
RD01	16	Reed River	Kobuk River	67.19318	-154.88084	7/15/2012	Minnow Trap	NO FISH	_	_
RD01	16	Reed River	Kobuk River	67.19318	-154.88084	7/15/2012	Minnow Trap	NO FISH	_	_
RD01	16	Reed River	Kobuk River	67.19318	-154.88084	7/15/2012	Minnow Trap	NO FISH	_	_
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	47
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	55
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	49
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	Minnow Trap	NO FISH	_	_
RD02	16	Reed River	Kobuk River	67.06531	-154.81343	7/21/2012	Visual Observation	Arctic Grayling	juvenile/adult	_
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62

Appendix C. Continued.

Appendix	C.	Continued.
repending	\sim .	continueu.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
AL01	24	Alatna River	Koyukuk River	67.18136	-153.48386	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
UN25a	24	Unnamed tributary	Alatna River	67.22524	-153.55644	7/23/2012	Visual Observation	Chum Salmon	adult	_
UN25b	24	Unnamed tributary	Alatna River	67.22868	-153.59320	7/23/2012	Visual Observation	Chinook Salmon	adult	_
UN13	25	Unnamed tributary	Malamute Fork Alatna River	67.06966	-153.11984	7/16/2012	Minnow Trap	NO FISH	-	-
UN13	25	Unnamed tributary	Malamute Fork Alatna River	67.06966	-153.11984	7/16/2012	Minnow Trap	NO FISH	_	-
UN13	25	Unnamed tributary	Malamute Fork Alatna River	67.06966	-153.11984	7/16/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	94
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Minnow Trap	NO FISH	_	-
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Minnow Trap	NO FISH	-	-
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Minnow Trap	NO FISH	_	-
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Coho Salmon	juvenile	46
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Coho Salmon	juvenile	48
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Chum Salmon	juvenile	38
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Chum Salmon	juvenile	44
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Coho Salmon	juvenile	47
UN14	25	Unnamed tributary	Malamute Fork Alatna River	67.11074	-152.93070	7/16/2012	Dipnet	Coho Salmon	juvenile	47
UN15	25	Unnamed tributary	Malamute Fork Alatna River	67.10036	-152.74847	7/16/2012	Minnow Trap	Coho Salmon	juvenile	58
UN15	25	Unnamed tributary	Malamute Fork Alatna River	67.10036	-152.74847	7/16/2012	Minnow Trap	Coho Salmon	juvenile	57
UN15	25	Unnamed tributary	Malamute Fork Alatna River	67.10036	-152.74847	7/16/2012	Minnow Trap	NO FISH	_	-
UN15	25	Unnamed tributary	Malamute Fork Alatna River	67.10036	-152.74847	7/16/2012	Minnow Trap	NO FISH	-	_
TB01	25	Tobuk Creek	Malamute Fork Alatna River	67.07944	-153.18635	7/16/2012	Minnow Trap	NO FISH	_	_

Appendix	C.	Continued.
repending	\sim .	continueu.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
TB01	25	Tobuk Creek	Malamute Fork Alatna	67.07944	-153.18635	7/16/2012	Minnow Trap	NO FISH	_	
			River				×			
TB01	25	Tobuk Creek	Malamute Fork Alatna	67.07944	-153.18635	7/16/2012	Minnow Trap	NO FISH	_	-
TB01	25	Tobuk Creek	River Malamute Fork Alatna	67.07944	-153.18635	7/16/2012	Electrofishing	Coho Salmon	juvenile	69
1201	20	rooun croon	River	0/10/211	100110000	,,10,2012	Lieedonomig	Cono Dumon	juvenne	0,7
TB01	25	Tobuk Creek	Malamute Fork Alatna	67.07944	-153.18635	7/16/2012	Electrofishing	Chinook Salmon	juvenile	74
BD01	25	Bedrock Creek	River Malamute Fork Alatna	67.09796	-152.60043	7/17/2012	Minnow Trap	NO FISH	_	_
BD01	25	Bearber Creek	River	01.09190	152.00045	//1//2012	Winnow Trap			
BD01	25	Bedrock Creek	Malamute Fork Alatna	67.09796	-152.60043	7/17/2012	Minnow Trap	NO FISH	_	-
BD01	25	Bedrock Creek	River Malamute Fork Alatna	67.09796	-152.60043	7/17/2012	Minnow Trap	NO FISH		
DD01	25	Beuroek Creek	River	07.09790	-152.000+5	//1//2012	winnow 11ap	NOTISI	_	_
UN18	25	Unnamed tributary	Bedrock Creek	67.09319	-152.72504	7/17/2012	Minnow Trap	NO FISH	_	-
UN18	25	Unnamed tributary	Bedrock Creek	67.09319	-152.72504	7/17/2012	Minnow Trap	NO FISH	_	_
UN18	25	Unnamed tributary	Bedrock Creek	67.09319	-152.72504	7/17/2012	Minnow Trap	NO FISH	_	_
SZ01	31	East Fork Sozhekla	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Minnow Trap	NO FISH	_	_
		Creek				_ // _ /= /= / - / - /				
SZ01	31	East Fork Sozhekla Creek	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Minnow Trap	NO FISH	_	-
SZ01	31	East Fork Sozhekla	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Minnow Trap	NO FISH	_	_
		Creek					-			
SZ01	31	East Fork Sozhekla Creek	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Electrofishing	Arctic Grayling	juvenile	104
SZ01	31	East Fork Sozhekla	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Electrofishing	Arctic Grayling	juvenile	41
		Creek					-		·	
SZ01	31	East Fork Sozhekla Creek	Sozhekla Creek	67.03600	-152.41211	7/17/2012	Electrofishing	Arctic Grayling	juvenile	39
UN17	32	Unnamed tributary	Malamute Fork John River	67.04867	-152.12669	7/17/2012	Minnow Trap	NO FISH	_	_
UN17	32	Unnamed tributary	Malamute Fork John River	67.04867	-152.12669	7/17/2012	Minnow Trap	NO FISH	_	_
UN17	32	Unnamed tributary	Malamute Fork John River	67.04867	-152.12669	7/17/2012	Minnow Trap	NO FISH	_	_
UN17	32	Unnamed tributary	Malamute Fork John River	67.04867	-152.12669	7/17/2012	Dipnet	Coho Salmon	juvenile	59
UN20	35	Unnamed tributary			-151.48851	7/20/2012			5	
		5	South Fork Koyukuk River	66.67128			Electrofishing	Slimy Sculpin	juvenile/adult	56
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	39
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	29

A	\mathbf{C}	Continued
Appendix	U .	Continued.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	35
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	32
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	33
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	30
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	31
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	29
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	34
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	29
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	26
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Arctic Grayling	juvenile	137
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	85
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	76
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	80
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	77
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	77
UN21	36	Unnamed tributary	South Fork Koyukuk River	66.82559	-151.17087	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	55
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	62
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	49
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	76
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	33
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	49
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	47
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Arctic Grayling	juvenile	97
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	55
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	66
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	55
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	52
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	61
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Coho Salmon	juvenile	55
UN19	38	Unnamed tributary	Jim River	66.78889	-150.85132	7/20/2012	Electrofishing	Chinook Salmon	juvenile	48
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	81
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	81
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	79
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	86
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	75
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	91
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	37
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	40
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	55
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	29
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	31
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Slimy Sculpin	juvenile/adult	31
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Coho Salmon	juvenile	62
UN24	39	Unnamed tributary	Jim River	66.83560	-150.64531	7/23/2012	Electrofishing	Coho Salmon	juvenile	61
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Minnow Trap	NO FISH	_	-
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Minnow Trap	NO FISH	_	-
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Minnow Trap	NO FISH	_	_
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Minnow Trap	NO FISH	_	_

Appendix C. Continued.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Arctic Grayling	juvenile	38
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Arctic Grayling	juvenile	41
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Arctic Grayling	juvenile	39
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Chum Salmon	juvenile	38
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Chum Salmon	juvenile	36
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	46
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
RD03	S2	Reed River	Kobuk River	66.96365	-154.81606	7/21/2012	Electrofishing	Burbot	juvenile	156
KB01	S 3	Kobuk River	None	67.02165	-154.35763	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	78
KB01	S 3	Kobuk River	None	67.02165	-154.35763	9/4/2012	Minnow Trap	NO FISH	_	_
KB01	S 3	Kobuk River	None	67.02165	-154.35763	9/4/2012	Minnow Trap	NO FISH	_	_
KB01	S3	Kobuk River	None	67.02165	-154.35763	9/4/2012	Visual Observation	Chum Salmon	adult	_
KB01	S3	Kobuk River	None	67.02165	-154.35763	9/4/2012	Visual Observation	Chum Salmon	adult	-
UN32	S3	Unnamed tributary	Kobuk River	66.89105	-154.47314	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	101
UN32	S3	Unnamed tributary	Kobuk River	66.89105	-154.47314	9/4/2012	Minnow Trap	NO FISH	_	-
UN32	S3	Unnamed tributary	Kobuk River	66.89105	-154.47314	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	92
UN33	S3	Unnamed tributary	Kichaiakalea Creek	67.05337	-154.14697	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	56
UN33	S3	Unnamed tributary	Kichaiakalea Creek	67.05337	-154.14697	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	86
UN33	S 3	Unnamed tributary	Kichaiakalea Creek	67.05337	-154.14697	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	87
UN33	S 3	Unnamed tributary	Kichaiakalea Creek	67.05337	-154.14697	9/4/2012	Minnow Trap	NO FISH	_	-
UN34	S 3	Unnamed tributary	Kobuk River	67.01901	-154.44464	9/4/2012	Minnow Trap	Dolly Varden	juvenile	128
UN34	S 3	Unnamed tributary	Kobuk River	67.01901	-154.44464	9/4/2012	Minnow Trap	Dolly Varden	juvenile	130
UN34	S3	Unnamed tributary	Kobuk River	67.01901	-154.44464	9/4/2012	Minnow Trap	NO FISH	_	-
UN34	S 3	Unnamed tributary	Kobuk River	67.01901	-154.44464	9/4/2012	Minnow Trap	NO FISH	_	_
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	101

Δnnendiv	C	Continued.
прренит	C.	commucu.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN35	S3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	96
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	65
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	87
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Dolly Varden	juvenile	146
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Dolly Varden	juvenile	116
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Dolly Varden	juvenile	131
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	68
UN35	S 3	Unnamed tributary	Kobuk River	67.00066	-154.55439	9/4/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	95
UN36	S 3	Unnamed tributary	Kobuk River	66.91783	-154.48701	9/5/2012	Minnow Trap	NO FISH	_	_
UN36	S 3	Unnamed tributary	Kobuk River	66.91783	-154.48701	9/5/2012	Minnow Trap	NO FISH	_	_
UN36	S 3	Unnamed tributary	Kobuk River	66.91783	-154.48701	9/5/2012	Minnow Trap	NO FISH	_	_
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	Dolly Varden	juvenile	128
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	Dolly Varden	juvenile	147
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	79
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	NO FISH	-	-
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	NO FISH	_	_
UN37	S 3	Unnamed tributary	Kichaiakalea Creek	67.02964	-154.01124	9/7/2012	Minnow Trap	NO FISH	_	_
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Minnow Trap	NO FISH	-	-
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Minnow Trap	NO FISH	-	-
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Minnow Trap	NO FISH	_	_
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Minnow Trap	NO FISH	_	_
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Arctic Grayling	juvenile	122
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Arctic Grayling	juvenile	123
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Arctic Grayling	juvenile	115
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN38	S 3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Slimy Sculpin	juvenile/adult	34
UN38	S3	Unnamed tributary	Kobuk River	66.99846	-154.54691	9/7/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
RD04	S4	Reed River	Kobuk River	66.88630	-154.83643	9/4/2012	Visual	Chum Salmon	adult	-

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
							Observation			
UN23	S5	Unnamed tributary	Hogatza River	66.85331	-154.29780	7/21/2012	Electrofishing	Arctic Grayling	juvenile	121
UN23	S5	Unnamed tributary	Hogatza River	66.85331	-154.29780	7/21/2012	Electrofishing	Arctic Grayling	juvenile	55
UN23	S5	Unnamed tributary	Hogatza River	66.85331	-154.29780	7/21/2012	Electrofishing	Arctic Grayling	juvenile	51
UN23	S5	Unnamed tributary	Hogatza River	66.85331	-154.29780	7/21/2012	Electrofishing	Arctic Grayling	juvenile	57
UN23	S5	Unnamed tributary	Hogatza River	66.85331	-154.29780	7/21/2012	Electrofishing	Arctic Grayling	juvenile	63
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	46
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	69
HG01	S 6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	72
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	77
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	56
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	66
HG01	S6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	61
HG01	S 6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Visual	Chum Salmon	adult	-
HG01	S 6	Hogatza River	Koyukuk	66.82131	-153.99037	7/21/2012	Observation Visual Observation	Chum Salmon	adult	-
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	78
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	89
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	54

Appendix C. Continued.

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	59
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	52
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	36
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	38
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	32
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	29
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	64
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	78
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	51
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	53
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	66
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	84
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	85
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	42
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	58
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	57

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	48
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	56
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	45
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	63
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	77
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	67
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	44
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	87
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	81
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	87
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	69
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	70
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	73
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	78
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	75
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	61
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	72
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	62
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	50
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	71

Survey Reach	Nearest Crosssing ^a	Waterbody	Tributary to	Latitude °N	Longitude °W	Date	Sampling Method	Species	Life History Stage	Length (mm)
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	74
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	60
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	68
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Slimy Sculpin	juvenile/adult	65
UN22	S 6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Burbot	juvenile	115
UN22	S6	Unnamed tributary	Hogatza River	66.86933	-154.04053	7/21/2012	Electrofishing	Burbot	juvenile	119
HJ01	S7	Helpmejack Creek	Alatna River	67.05835	-153.79528	7/16/2012	Minnow Trap	NO FISH	_	_
HJ01	S7	Helpmejack Creek	Alatna River	67.05835	-153.79528	7/16/2012	Minnow Trap	Dolly Varden	juvenile	86
HJ01	S7	Helpmejack Creek	Alatna River	67.05835	-153.79528	7/16/2012	Minnow Trap	NO FISH	_	_
HJ01	S7	Helpmejack Creek	Alatna River	67.05835	-153.79528	7/16/2012	Electrofishing	Dolly Varden	juvenile	122
HJ02	S7	Helpmejack Creek	Alatna River	67.04015	-153.66203	7/16/2012	Minnow Trap	NO FISH	_	_
HJ02	S7	Helpmejack Creek	Alatna River	67.04015	-153.66203	7/16/2012	Minnow Trap	NO FISH	_	_
HJ02	S7	Helpmejack Creek	Alatna River	67.04015	-153.66203	7/16/2012	Minnow Trap	NO FISH	_	_
HJ02	S7	Helpmejack Creek	Alatna River	67.04015	-153.66203	7/16/2012	Visual Observation	Arctic Grayling	adult	-
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	NO FISH	_	_
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	86
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	81
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	Slimy Sculpin	juvenile/adult	57
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	Dolly Varden	juvenile	94
UN16	S7	Unnamed tributary	Helpmejack Creek	67.04146	-153.66153	7/16/2012	Minnow Trap	Dolly Varden	juvenile	85

Appendix C. Continued.

^a Refer to Figure 2 for the location of crossing codes

STREAM HABITAT SURVEYS OF PROPOSED BRIDGE CROSSINGS ON THE BROOKS EAST CORRIDOR

Prepared for

DOWL HKM 4041 B Street Anchorage, AK 99503

by

ABR, Inc.—Environmental Research & Services P.O. Box 240268 Anchorage, AK 99524

October 2014

INTRODUCTION

The Ambler Mining District Access Project is a State of Alaska undertaking with the objective of identifying, designing, and constructing an access and transportation corridor to the Ambler mineral belt. Of the several preliminary corridors that were initially evaluated for development potential, 1 has been selected for field work in preparation for regulatory requirements defined by the National Environmental Policy Act (NEPA) process. The proposed corridor, referred to as the Brooks East Corridor, extends east from the Ambler mineral belt to the Dalton Highway (Figure 1). DOWL HKM contracted ABR, Inc.—Environmental Research & Services (ABR) on behalf of the Alaska Industrial Development and Export Authority (AIDEA) to characterize fish and aquatic habitat resources along the Brooks East Corridor.

In 2012, ABR conducted field surveys to sample for the presence of resident and anadromous fish species in streams crossed by the proposed corridor (Lemke et al. 2013). Fish species not previously described in the area were reported to the Alaska Department of Fish & Game (ADFG) for inclusion in the "Catalog of Waters Important for the Spawning, Rearing, or Migration of Anadromous Fishes," known as the Anadromous Waters Catalog (AWC; ADFG

2013). As a result of the 2012 surveys, 175.5 km of streams were identified for nomination to the AWC for Pacific salmon (Lemke et al. 2013). Furthermore, 272.6 km of stream were identified as potential Dolly Varden (*Salvelinus malma*) habitat for inclusion in the ADFG Alaska Freshwater Fish Index (AFFI) (Lemke et al. 2013). Official AWC nominations from the 2012 sampling occurred in September 2013 and the catalog will reflect these nominations in the spring of 2014 (Appendix A) (ADFG 2013).

In 2013, ABR's summer field survey efforts focused on stream and riparian habitat assessments at proposed bridge crossings along the corridor. Fish sampling was not conducted in 2013. This report summarizes the 2013 stream habitat surveys and integrates these results with data on known fish assemblages in those waterbodies.

BACKGROUND

The Magnuson-Stevens Fishery Conservation and Management Act is federal legislation mandating conservation and protection of fishery resources while optimizing harvests of commercial fish stocks. Among the Act's mandates is a requirement for the protection of Essential Fish Habitat (EFH) utilized by fish species, including Pacific salmon, which have been assigned a federal management plan. For anadromous salmon in Alaska, EFH includes both freshwater and marine habitats. Where Pacific salmon are present in Alaskan freshwaters, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service (NOAA Fisheries) is the agency with primary management authority over the fish and their habitat.

In addition to federal management, the Alaska state constitution describes the state's mandate to maintain proper functioning and connectivity of aquatic habitats, along with proper management of harvests to preserve sustained yields of anadromous fish. Consequently, in Alaska, habitats that are used by migrating, spawning, or rearing anadromous fish are protected under multiple administrative jurisdictions, including the Alaska Statute (AS) 16.05.877 (the Anadromous Fish Act) (Buckwalter 2010). Furthermore, the ADFG AWC serves to designate these anadromous habitats in Alaska.

The following survey was conducted with the notion that the state and federal permits necessary to proceed with the Ambler Mining District Access Project will require knowledge of potential impacts to any fish habitat that may be traversed by the proposed road.

OBJECTIVES

- Objective 1: Document the stream habitat conditions in waterbodies associated with potential bridge crossings along the Brooks East Corridor
- Objective 2: Integrate stream habitat and fish presence data from the study area to determine potential impacts of bridge construction on stream habitat

STUDY AREA

The Brooks East Corridor crosses numerous rivers, large creeks, and smaller waterbodies along its ~200 mile length. As defined in the United States Geological Survey's National Hydrography Dataset (USGS NHD) (USGS 2013), the proposed Brooks East Corridor crosses 7 subbasins (NHD fourth level: the Middle Kobuk River, Upper Kobuk River, Alatna River, Allakaket, Upper Koyukuk River, Koyukuk Flats, and South Fork Koyukuk River) and 19 watersheds (NHD fifth level; Figure 2). The current corridor is described as a "preferred" route with alternative routes along 2 relatively short stretches: a 23-km "northern option" near the western end of the corridor which runs roughly parallel to, and north of the Manuleak River (the proposed route runs roughly parallel to, and south of the Manuleak River) and a 94-km "southern option" near the middle of the corridor where it passes through the Gates of the Arctic National Preserve (Figure 2). Survey locations for the 2013 sampling effort were preselected by DOWL HKM personnel at 18 bridge crossings that have been identified and studied to some degree by Project personnel between the Shungnak River and the Jim River, though additional potential bridge crossings undoubtedly will be identified going forward.

METHODS

Aquatic sampling surveys occurred during 12–23 August 2013 and coincided with a period of low river flow which facilitated the differentiation of habitat segments and allowed safe wading by Project personnel. The ABR survey team was composed of 3 aquatic biologists who were accompanied by a local subsistence advisor, Allen A. Tickett, courtesy of DOWL HKM, with special knowledge of the study area. The survey team accessed each sample location by Bell 407 helicopter operated by Bristow Group, Inc. Surveys were generally conducted from west to east in the Brooks East Corridor, starting at the Shungnak River and ending at the Jim

River (Figure 1). Sampling priority was given to bridge crossings along the preferred corridor, followed by the northern and southern road options.

ABR stream habitat surveys focused on the largest waterbodies along the corridor and occurred approximately 1,000 ft upstream and 1,000 ft downstream of each proposed bridge crossing unless ground or water conditions reduced accessibility and dictated a shorter survey segment. Upon arriving at sample locations, the survey team flew over the entire 2,000 ft river survey reach centered on the proposed bridge crossing from an altitude of ~50–100 ft. During flight, video footage of the waterbody was collected using a Lumix TS3 digital camera and a GoPro Hero 3. This fly-over allowed the survey team to make an initial assessment of stream and riparian habitat, select possible habitat transect locations, and locate helicopter landing zones. Once on the ground, survey team members walked as much of the 2,000 ft reach as feasible, sketching a rough map along the way. These sketches served to highlight instream substrate transition zones, run-riffle-pool sequences, riparian vegetation, and other stream features (e.g., exposed gravel bars). GPS coordinates were recorded using a DeLorme Earthmate PN-60 to demarcate transition zones and notable reach characteristics. Additional photo-documentation was completed to compliment stream sketches.

After the initial assessment of stream features, the survey team selected 1–3 instream crosssectional habitat transects at various points along the stream reach. Reaches with uniform flow regimes and homogeneous substrate generally warranted a single habitat transect. Reaches with heterogeneous instream features warranted 2–3 transects. Once habitat transect locations were identified, survey team members recorded the date, time, and latitude and longitude (decimal degrees) of each transect. Next, ambient water quality measurements were collected using a YSI Professional Plus multiparameter meter. Variables measured were temperature (° C), pH, specific conductance (μ S/cm), and dissolved oxygen (mg/L and %). A 250 ml water sample was collected for measurement of turbidity (in nephelometric turbidity units; NTU) using a Hach 2100P Turbidometer. The 48-hour precipitation level (low, medium, high), water color (clear, ferric, glacial-high turbidity, glacial-low turbidity, humic, muddy), and stream stage (dry, low, medium, high) were assessed qualitatively and recorded.

Instream channel characteristics along the habitat transect were recorded using a measuring tape, survey rod, and clinometer. Variables collected were wetted width (m), bankfull width (m),

thalweg depth (m), stream gradient (%), and bank angle (°). Instream substrate composition was recorded along the transect after walking from bank to bank. Substrate was recorded as a percentage of bedrock, boulder, cobble, gravel, sand, silt, and clay and totaled 100%. Depending on flow and turbidity, substrate photos were taken along each transect. Instream channel cover was assessed for the presence of filamentous algae and periphyton, macrophytes, large woody debris (diameter greater than 0.3 m), small woody debris (diameter less than 0.3 m), live tree roots, overhanging vegetation, undercut bank, boulders, and artificial structures. Each parameter was expressed as a qualitative percentage of the total stream cover within 10 m upstream and downstream of the habitat transect and noted as absent (0%), sparse (less than 10%), moderate (10–40%), moderately abundant (40–75%), and abundant (greater than 75%).

Riparian vegetation was described for the left and right bank (facing downstream) within 10 m of the water's edge width along the habitat transect. Riparian vegetation was categorized as ground cover (vegetation less than 0.5 m), understory (0.5–5 m), and canopy (greater than 5 m). Vegetation type (coniferous, deciduous, or mixed) and percent cover were recorded for ground cover, understory, and canopy using the same qualitative percentage scale as instream channel cover.

Flow (m/s) and depth (m) were measured at up to 10 equally spaced points along the transect using a Marsh McBirneyFlo-Mate 2000 portable flow meter and top-setting wading rod. Stream discharge (m³/s) for each sample site was calculated from the cross sectional water velocities and depth data. At least 4 photos were taken from the middle of each stream transect of the surrounding habitat looking upstream, downstream, towards left bank, and towards right bank. Following completion of habitat surveys at any given sample location, additional high-definition video was recorded from the air between proposed bridge crossings along the road corridor.

RESULTS AND DISCUSSION

ABR surveyed a total of 28 instream habitat transects in 14 waterbodies over 11 days of sampling during August 2013 field studies on the Brooks East Corridor Project (Figure 1, Appendix B). The waterbodies surveyed in the Project corridor include or flow into 1 of 2 major drainages; the Kobuk River or the Koyukuk River. Most streams in the Project corridor follow a

general north to south flow before reaching the Kobuk River or Koyokuk River (Figure 1). Habitat results are first presented for stream crossings along the preferred option, followed by stream crossings along the northern option and then the southern option. Some streams are crossed by more than one potential proposed corridor option. Detailed photographic records were kept at each stream crossing (see Plates). Additionally, a total of 3 hours of video footage was recorded of the corridor, including stream crossings, and is included as a supplemental DVD attached to the final report. Recent aerial photography obtained by DOWL HKM in 2012 was juxtaposed with aerial imagery from the 1970s and 1980s for each stream crossing (Appendix C), allowing a comparison of habitat changes (or lack thereof) over time. Finally, ambient water chemistry parameters were sampled at each stream crossing and provide a snapshot of stream conditions during August 2013 surveys (Appendix D). The following is a summary of habitat survey findings for each of the 18 stream crossings.

PROPOSED ROUTE

SHUNGNAK RIVER

The westernmost significant river crossing of the Brooks East Corridor is the Shungnak River (Figure 1). The Shungnak River flows ~95 miles from its headwaters in the Brooks Range to its confluence with the Kobuk River near the village of Kobuk. During 2012 fish surveys (Lemke et al. 2013), Slimy Sculpin (*Cottus cognatus*) and Arctic Grayling (*Thymallus arcticus*) were caught on the main body of the Shungnak River. Slimy Sculpin and Arctic Grayling were also captured on nearby Ruby Creek, a tributary to the Shungnak River. No Pacific salmon were caught or observed during those surveys. During physical habitat surveys in 2013, survey crew members observed juvenile Arctic Grayling in the 2,000-ft reach. The AWC shows no record of Pacific salmon in the Shungnak River as of November 2013 (Table 1).

ABR mapped and characterized the stream crossing reach and performed 3 instream habitat transect surveys on 12 August 2013 (Figure 3, Appendix B) (Plates 1–3). Most of the 2,000-ft reach at the Shungnak River crossing is a shallow (less than 1 m) riffle-run flow regime composed of boulder, cobble, gravel, and sand substrate. However, Transect 1 (SH-T1-13) is representative of the slackwater pool habitat available in this reach and substrate composition was dominated by fine sediment (80% silt and clay) rendering most of this transect unwadeable

due to the soft bottom. Transects 2 (SH-T2-13) and 3 (SH-T2-13) were upstream in shallow riffle-run habitat and substrate was dominated by gravel (40%) and cobble (30–35%). The majority of the reach provides good fish spawning habitat in the form of mixed gravel and cobble substrate. The downstream portion in the area of Transect 1 provides more slow moving water and fish refuge habitat than most of the sampled reach. Average flow measured at 2 transects was ~10.5 m³/s (Table 2).

Instream cover was sparse to moderately abundant. Transect 1 had moderate cover of macrophytes with sparse woody debris, filamentous algae, boulders, and overhanging vegetation. Transect 2 had sparse small woody debris, boulders, and overhanging vegetation. Transect 3 had moderate filamentous algae, overhanging vegetation, and undercut bank with sparse woody debris, live tree roots, and boulders. Most instream cover in this stream reach would provide refuge to smaller fish.

On all 3 transects, tall (greater than 5 m height) riparian canopy of black spruce (*Picea mariana*) occurred on one bank and no tall cover occurred on the opposite bank. Willow (*Salix* spp.) and tall grasses made up the majority of the understory (0.5–5 m in height), though a high percentage (30%) of understory at Transect 2 was composed of shrubs and berry plants. Ground cover vegetation (less than 0.5 m in height) varied by transect. Most of the stream margin shade was located in the middle portion of the reach. Bank stability appeared to be good as the channel has not changed markedly since 1978 (Appendix C).

KOGOLUKTUK RIVER

The next major river crossing on the Brooks East Corridor is the Kogoluktuk River, a ~98mile-long river which flows into the Kobuk River east-northeast of the village of Kobuk (Figure 1). During 2012 fish surveys, ABR electrofished the mainstem of the river, capturing Slimy Sculpin. Juvenile Dolly Varden (*Salvelinus malma*) were captured in baited minnow traps on Riley Creek, a tributary to the Kogoluktuk River and Slimy Sculpin and Arctic Grayling also were observed on an unnamed tributary to Riley Creek (Table 1). In 2013, ABR observed several Arctic Grayling (*Thymallus arcticus*) in a side channel near a habitat survey transect and at least one adult Arctic Grayling was caught by the Project subsistence advisor using rod and reel. The AWC lists spawning Chum Salmon (*Oncorhynchus keta*), Dolly Varden, and whitefish

(*Coregonus* spp.) as present in the Kogoluktuk River. No Pacific salmon were observed by ABR during either 2012 or 2013 surveys.

ABR mapped and characterized the stream crossing reach and performed 2 instream habitat transect surveys on 13 August 2013 (Figure 4, Appendix B) (Plates 4–6). The segment of stream covered by the 2,000-ft reach was generally shallow, wadeable, and wide throughout (Appendix B). Both transects measured over 100 m bankfull width. The downstream end of the stream reach separated into a main and side channel. The main channel in this segment of stream was ~1 m deep but unwadeable due to high flow rates.

Instream substrate throughout the reach was relatively uniform, with a mixture of sand, gravel, and cobble. Transect 1 (KG-T1-13) crossed the main channel of the river, over a sand bar, and through side-channel habitat. The sand bar would be completely inundated at slightly higher water levels. Instream substrate on Transect 1 was composed of more sand (90%) than other parts of the 2,000-ft reach, perhaps because of its location downstream of a bend in the river where reduced water velocity allows sand to settle out. Transect 1 also crossed a side-channel where cobble and gravel made up ~45% of substrate (Table 2, Appendix B). The stream was relatively shallow in the area of Transect 2 (KG-T2-13) and the substrate was divided nearly evenly between cobble (30%), gravel (30%), and sand (40%). These mixed substrates may provide significant spawning habitat for fish. Furthermore, the run-pool flow regime of most of the 2,000-ft reach would provide abundant refuge habitat for fish. Average estimated discharge for the 2 transects was 23.86 m³/s.

Instream cover was generally sparse or absent in both Transect 1 and Transect 2. Some small woody debris was present in both transects, and sparse boulders were present at Transect 1. At Transect 2, there was sparse overhanging vegetation but moderate amounts of filamentous algae. Most of the available instream cover at the Kogoluktuk River crossing would be suitable for smaller fishes (e.g., Slimy Sculpin) in the form of mixed cobble and gravel.

At Transect 1, there was no riparian tall canopy within 10 m of the river on the left bank, while riparian tall canopy covered 50% of the ground within 10 m of the river on the right bank. Understory cover on the left bank was minimal (10%) and consisted of willow and tall grasses. On the right bank, the understory was dominated by willow, alder, and tall grass/shrubs. Ground

cover was limited on the left bank with 75% of the ground bare. On the right bank, ground cover was 90% and composed of grasses and small shrubs. At Transect 2, tall riparian cover on the left and right bank of the river covered 10% of the ground. Understory cover was composed of willow, alder, and tall grasses and was complete on the left bank moderate on the right bank. Ground cover on the left and right banks was abundant with grasses, shrubs, and saplings (90–95%). During the summer months, shade refuge would be most available to fish in the middle portion of the reach along the right bank of the bend in the river (Figure 4). The channel in the crossing reach does not appear to have changed markedly between 1978 and 2012 (Appendix C).

MAUNELUK RIVER

The next Brooks East Corridor crossing is the Mauneluk River, a ~114-mile-long tributary that flows into the Kobuk River ~16 miles east of the village of Kobuk (Figure 1). During 2012 surveys of the Mauneluk River and its tributaries, Chum Salmon, Dolly Varden, Slimy Sculpin, Northern Pike (*Esox lucius*), and Arctic Grayling were observed. Past nominations to the AWC reference whitefish and Chum Salmon on the Mauneluk River. ABR submitted nominations to extend the known upstream presence of Chum Salmon on the Maneuluk River by 84.2 km based on 2012 survey results (Table 1, Appendix A). Numerous large Arctic Grayling were caught using rod and reel by the subsistence advisor during ABR habitat field surveys in 2013. Additionally, Chum Salmon were observed spawning at the downstream extent of the surveyed reach near a point where the river braids into 3 sections (Figure 5).

ABR performed partial habitat surveys at observation points on 13 August 2013 (Figure 5, Appendix B) (Plates 7–8). Transects could not be conducted from bank to bank due to unwadeable conditions on most of the 2,000-ft reach. Efforts to find a suitable crossing in the reach by floating the stream with a packraft were unsuccessful due to a combination of high water velocities or the presence of deep pools. Discharge was measured downstream at an area where the stream braids into 3 channels, though this area lies outside the survey reach. Discharge was estimated at 34.4 m^3 /s (Table 2).

Within the 2,000-ft reach, downstream portions of the left bank were unwadeable due to deep pools while upstream portions of the right bank were unwadeable due to water velocity. Thus, 2 partial transects were completed at stream observation points. Instream substrate at the

upstream observation point (MN-T1-13), located in the middle to upper portion of the survey reach, was composed primarily of cobble and gravel (85%) with some sand (15%) and appeared typical of most of the rest of the reach. The second observation point (MN-T2-13) was located downstream of MN-T1-13 at a transition zone before the stream split into multiple channels. In this area of stream the channel widened and water velocities diminished somewhat allowing sand to settle. The percentage of sand increased to 40% and cobble and gravel decreased to 60% in this part of the reach (Table 2, Appendix B). Most of the reach provides excellent mixed gravels as spawning substrate for fish along with deep pools for resting or refuge.

Instream cover along the partial transects differed by location. MN-T1-13 had moderate cover of filamentous algae along with sparse big and small woody debris, live tree roots, and overhanging vegetation. This partial transect was representative of much of the reach, suggesting plentiful cover for fish and other stream organisms. MN-T2-13 had moderate cover by filamentous algae and overhanging vegetation with sparse cover by macrophytes and woody debris, but was less representative of the reach as a whole.

At MN-T1-13, riparian cover was almost completely absent within 10 m of shore on the right bank and it was clear that this area is submerged at higher flows. The left bank had limited spruce and alder (30%) canopy while the understory cover was 100% and consisted of willow, alder, and spruce. Ground cover of small grasses and saplings was almost 100%. The left bank of the proposed bridge crossing appears to have good stability due to vegetation and provides stream shade for fish. The proposed crossing passes through side-channel habitat where rearing fish likely are present (Figure 5). At the downstream extent of the reach, at MN-T2-13, there was no canopy on the right bank while spruce, alder, and birch made up 80% of canopy cover on the left bank. Willow and alder dominated the understory on both banks. There was little bare ground on either bank with small grass and herbaceous vegetation dominating both banks providing additional bank stability. The channel appears to have grown somewhat in the period between 1981 and 2012 (Appendix C).

Stream Habitat Surveys

BEAVER CREEK

Beaver Creek is a ~84-mile stream that joins the Kobuk River between the confluences of the Mauneluk River and Reed River. Its confluence with the Kobuk River occurs just west of the Reed River, ~7 miles south of Lake Minakokosa (Figure 1). The area of the proposed bridge crossing occurs west of Sun Camp, a seasonal mining support encampment with an airstrip. In 2012, ABR biologists sampled Beaver Creek and several unnamed tributaries. Dolly Varden and Burbot (*Lota lota*) were captured in tributaries while Slimy Sculpin and Arctic Grayling were captured in Beaver Creek. No fish were observed during the 2013 physical habitat surveys. The AWC lists Chum Salmon as present in Beaver Creek (Table 1).

The stream reach was a roughly straight, shallow segment of stream with a riffle-run flow regime (Figure 6). Limited pool habitat available was available in the reach, with the most significant pool located near the inlet to an ephemeral side channel which had no water and was not sampled during our survey. The reach was shallow (less than 1 m deep) and water velocities slow enough that the stream was completely wadeable. Discharge estimates averaged 7.8 m³/s. ABR performed 2 habitat transect surveys on 14 August 2013 (Figure 6, Appendix B) (Plates 9–10). Transect 1 (BV-T1-13) was located in a shallow run in which the substrate was composed of cobble (50%), gravel (25%), and boulder (15%). Transect 2 (BV-T2-13) was located upstream near a pool-riffle-run sequence with nearly equal parts boulder, cobble, gravel, and sand. With high quantities of boulder and cobble, the reach may not be ideal spawning habitat for salmon.

Instream cover was widely available in the stream reach. Abundant filamentous algae and periphyton were present at both habitat survey transects. Sparse macrophyte cover, small woody debris, and undercut banks with moderate overhanging vegetation and boulder cover were present at both habitat transects. Sparse live tree roots were present along the stream banks at Transect 2. The reach would provide good cover for fish throughout, particularly with the addition of side channel habitat at higher flows (Table 2, Figure 6).

Riparian cover varied by transect location. A low percentage of spruce canopy (10%) was present at both transects. There was significant understory cover (90%) at Transect 1 composed of willow, short spruce, tall grasses, and herbaceous vegetation. Understory cover was only 30% on Transect 2. There was very little ground cover in the riparian zone of either transect

(Appendix B). However, stream banks appear to be stable and the channel does not appear to have changed markedly since 1981 (Appendix C). High cliff banks were present throughout most of the middle portion of the reach on the right bank and in downstream portions of the reach on the left bank, providing additional stream shade.

REED RIVER

The Reed River is a ~96-mile stream located in the Gates of the Arctic National Park between Beaver Creek and Walker Lake. Its confluence with the Kobuk River occurs ~5 miles east of Lake Minakokosa (Figure 1). During 2012 fish survey, ABR observed Chum Salmon (juvenile and adult), Slimy Sculpin, Arctic Grayling, and Burbot. Spawning Chum Salmon were observed during August 2013 habitat surveys. The AWC does not currently list Chum Salmon in the Reed River (Table 1). A nomination form has been submitted for the Reed River to add 30.3 km of anadromous waters to the AWC (Appendix A).

ABR performed 1 transect survey during stream habitat characterization on 15 August 2013 (Figure 7, Appendix B) (Plate 11). Waters within the 2,000-ft reach were a riffle-run-pool flow regime with significant pools formed at the outside bends in the river. A packraft was used to make a general characterization of the stream and its habitat and to determine the best location for the survey transect. Most waters in this reach were less than 1 m deep but only 1 completely wadeable transect was found. Stream substrate was relatively uniform throughout the reach and was composed of gravel (35%), sand (35%), cobble (20%), and boulder (10%). Discharge was estimated to be 26.5 m³/s. Substrates in large pools located at the outside of bends of the reach appeared to have a high composition of sand, suggesting lower stream velocities at those points the river (Table 2). In general, spawning habitat for fish was abundant as confirmed by observations of spawning Chum Salmon.

Instream cover was even throughout the crossing reach. Filamentous algae were present in moderate portions. Macrophytes, small woody debris, live tree roots, overhanging vegetation, and boulders were sparse. Thus, fish cover is somewhat limited in this stream. Waters were clear and visibility was excellent during surveys, confirming the uniform nature of instream habitat availability. Deep pools probably provide the best fish refuge in this section of the Reed River.

Riparian habitat varied by location in the reach. Most canopy occurred on the inside of the river bends and was composed of spruce. No canopy was observed within 10 m of shore on the left bank as water levels were low and exposed a significant sandbar. Beyond the sandbar, a large spruce stand was present. On the right bank, there was sparse spruce canopy. Willow, alder, and small spruce provided about 60% cover in the understory. The ground was ~30% bare. Several high banks along with some spruce provide shade cover for fish. The absence of significant riparian vegetation and steep banks might suggest some bank instability, though no major change in the channel occurred between 1981 and 2012 (Table 2, Appendices C and D).

KOBUK RIVER

The Kobuk River is a ~280-mile river whose headwaters begin high in the Brooks Range. The river flows generally north to south past the east shores of Walker Lake and eventually winds through the Project corridor before turning west and advancing to the Chukchi Sea. All streams located west of this crossing in the Brooks East Corridor eventually flow into the Kobuk River (Figure 1). During 2012 fish surveys, ABR observed or captured Chum Salmon (juvenile and adult), Slimy Sculpin, Dolly Varden, and Arctic Grayling near the proposed crossing of the Kobuk River. Arctic Grayling also were observed by ABR in 2013. The AWC currently lists Chum Salmon, Chinook Salmon (*Oncorhynchus tshawytscha*), Dolly Varden, Sheefish, and whitefish in the Kobuk River (Table 1).

Due to deep waters, ABR was unable to conduct a thorough ground survey of instream substrate throughout the 2,000-ft reach on the Kobuk River. Instead, the stream reach was observed from a hovering helicopter before landing downstream of the reach where waters were shallow enough to perform a sampling transect. Although outside the reach, the transect location appeared representative of habitat upstream in the reach (Figure 8, Appendix B) (Plates 12–13). Waters within the crossing reach were a riffle-run flow regime and discharge was estimated as 29.7 m³/s on 15 August 2013 (Table 2). Significant side-channel habitat would be available to fish at higher water levels but this habitat was dry during our visit. On Transect 1 (KB-T1-13), substrate was composed of cobble (35%), gravel (35%), sand (25%), and boulders (5%). While flying over the reach, boulders appeared evenly scattered throughout the stream and there was no

indication that substrate in the rest of the reach was different from that observed on Transect 1. The evenly mixed substrate in the stream reach appeared ideal for fish spawning.

In general, instream habitat available to fish in the reach was evenly distributed and sparse to moderately abundant. On Transect 1, instream cover of macrophytes, small woody debris, live tree roots, undercut banks, and boulders was sparse. Filamentous algae and overhanging vegetation were moderately abundant (Table 2).

Riparian vegetation cover was similar throughout the reach but differed from left to right bank at any given location. Transect 1 left bank canopy was limited to willow and alder (25%), while the right bank had a dense cover (70%) of spruce, birch, and alder. The left bank understory was composed of grasses, willow, and berries and provided 50% cover while the right bank understory provided 100% cover from willow, alder, and spruce. Ground cover was nearly complete with herbaceous material, grass, and willow on both banks as well as some moss. In general, there was significant shade provided by canopy throughout the reach and good bank stability. Despite the appearance of meandering side-channels, the channel experienced only slight changes between 1981 and 2012 (Appendix C).

ALATNA RIVER

The ~338-mile-long Alatna River is the western-most major stream crossing in the Brooks East Corridor that flows into the Koyukuk River. The Alatna River joins with the Koyukuk River near the village of Allakaket (Figure 1). During 2012 fish surveys, ABR observed only Slimy Sculpin in the Alatna River. On tributaries to the Alatna River, including Helpmejack Creek and 2 unnamed streams, ABR observed Dolly Varden, Chum Salmon, Chinook Salmon, and Arctic Grayling. The AWC currently lists Chum Salmon, Chinook Salmon, and whitefish in the Alatna River. ABR did not observe any fish during 2013 habitat surveys on the Alatna River (Table 2).

ABR conducted habitat surveys of the crossing reach on the Alatna River on 17 August 2013 but found that waters were unwadeable and too deep to conduct instream surveys. Data were collected during low-level flights over the reach, on the ground at 2 observation points (AL-T1-13 and AL-T1-13) on the right bank of the reach, and observations made from a packraft. These observations revealed a uniform run-pool flow regime which might alternatively be referred to as glide habitat (Figure 9, Appendix B) (Plates 14–15). Discharge was not

measured on the Alatna River. Substrate composition appeared to be uniform throughout the reach and was composed of sand (35%), cobble (25%), silt (20%), boulders (10%), and gravel (10%). Though the substrate was composed of ~55% sand and fine material, there appeared to be sufficient mixed gravel and cobble to provide good spawning habitat for salmon in the reach (Table 2).

Habitat evaluation during the packraft float revealed limited instream cover, although sparse small woody debris was present and boulders were moderately abundant. Several deep pools were also present, providing limited boulder and pool habitat for fish refuge.

Riparian vegetation within 10 m of shore was uniform throughout the reach (Figure 9, Appendix B). Steep, exposed banks on either side of the river composed much of the immediate riparian zone and thus canopy was non-existent. However, beyond bankfull width, both sides of the river were vegetated with a thick spruce canopy. Some small alder and grass understory was present along the stream banks throughout the reach, along with sparse grass cover. Between 60% and 80% of the 10-m riparian zone was bare ground. Nonetheless, bank stability appeared good as very little change in the stream channel is discernible between 1981 and 2012 imagery. Deep pools and boulders, along with shade provided by spruce beyond the high banks of the river, probably provide ample refuge and shade for fish in this stream section.

MALAMUTE FORK ALATNA RIVER

The Malamute Fork Alatna River is a 61-mile-long river which flows roughly east to west and parallel to the Brooks East Corridor before turning south and joining with the Alatna River near Helpmejack Creek (Figure 1). During 2012 surveys, ABR observed various combinations of Coho Salmon (*Oncorhynchus kisutch*), Chinook Salmon, and Chum Salmon on Tobuk Creek and 2 unnamed tributaries to the Malemute Fork Alatna River, but did not sample in the river itself. The AWC lists Chum Salmon and Chinook Salmon in the Malamute Fork Alatna River. ABR nominated an additional 2 km of stream to the AWC for tributaries to the Malamute Fork Alatna River in 2013 (Appendix A). In 2013, ABR observed Chum Salmon during habitat surveys in the Malamute Fork Alatna River (Table 2).

ABR mapped and characterized the stream crossing reach on 17 August 2013. Habitat in the reach was relatively uniform with a riffle-run flow regime and only a small amount of pool

Stream Habitat Surveys

habitat (Figure 10, Appendix B) (Plate 16). Waters were generally wadeable and discharge was estimated at ~12.3 m³/s. A single habitat survey transect (MF-T1-13) revealed that stream substrate was composed of a nearly even mix of gravel (35%), sand (35%), and cobble (25%) with sparse boulders (5%). Substrate in the reach appears to be ideal salmon spawning habitat (Table 2).

Instream cover in the reach was limited but uniform throughout. Sparse amounts of filamentous algae, small woody debris, overhanging vegetation, undercut banks, and boulders were present. Thus, most available refuge habitat was appropriate for smaller fish. A small amount of pool habitat also would provide refuge (Figure 10).

Riparian vegetation cover was relatively uniform throughout the reach, with dense cover within 10 m of shore on the left bank and open canopy on the right bank, giving way to dense spruce habitat beyond. Tall cover on the left bank was primarily composed of alder (Appendix B). Most shade available to fish appeared to occur on the left bank. Understory cover on both banks was 70–75% and was composed of willow, alder, and tall grasses. Small grasses, willow and alder saplings, and herbaceous material made up 75–80% of ground cover. The stream channel appears to have changed very little between 1981 and 2012 (Appendix C).

UN18

UN18 is an unnamed tributary which flows ~22 miles to the Malamute Fork Alatna River near Bedrock Creek (Figure 1). UN18 was the smallest stream sampled by ABR in 2013. No previous records of fish have been recorded on this waterbody and ABR did not perform fish surveys in this stream in 2012. The AWC does not have a record of anadromous fish for this stream. ABR observed juvenile Northern Pike during habitat surveys in 2013 (Table 1).

ABR mapped and characterized stream habitat in UN18 on 16 August 2013. The stream is distinguished from other waterbodies surveyed in 2013 both in terms of its low average discharge (~0.5m³/s) and its sinuosity (Figure 11, Appendix B) (Plates 17–18). ABR collected data at 2 habitat survey transects (UN18-T1 and UN18-T2-13) representative of the mostly riffle-run-pool flow regime. Transect 1 was located in a shallow (less than 35 cm deep) riffle with instream substrate composed of boulder (50%), cobble (30%), gravel (15%), and sparse sand (5%). The substrate at Transect 1 did not appear to be appropriate for spawning salmon. Transect

2 was located just beyond a riffle in a large pool and substrate was evenly composed of boulder (25%), cobble (25%), gravel (25%), and sand (25%) and appeared to be higher quality salmonid spawning habitat (Table 2).

Instream cover was generally abundant throughout the reach. Filamentous algae was moderate to abundant and cover by overhanging vegetation was moderate throughout the reach. Small woody debris, undercut banks, and live tree roots were sparse to moderately abundant. Depending on the section of river, boulders were sparse to abundant. Though no fish surveys have been conducted here, the presence of juvenile Northern Pike suggests that the stream is excellent habitat for rearing fish.

Tall riparian vegetation cover varied depending on location in the stream but ranged from sparse spruce trees to dense alder, spruce, and birch, with some willow. Understory cover ranged from moderate to abundant, comprising willow, alder, and spruce. Ground cover was generally abundant with grasses, moss, and herbaceous material, though there was a large amount of bare ground associated with a sand bar on the right bank just upstream of Transect 2. The generally dense vegetation provides good shade cover throughout the reach and would appear to provide channel stability. However, comparison of imagery between 1982 and 2012 indicates that there were notable changes in the stream channel in the area of the proposed bridge (Appendix C).

KOYUKUK RIVER

The Koyukuk River is a 425-mile tributary to the Yukon River; it is the last major tributary entering the Yukon River before it meets the Bering Sea. ABR did not sample the Koyukuk River during 2012 fish surveys (Lemke et al. 2013). No fish observations were made during physical habitat sampling in 2013 (Table 1). Sheefish, whitefish, and 4 species of Pacific salmon are listed in the AWC for the Koyukuk River (Table 1). The Brooks East Corridor has 2 proposed bridge crossings on the Koyukuk River, both near the former (old) site of the village of Bettles (Figure 1).

ABR mapped and characterized the stream crossing reach on 22 August 2013 but did not perform an instream habitat transect survey because the stream was unwadeable due to deep water and strong flow. The entire stream reach was a mix of run and glide flow regime. Instream substrate and riparian habitat were characterized at 3 observations points along the stream's left

bank (Figure 12, Appendix B) (Plate 19). ABR floated the reach in a packraft to determine if wadeable transects were present, but none were observed. At the most upstream observation point, at a downstream inside bend in the river, substrate visible from the bank was predominantly sand, as might be expected at such a location where velocity decreases and sand settles out of the water column. Significant gravel and cobble instream substrate could be observed from the left bank along with moderate amounts of large and small woody debris. The left bank in this reach was composed of a large sand bar with little vegetation. Riparian vegetation on the right bank was dense and composed mainly of spruce and willow. The substrate at the second observation point, downstream between 2 proposed bridge crossings was composed of mostly sand, but transitioned to cobble, gravel, and boulder shortly downstream. Between the first and second observations points, the right bank vegetation transitioned from spruce to alder. Substrate composition at the farthest downstream observation point appeared to be composed of primarily of cobble, gravel, and boulder. Overall, this reach likely provides plentiful spawning and refuge habitat to many fishes, including salmon. The channel in this reach appears to have changed slightly between 1981 and 2012, mostly in the form of growing sandbars in upper and lower portions of the stream reach (Appendix C).

SOUTH FORK KOYUKUK RIVER

The South Fork Koyukuk River is a large tributary to the Koyukuk River and joins with the main fork ~15 miles south of the village of Bettles (Figure 1). ABR did not sample the South Fork Koyukuk River during 2012 fish surveys (Lemke et al. 2013). Chum Salmon, Chinook Salmon, and whitefish species are known to inhabit the South Fork Koyukuk, according to the AWC (Table 1). In 2013, the ABR survey crew made one observation of a dead Burbot (Table 1).

ABR mapped and characterized the stream crossing reach and performed 1 stream habitat transect survey on 22 August 2013 (Figure 13, Appendix B) (Plates 20–21). The flow regime in the stream crossing reach was dominated by a mix of run and pool habitat, with run-riffle habitat in the mid-section of the reach. Flow was estimated to be 13.75 m³/s (Table 2). Transect 1 (SF-T1-13) was located at the proposed bridge crossing. Substrate along the transect was composed of cobble (40%), gravel (30%), boulder (15%), and sand (15%). This transect appeared to be

representative of much of the reach which should provide excellent spawning substrate for salmon. Instream cover along the habitat transect was sparse with some small woody debris. Thus, only sparse amounts of cover were available and suitable mostly for smaller fish.

Large exposed sand banks were present on both right and left banks of the reach. The left bank provided very little riparian vegetation cover. The canopy was absent and the understory only provided 15% cover from willow, herbaceous material, and fireweed. Ground cover was composed of exposed cobble, gravel, and sand (90%) with small patches of fireweed and willow (10%). The right bank vegetation was heavily affected by the presence of a winter trail and canopy cover was only 10%, by spruce, birch, and willow. The understory was dense with poplar, fireweed, herbaceous material, tall grasses, and willow, which together provided 70% cover. Ground cover was 75%, comprising herbaceous vegetation, moss, and poplar saplings. Limited canopy shade was available to the stream due to the distance from water. Numerous pools probably provide most refuge for fish in the reach. The sample reach channel on the South Fork Koyukuk River appears to be less stable than the reaches assessed on most other streams in this study. The channel appears to have shifted slightly to the west in the area of the proposed bridge crossing between 1981 and 2013 (Appendix C).

JIM RIVER

The Jim River is the easternmost significant river crossing before the proposed Brooks East Corridor joins the Dalton Highway (Figure 1). ABR did not sample the Jim River during fish surveys in 2012 (Lemke et al. 2013). The AWC lists Chum Salmon as present in the Jim River (Table 1). During 2013 stream habitat surveys, the ABR survey team observed Chum Salmon and Arctic Grayling.

ABR mapped and characterized the stream crossing reach and performed 1 instream habitat transect survey on 22 August 2013 (Figure 14, Appendix B) (Plates 22–24). The reach had a diversity of stream flow habitat types including riffle-run-pool and run-glide sequences as well as side channel and backwater pool habitat. Transect 1 (JM-T1-13) was located immediately downstream of the proposed bridge crossing within a long run. The substrate was representative of much of the run and run-glide sequences and consisted of gravel (45%), cobble (35%), sand (15%), and boulder (5%) which should provide excellent fish spawning habitat. Instream cover

was sparse along the transect but consisted of filamentous algae, large and small woody debris, and boulders. However, abundant pool habitat would provide good refuge for fish. Discharge was among the lowest estimated for streams surveyed on this Project at $5.06 \text{ m}^3/\text{s}$ (Table 2).

Canopy cover was absent from both the left and right banks of the habitat transect, because the stream channel bankfull width extended well beyond the wetted width at the low flows observed in August 2013. The understory varied and was composed of willow and fireweed on the right bank (15%) and willow, alder, birch, and fireweed (60%) on the left bank. Right bank ground cover primarily was composed of exposed gravel and cobble (90%) along with sparse fireweed and willow. Ground cover on the left bank was composed of moss, herbaceous vegetation, and woody shrubs (50%) with bare ground visible throughout (50%). Good shade cover appeared to be scattered evenly about the reach, but bare ground and numerous sand bars indicated significant potential for bank erosion. The channel in this reach appears to have changed more than most streams surveyed in this study since 1979 (Appendix C). However, the channel at the proposed bridge crossing appears to have changed little compared to the rest of the reach.

NORTHERN OPTION

UN30

UN30 is an unnamed tributary to the Mauneluk River which is crossed by the northern option of the Brooks East Corridor (Figure 1). Spawning Chum Salmon were observed on UN30 in 2012. Spawning Chum Salmon and Dolly Varden also were observed on several other unnamed tributaries to the Mauneluk River in 2012 (Table 1). Chum Salmon and whitefish are known to occur on the Mauneluk River according to the AWC (ADFG 2013). ABR nominated less than a mile of Chum Salmon habitat to the AWC in 2013 (Appendix A). The ABR survey team did not observe fish in UN30 during 2013 physical habitat sampling.

ABR mapped and characterized the stream reach and performed 1 instream habitat transect survey on 21 August 2013 (Figure 15, Appendix B) (Plates 25). The slightly sinuous stream reach was marked by predominance of run-riffle habitat with. Discharge was relatively low compared to other streams surveyed (3.85 m³/s) (Table 2). Instream substrate at Transect 1 (UN30-T1-13n) was representative of the reach as a whole and was composed of boulder (50%),

cobble (35%), gravel (15%), and sand (5%). This substrate provides good spawning habitat for salmon as evidenced by the observation of spawning Chum Salmon in 2012. Instream cover was generally abundant and relatively uniform within the reach, providing good habitat for rearing fish. Filamentous algae and overhanging vegetation were sparse while there was moderately abundant small woody debris, and abundant boulder habitat.

Riparian vegetation varied by bank but was consistent throughout the reach. The left bank was composed of a large sand bar and thus no tall cover was present. Paper birch, spruce, willow, and alder provided approximately 30% canopy cover on the right bank. The understory vegetation cover was dominated by willow on the left bank (30%) and a combination of willow, alder, spruce, and herbaceous vegetation (50%) on the right bank. On the left bank sand bar, ground cover was ~50% exposed soil, while the right bank had near complete ground cover of moss, small grasses, and woody shrubs (Appendix B). On the whole, stream shade was abundantly available in the sample reach on UN30. The stream channel appears to have changed little since 1981 (Appendix C).

MAUNELUK RIVER

The Mauneluk River has proposed bridge crossings at 2 locations, with the second crossing located on the northern option of the Brooks East Corridor (Figure 1). No fish observations were made during 2013 sampling on the Mauneluk River northern option (Table 1). However, ABR observed Chum Salmon, Slimy Sculpin, and Arctic Grayling during 2012 fish surveys and during 2013 habitat surveys on the Mauneluk River at the river crossing associated with the preferred option (see above). As stated previously, Chum Salmon and whitefish are listed in the AWC for the Mauneluk River (Table 1).

ABR mapped and characterized the stream crossing reach and performed 1 instream habitat transect survey on 21 August 2013 (Figure 16, Appendix B) (Plates 26–27). The flow regime of the reach was marked by almost uniform run-pool habitat with some riffle habitat in the downstream portion of the reach. Due to deep water (greater than 1 m) and what appeared to be uniform instream habitat, only 1 transect was surveyed in August 2013. Transect 1 (MN-T1-13n) was located in run-pool habitat representative of most of the reach. Discharge at the transect was 15.46 m³/s (Table 2). Substrate along Transect 1 was composed of gravel (65%), cobble (15%),

sand (15%), and boulder (5%) and would appear to provide good spawning habitat for salmon. Instream cover was generally limited within the reach. Small woody debris, overhanging vegetation, undercut banks, and boulders were sparse and cover by filamentous algae was moderate. Most of the available instream cover for fish occurred as deep pools or as cobble and boulders suitable mainly for smaller fish.

Riparian canopy cover was absent from both the right and left banks for much of the reach. Understory vegetation cover (40%) was uniform throughout the reach. Throughout the stream reach, the riparian zone on one bank was composed of steep, bare sand bars with cobble, gravel and sand substrate and no understory while the opposite bank featured moderate understory composed of willow. Despite the abundance of bare ground on steep banks, the stream channel does not appear to have altered greatly since 1981 (Appendix C).

SOUTHERN OPTION

REED RIVER

The Reed River has proposed bridge crossings on both the preferred and southern options of the Brooks East Corridor (Figure 1). The ABR survey team observed Chum Salmon on the preferred bridge crossing during both 2012 and 2013 sampling events. No fish were observed in the downstream southern option in 2013 (Table 1). The AWC did not previously list Pacific salmon in the Reed River (Table 1). ABR nominated ~19 miles of Chum Salmon spawning and rearing habitat to the AWC in 2013 (Appendix A).

ABR mapped and characterized the stream crossing reach and performed 2 instream habitat transect surveys on 19 August 2013 (Figure 17, Appendix B) (Plates 28–30). The flow regime of the reach was composed of a long run which transitioned to a riffle at the downstream extent of the reach. Additional riffle and pool habitat were also present upstream in side channel habitat. Both Transects 1 (RD-T1-13s) and 2 (RD-T2-13s) were located in long run habitat. Transect 2 also traversed a small portion of side channel habitat. Instream substrate in Transect 1 was composed of cobble (40%), sand (30%), gravel (20%), and boulder (10%). Substrate in the main channel on Transect 2 was cobble (35%), gravel (30%), sand (30%), and cobble (10%). The relatively

uniform main channel provides good fish spawning gravels, while the side channels provide better rearing habitat (Table 2).

Instream cover at both transects was minimal. Filamentous algae, small woody debris, and boulder cover were sparse on both transects. Sparse overhanging vegetation and undercut bank habitat were present on Transect 2. Discharge estimates averaged 22. 2 m^3 /s. Side channel discharge was low (1.85 m³/s) in Transect 2, providing refuge from higher flows for juvenile fish (Appendix B).

At Transect 1, birch and spruce provided 40% tall riparian cover on the left bank, while the right bank was devoid of canopy. The opposite was true at Transect 2, where primarily spruce canopy cover was 30% on the right bank with no canopy on the left bank. Ample shade habitat for fish was provided by tall canopy throughout the reach. Cover by understory vegetation at Transect 1 was 40% on the left bank and 70% on the right bank and was composed of willow, alder, and grasses. Understory cover was similar on Transect 2, but 65% on the left bank and 80% on the right bank. Ground cover also was similar on both banks at the 2 transects, with 20–50% bare ground and a mix of woody shrubs, grasses, moss, and herbaceous material. Despite the amount of side-channel habitat and exposed banks, the channel has changed little since 1979 (Appendix C).

KOBUK RIVER

The Kobuk River has proposed bridge crossings on both the preferred and southern options of the Brooks East Corridor (Figure 1). ABR observed spawning Chum Salmon upstream of both proposed crossings during 2012 fish surveys. The AWC lists Chum and Chinook salmon on the Kobuk River (Table 1). No fish were observed during 2013 physical habitat surveys on the southern option.

ABR mapped and characterized the stream crossing reach and performed 1 instream habitat transect survey on 19 August 2013 (Figure 18, Appendix B) (Plate 31). The reach had a relatively homogenous glide-run flow regime with minimal riffles. Discharge was estimated at 28.22 m³/s. Transect 1 (KB-T1-13s) passed through both run and riffle habitat downstream of the proposed bridge crossing. Substrate was composed of gravel (50%), cobble (35%), sand (10%), and boulder (5%) and provides excellent mixed gravel salmon spawning habitat. Substrate in the

23

transect appeared representative of substrate throughout most of the reach. Instream cover was limited, with moderately abundant filamentous algae and sparse small woody debris and boulders (Table 2).

Vegetation cover measured in the transect appeared to be representative of the entire reach, particularly for the left bank. Riparian canopy cover on both banks was mostly absent within 10 m of shore but some spruce occurred in the middle portion of the reach on the left bank. Most shade cover is available for fish in this section of the reach. On the left bank, understory also was absent. On the right bank, understory cover was 50% and was composed of a combination of willow, spruce, fireweed, and blueberry (50%). Ground cover on the left bank was mostly absent with only small patches of herbaceous vegetation and grasses. Ground cover on the right bank was more dense (40%) and consisted of woody shrubs, herbaceous vegetation, and blueberry (Appendix B). The stream channel in this reach of stream has changed very little from 1979 to 2012 (Appendix C).

HOGATZA RIVER

The Hogatza River is a 120-mile tributary of the Koyukuk River that starts in the Gates of the Arctic National Park and Preserve and flows southwest to the Koyukuk River. The Hogatza River is crossed by the southern option of the Brooks East Corridor (Figure 1). The ABR survey team observed spawning Chum Salmon and Slimy Sculpin during 2012 fish surveys (Table 1). The ABR habitat crews observed Arctic Grayling in 2013. The AWC lists Chum Salmon, Sockeye Salmon (*Oncorhynchus nerka*), Chinook Salmon, Coho Salmon, and whitefish present in the Hogatza River.

ABR mapped and characterized the stream crossing reach and performed 2 instream habitat transect surveys on 20 August 2013 (Figure 19, Appendix B) (Plates 32–34). The Hogatza River is sinuous with a general run-riffle-pool flow regime and abundant side channel habitat. ABR measured an average discharge of 0.67 m³/s during August sampling. Transect 1 (HG-T1-13) was located upstream of the proposed bridge crossing in a run-riffle transition zone. Transect 2 (HG-T2-13MCs and HG-T-13SCs) was split by an island complex and passed through main channel (MC) and side channel (SC) pool and riffle habitat. Instream substrate at Transect 1 was composed of a mix of cobble (40%), gravel (35%), sand (15%), and boulder (10%). Instream

24

substrate in the main channel at Transect 2 was very similar, with cobble (40%), gravel (40%), sand (15%), and boulder (5%). Instream substrate in the side channel on Transect 2 was gravel (50%), sand (25%), and cobble (20%) with little boulder (5%). Most of the substrate in the surveyed reach was ideal salmon spawning habitat. During sampling, numerous Arctic Grayling were seen resting in the pool at the Transect 2 side channel.

Instream cover at both transects included sparse live tree roots, undercut banks, and boulder cover as well as moderately abundant overhanging vegetation, filamentous algae, and small woody debris (Table 2). Sparse large woody debris also was observed at Transect 1. In general, the sample reach would provide good refuge habit for rearing juvenile fish, as well as sufficient pools for larger fish.

At Transect 1, tall canopy riparian cover was mostly absent on the right bank due to the presence of a large gravel bar, although understory cover on the bar was 15%, primarily willows. Ground cover also was sparse in the immediate riparian zone on the right bank at Transect 1. On the left bank of Transect 1, canopy cover was 20% and was composed of spruce which increased in density beyond 10 m from shore. The understory was dense on the left bank, with 80% cover from willows, alders, berries, and tall grasses, and ground cover was nearly complete in the form of short grasses.

Riparian cover was greater at Transect 2 than it was at Transect 1, but similarly comprised mostly understory and ground cover, with moderate canopy cover. Transect 1understory cover was primarily willow, alder, and tall grasses and ground cover (90% on the right bank and 10% on the left bank) was composed of grasses, herbaceous vegetation, and moss. Transect 2 understory cover ranged between 30–50% and was composed of willow, alder, and tall grasses. Bare ground at Transect 2 was minimal (10–30%) with cover from grasses, saplings, herbaceous vegetation, and moss. In general, there was good shade available from canopy and understory cover. However, the cover in the area of the proposed bridge crossing at Transect 1 provides little stream shade. Despite the sinuous nature of the stream channel in the crossing reach, very little channel alteration appears to have occurred since 1981.

Stream Habitat Surveys

25

HELPMEJACK CREEK

Helpmejack Creek, a ~37-mile tributary to the Alatna River, is the last significant waterbody crossed by the southern option of the Brooks East Corridor (Figure 1). ABR observed Dolly Varden and Arctic Grayling in Helpmejack Creek during 2012 fish surveys (Table 2). No fish observations were made during 2013 physical habitat surveys. Pacific salmon are not listed in the AWC for Helpmejack Creek (Table 1).

ABR mapped and characterized the stream crossing reach and performed 3 instream habitat transect surveys on 18 August 2013 (Figure 20, Appendix B) (Plates 35–38). Helpmejack Creek is a sinuous stream with a riffle-run-pool flow regime. Transect 1 (HJ-T1-13s) was representative of pool habitat in the reach and instream substrate was composed of sand (40%), cobble (30%), silt (25%), and boulder (5%). While this is good refuge habitat it would not provide good substrate for spawning salmon due to the high percentage of silt present. Transect 2 (HJ-T1-13s) was located in a run section of stream and represented better fish spawning habitat with substrate composed of cobble (40%), boulder (30%), gravel (20%), sand (5%), and silt (5%). Transect 3 was located in a mixed run-pool habitat and was representative of the reach as a whole with substrate composed of cobble (50%), gravel (20%), silt (20%), and boulders (10%). In general, we saw more silt and sand on Helpmejack Creek than at other sample reaches in the corridor and habitats appeared to be less than ideal for spawning salmon. Discharge averaged 1.87 m³/s (Table 2).

Instream cover at the 3 transects was sparse to moderately abundant. Transect 1 had sparse cover of filamentous algae, large woody debris, overhanging vegetation, undercut banks, and boulders with moderate cover by small woody debris. Transect 2 had sparse filamentous algae, small woody debris, overhanging vegetation, and undercut banks with moderate boulder cover. Transect 3 had sparse overhanging vegetation, small woody debris, and undercut banks. Instream cover at Helpmejack Creek would provide good refuge for juvenile and small fishes as well as resting habitat in deep pools for larger Arctic Grayling and Dolly Varden.

Riparian canopy vegetation was limited and varied from bank to bank, typically providing no cover on one bank while the opposite bank had between 20% and 40% spruce canopy. The understory was composed of moderate to heavy alder, willow, and grass. The ground cover varied greatly with between 5% and 80% of the ground being bare while grass, herbaceous vegetation, young willow, and moss provided between 20% and 95% cover. Stream shading was good in the crossing reach as a whole because of the small channel width, and despite the low abundance of tall ground cover (Appendix D). Bank stability appeared to be good as the stream channel has altered very little since 1982 (Appendix D).

SUMMARY

During the 11 days of stream and riparian zone habitat surveys at proposed bridge crossings on the Brooks East Corridor, ABR conducted 28 habitat transects at 18 stream crossing reaches on 14 waterbodies. Most stream reaches surveyed were in known fish bearing streams and provided habitat for at least a portion of the life history of several salmonid species. Salmonid spawning habitat was available to some degree at almost all of the waterbodies sampled. Streams visited during 2013 habitat surveys represent only a small portion of the total number of waterbodies crossed by the Brooks East Corridor and most were large river systems. However, the vast majority of additional waterbodies crossed by the Brooks East Corridor are small relative to the streams surveyed in 2013. These small streams would require culverts as opposed to bridges during construction of the proposed road. Finally, streams surveyed in 2013 showed remarkable channel stability over the last 30 years as evidenced from aerial imagery. Fish presence, stream flow regimes, spawning substrates, refuge habitat, and riparian zone vegetation are important considerations prior to permitting and construction of any road project. This information will ultimately allow resource managers to determine potential impacts on fish and fish habitat and allow for determination of proper protocols for impact avoidance during the construction phase of the Brooks East Corridor.

Stream Habitat Surveys

ACKNOWLEDGMENTS

ABR would like to thank DOWL HKM for their support on this project. Kristen Hansen, Erin Gora, Emily Creely, Dwight Stuller, and Jessica Christianson provided invaluable logistic, field, and office support. We thank Allen A. Tickett, our subsistence advisor, for providing local knowledge and expertise during physical habitat surveys. The ABR crew is grateful to Betty, Al, and Chelsea from the Sourdough Lodge as well as Jay and Judy Jepson from Brooks Range Aviation for their hospitality during our 8-day stay in Bettles, Alaska. We are very grateful for the support of everyone at the NOVAGOLD Dahl Creek Camp during our 5-day stay at their camp. We appreciate 2 weeks of safe helicopter flights with Brent from the Bristow Group.

LITERATURE CITED

- Alaska Department of Fish and Game (ADFG). 2013. Catalog of waters important for the spawning, rearing or migration of anadromous fishes. Available online at: [http://www.sf.adfg.state.ak.us/SARR/awc/index.cfm/FA/main.overview]. November 2013.
- Buckwalter, J.D., J.M. Kirsch, and D.J. Reed. 2010. Fish inventory and anadromous cataloging in the lower Yukon River drainage, 2008. Fishery Data Series No. 10-76. Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Anchorage, Alaska. 603 pp.
- Lemke, J.L, J.M. Gottschalk, D. Dissing, R.M. Burgess, and J.C. Seigle. 2013. Anadromous fish surveys within the Brooks East Corridor survey area, Alaska. Report by ABR, Inc.— Environmental Research & Services, Anchorage, AK for DOWL HKM, Anchorage, AK. 86 pp.
- United States Geological Survey (USGS). 2013. The national map viewer. Available online at: [http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd]. November 2013.

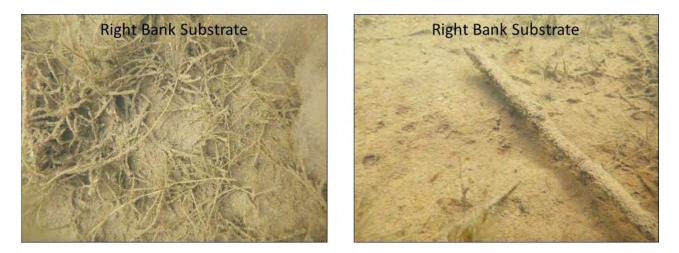


Plate 1. Stream channel characteristics, riparian habitat, and instream substrate composition at transect SH-T1-13, Shungnak River, Brooks East Corridor, Alaska, August 2013.

Plate 2. Stream channel characteristics, riparian habitat, and instream substrate composition at transect SH-T2-13, Shungnak River, Brooks East Corridor, Alaska, August 2013.

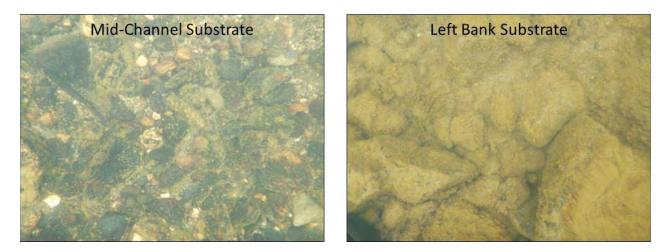
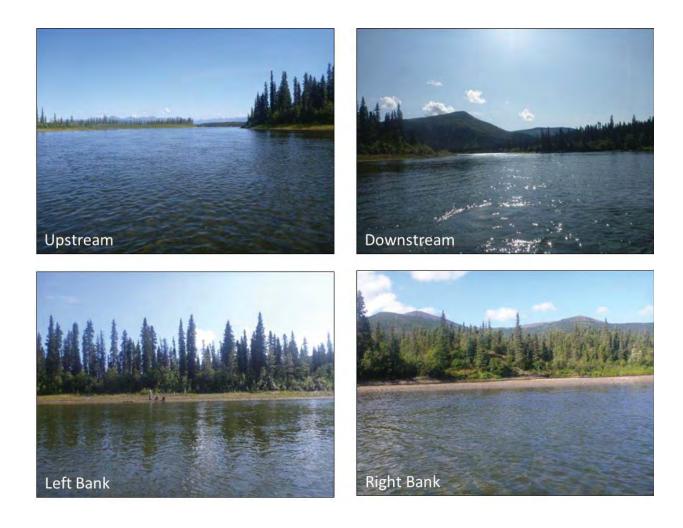



Plate 3. Stream channel characteristics, riparian habitat, and instream substrate composition at transect SH-T3-13, Shungnak River, Brooks East Corridor, Alaska, August 2013.

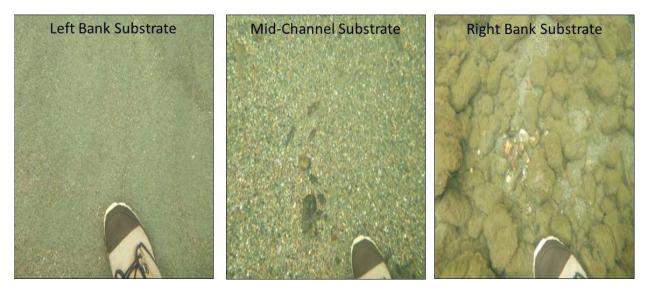


Plate 4. Stream channel characteristics, riparian habitat, and instream substrate composition at transect KG-T1-13, Kogoluktuk River, Brooks East Corridor, Alaska, August 2013.

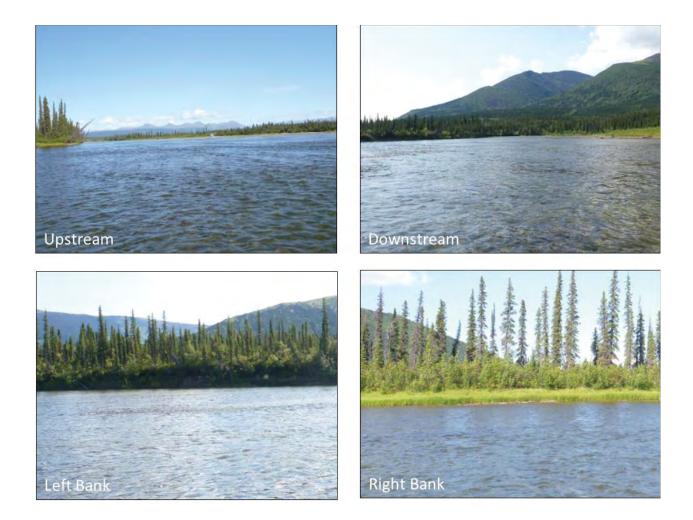


Plate 5. Stream channel characteristics, riparian habitat, and instream substrate composition of sidechannel habitat at KG-T1-13, Kogoluktuk River, Brooks East Corridor, Alaska, August 2013.

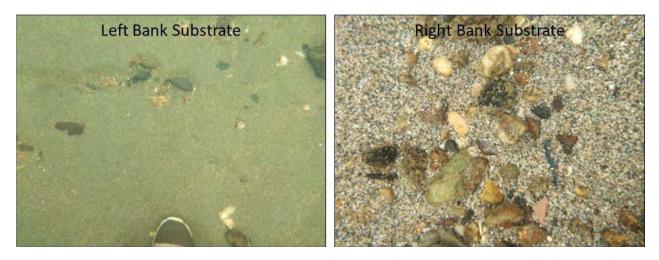


Plate 6. Stream channel characteristics, riparian habitat, and instream substrate composition at transect KG-T2-13, Kogoluktuk River, Brooks East Corridor, Alaska, August 2013.

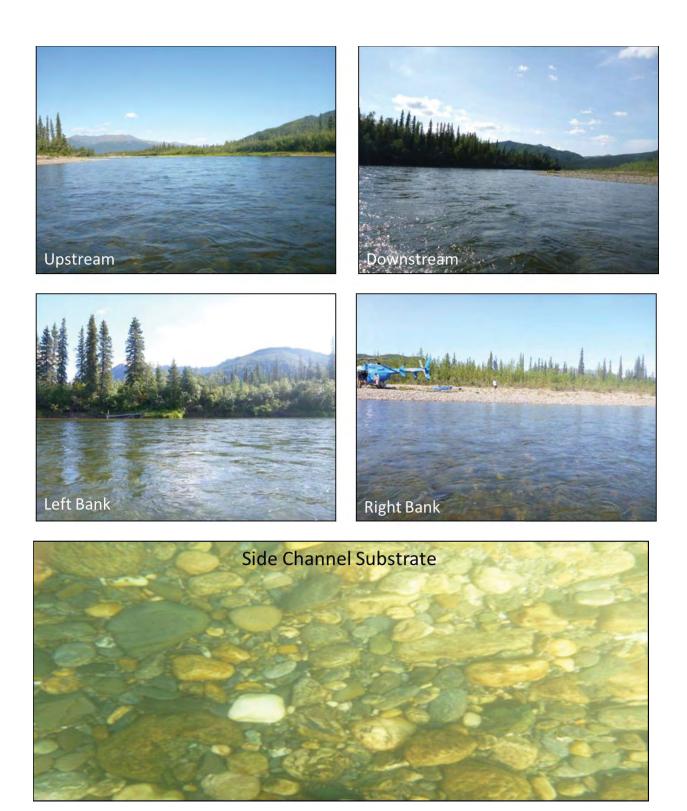


Plate 7. Stream channel characteristics, riparian habitat, and instream substrate composition at partial transect (MN-T1-13) on the Mauneluk River, Brooks East Corridor, Alaska, August 2013.

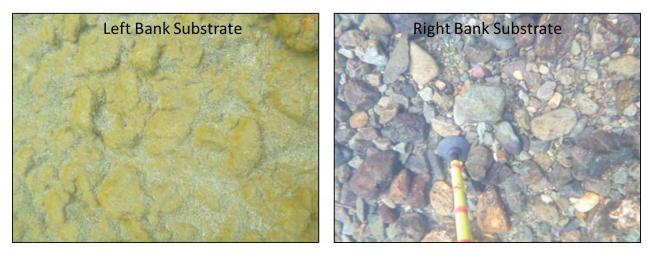


Plate 8. Stream channel characteristics, riparian habitat, and instream substrate composition at partial transect (MN-T2-13) on the Mauneluk River, Brooks East Corridor, Alaska, August 2013.

Plate 9. Stream channel characteristics, riparian habitat, and instream substrate composition at transect BV-T1-13, Beaver Creek, Brooks East Corridor, Alaska, August 2013.

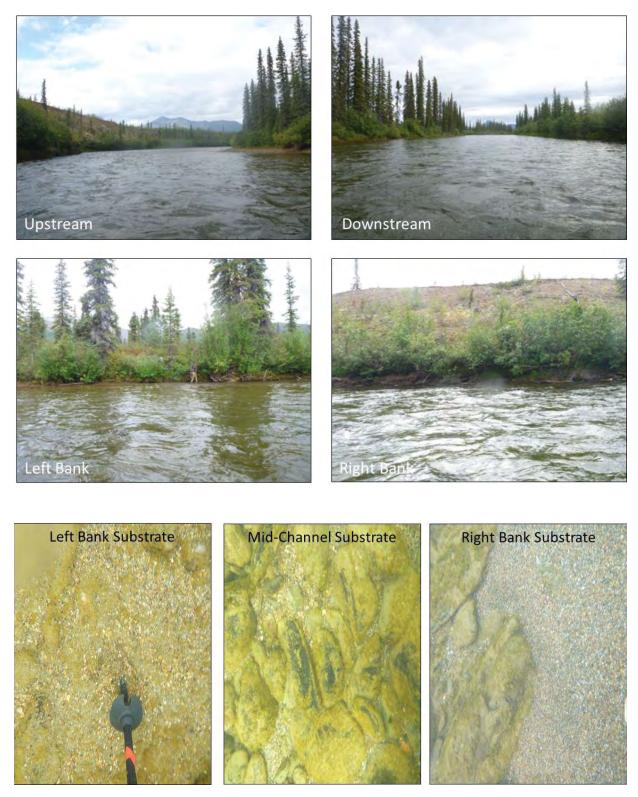


Plate 10. Stream channel characteristics, riparian habitat, and instream substrate composition at transect BV-T2-13, Beaver Creek, Brooks East Corridor, Alaska, August 2013.

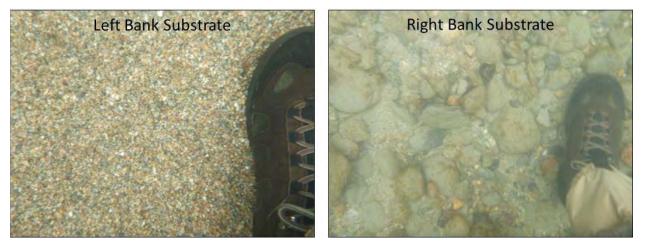


Plate 11. Stream channel characteristics, riparian habitat, and instream substrate composition at transect RD-T1-13, Reed River, Brooks East Corridor, Alaska, August 2013.



Plate 12. Stream channel characteristics, riparian habitat, and instream substrate composition at transect KB-T1-13, Kobuk River, Brooks East Corridor, Alaska, August 2013.



Plate 13. Stream channel characteristics, riparian habitat, and instream substrate composition at an observation point on the Kobuk River, Brooks East Corridor, Alaska, August 2013.

Plate 14. Stream channel characteristics and riparian habitat at observation point AL-T1-13 on the Alatna River, Brooks East Corridor, Alaska, August 2013.

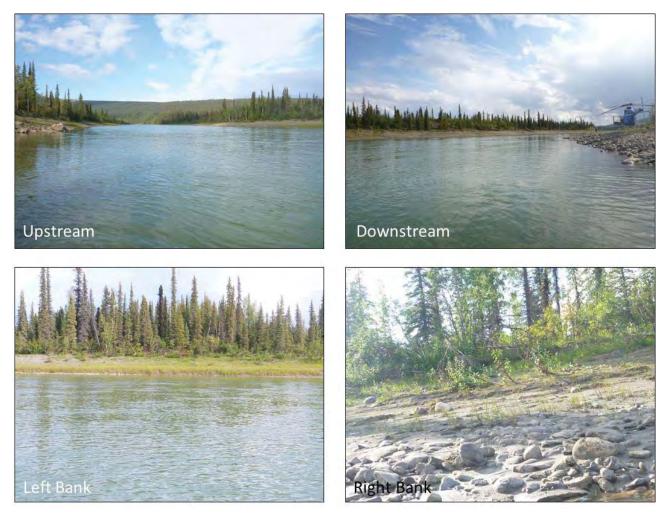


Plate 15. Stream channel characteristics and riparian habitat at observation point AL-T2-13, Alatna River, Brooks East Corridor, Alaska, August 2013.

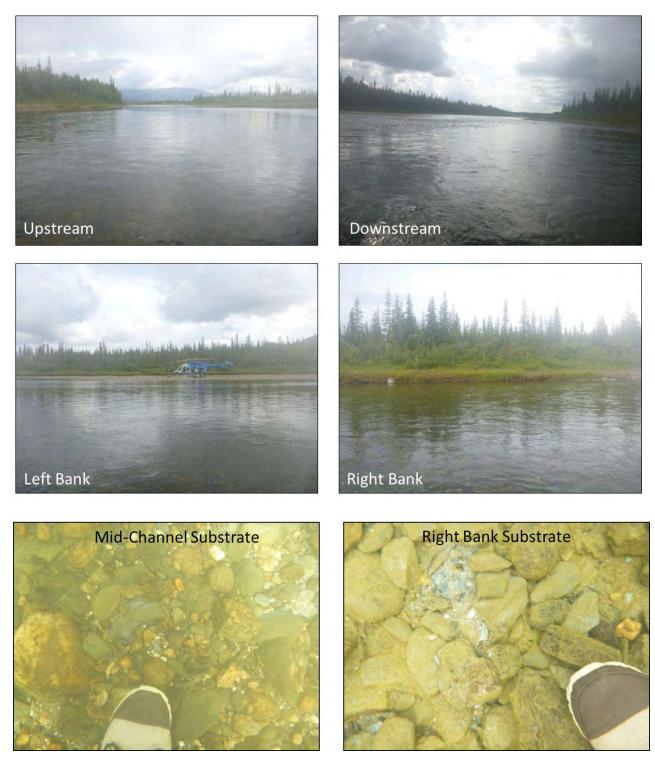


Plate 16. Stream channel characteristics, riparian habitat, and instream substrate composition at transect MF-T1-13, Malamute Fork Alatna River, Brooks East Corridor, Alaska, August 2013.

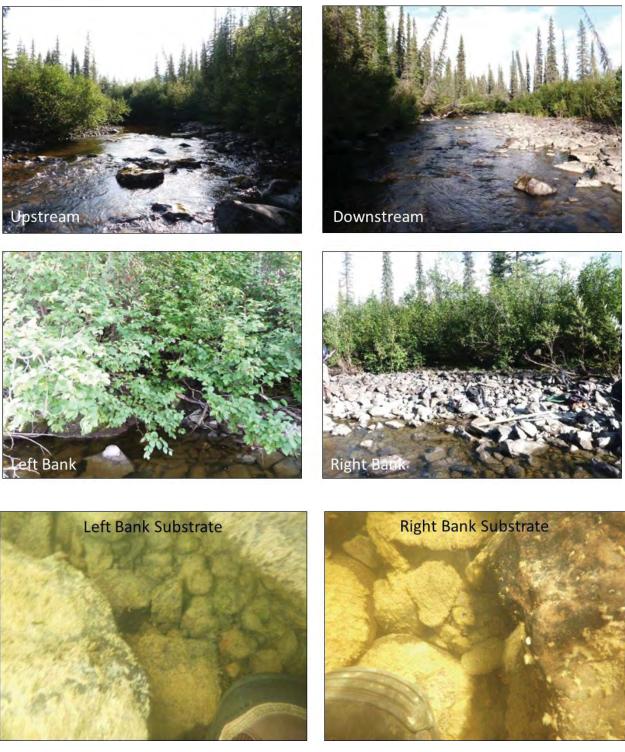


Plate 17. Stream channel characteristics, riparian habitat, and instream substrate composition at transect UN18-T1-13, unnamed tributary to the Malamute Fork Alatna River, Brooks East Corridor, Alaska, August 2013.

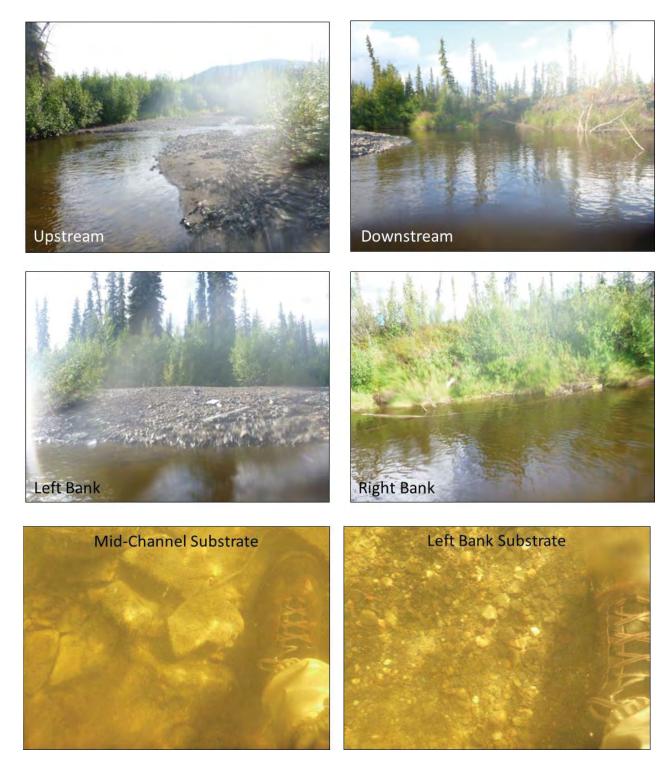
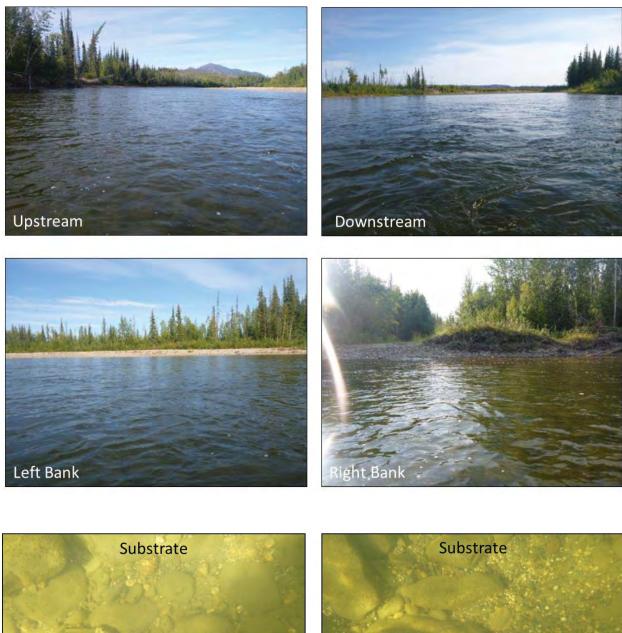



Plate 18. Stream channel characteristics, riparian habitat, and instream substrate composition at transect UN18-T2-13, unnamed tributary to the Malamute Fork Alatna River, Brooks East Corridor, Alaska, August 2013.

Plate 19. Stream channel characteristics, riparian habitat, and instream substrate composition at observation points on the Koyukuk River, Brooks East Corridor, Alaska, August 2013.

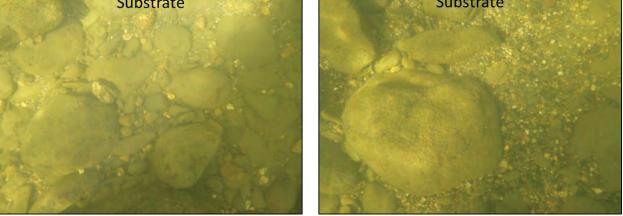


Plate 20. Stream channel characteristics, riparian habitat, and instream substrate composition at transect SF-T1-13, South Fork Koyukuk River, Brooks East Corridor, Alaska, August 2013.

Plate 21. Stream channel characteristics and riparian habitat at observation points on the South Fork Koyukuk River, Brooks East Corridor, Alaska, August 2013.

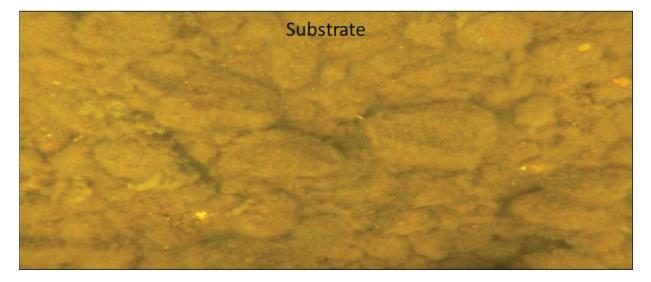


Plate 22. Stream channel characteristics, riparian habitat, and instream substrate composition at transect JM-T1-13, Jim River, Brooks East Corridor, Alaska, August 2013.

Plate 23. Stream channel characteristics and riparian habitat at upstream observation points on the Jim River, Brooks East Corridor, Alaska, August 2013.

Plate 24. Stream channel characteristics and riparian habitat at downstream observation points on the Jim River, Brooks East Corridor, Alaska, August 2013.

Plate 25. Stream channel characteristics, riparian habitat, and instream substrate composition at transect UN30-T1-13n, unnamed tributary to the Mauneluk River, Brooks East Corridor, Alaska, August 2013.

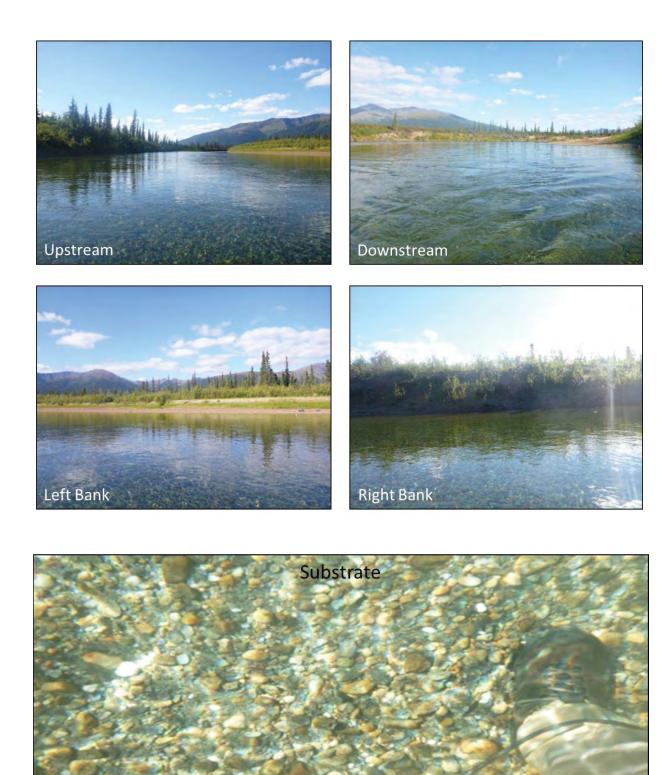


Plate 26. Stream channel characteristics, riparian habitat, and instream substrate composition at transect MN-T1-13n, Mauneluk River (northern option), Brooks East Corridor, Alaska, August 2013.

Plate 27. Stream channel characteristics and riparian habitat at observations points on the Mauneluk River (northern option), Brooks East Corridor, Alaska, August 2013.

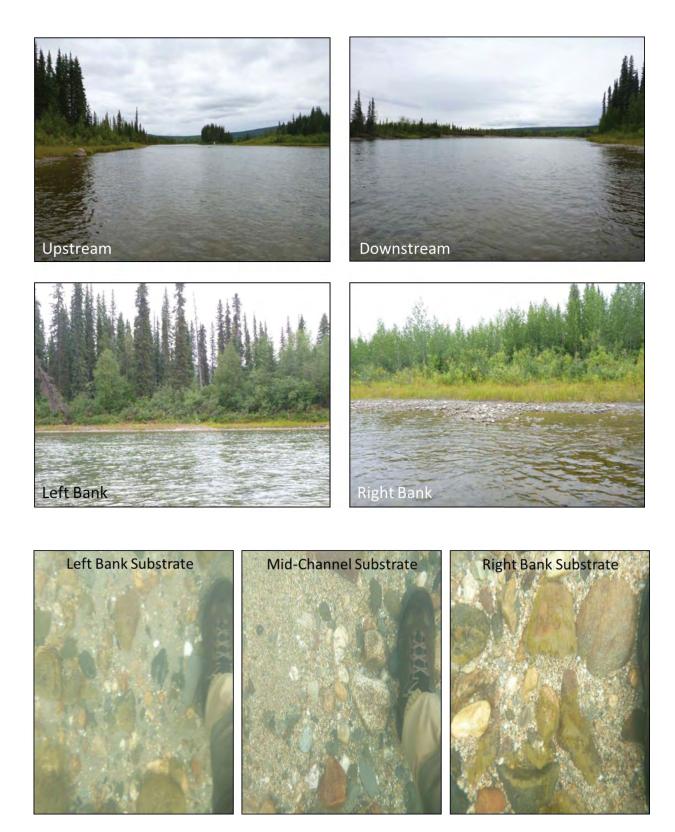


Plate 28. Stream channel characteristics, riparian habitat, and instream substrate composition at transect RD-T1-13s, Reed River (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 29. Stream channel characteristics, riparian habitat, and instream substrate composition at transect RD-T2-13s, Reed River (southern option), Brooks East Corridor, Alaska, August 2013.

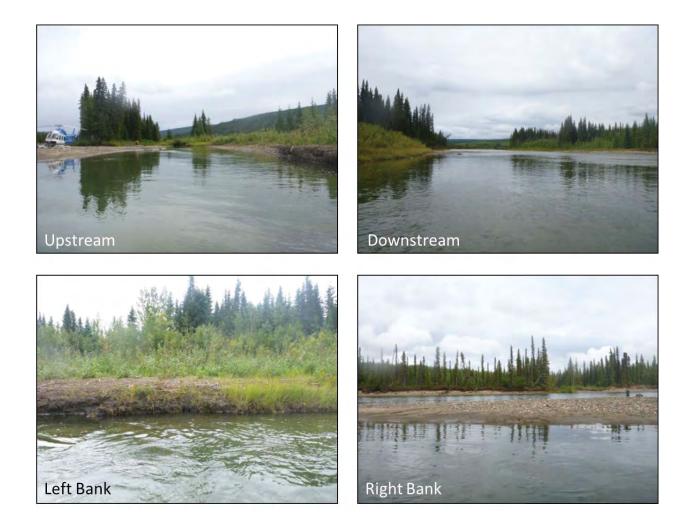


Plate 30. Stream channel characteristics, riparian habitat, and instream substrate composition of side-channel habitat at transect RD-T2-13s, Reed River (southern option), Brooks East Corridor, Alaska, August 2013.

ABR, Inc.



Plate 31. Stream channel characteristics, riparian habitat, and instream substrate composition at transect KB-T1-13s, Kobuk River (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 32. Stream channel characteristics, riparian habitat, and instream substrate composition at transect HG-T1-13s, Hogatza River (southern option), Brooks East Corridor, Alaska, August 2013.

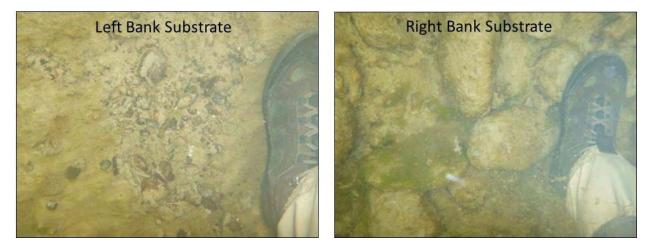


Plate 33. Stream channel characteristics, riparian habitat, and instream substrate composition at transect HG-T2-13MCs, Hogatza River (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 34. Stream channel characteristics, riparian habitat, and instream substrate composition at transect HG-T2-13SCs, Hogatza River (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 35. Stream channel characteristics, riparian habitat, and instream substrate composition at transect HJ-T1-13s, Helpmejack Creek (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 36. Stream channel characteristics, riparian habitat, and instream substrate composition at transect HJ-T2-13s, Helpmejack Creek (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 37. Stream channel characteristics and riparian habitat at transect HJ-T3-13s, Helpmejack Creek (southern option), Brooks East Corridor, Alaska, August 2013.

Plate 38. Stream channel characteristics, riparian habitat, and instream substrate composition at 3 observation points on Helpmejack Creek, Brooks East Corridor, Alaska, August 2013.

		Anadromous Fish Observations ^a		Freshwater Fish ^{a,b}		2013 AWC	
Waterbody Name	Tributary to	2012	2013	2012	2013	records ^a	
Shungnak River	Kobuk River	_	_	SC, AG	AG	_	
Ruby Creek	Shungnak River	_	ns	SC, AG	ns	-	
Kogoluktuk River	Kobuk River	_	_	SC, AG	AG	CS, DV, WF	
Unnamed tributary	Kogoluktuk River	_	ns	SC, AG	ns	_	
Canyon Creek	Kogoluktuk River	_	ns	DV, SC	ns	_	
Riley Creek	Kogoluktuk River	_	ns	DV	ns	_	
Maunelak River	Kobuk River	CS	CS	SC	AG	CS, WF	
Unnamed tributary	Mauneluk River	_	ns	DV, SC	ns	_	
Unnamed tributary	Mauneluk River	_	ns	DV	ns	_	
Unnamed tributary	Mauneluk River	_	ns	DV	ns	_	
Unnamed tributary	Mauneluk River	_	ns	DV	ns	_	
Unnamed tributary	Mauneluk River	CS	ns	SC, NP	ns	_	
UN30	Mauneluk River	CS	ns	AG	ns	_	
Unnamed tributary	Mauneluk River	_	ns	DV, SC	ns	_	
Beaver Creek	Kobuk River	_	_	SC, AG	_	CS	
Unnamed tributary	Beaver Creek	_	ns	DV	ns	_	
Unnamed tributary	Beaver Creek	_	ns	DV, SC	ns	_	
Unnamed tributary	Beaver Creek	_	ns	SC, BB	ns	_	
Unnamed tributary	Beaver Creek	_	ns	SC SC, AG,	ns	_	
Reed River	Kobuk River	CS	CS	BB	SC	_	
Unnamed tributary	Reed River	_	ns	SC	ns	_	
Kobuk River	None	CS	_	SC	AG	CS, KS, DV, SF, WF	
Unnamed tributary	Kobuk River	_	ns	DV, SC	ns	_	
Unnamed tributary	Kobuk River	_	ns	SC, AG	ns	_	
Unnamed tributary	Kobuk River	_	ns	DV	ns	_	
Unnamed tributary	Kobuk River	_	ns	SC	ns	_	
Alatna River	Koyukuk River	_	_	SC	_	CS, KS	
Unnamed tributary	Alatna River	CS	ns	_	ns	_	
Unnamed tributary Malamute Fork Alatna	Alatna River	KS	ns	-	ns	_	
River	Alatna River Malamute Fork	ns	CS	ns	_	CS, KS	
Tobuk Creek	Alatna River	SS, KS	ns	-	ns	_	

Table 1.Anadromous and freshwater fish species observed during surveys of the Brooks East
Corridor, Alaska, 2012 and 2013, and current Alaska Department of Fish and Game
Anadromous Waters Catalog (AWC) records.

		Anadrom Observ		Freshwate	er Fish ^{a,b}	2013 AWC
Waterbody Name	Tributary to	2012	2013	2012	2013	records ^a
	Malamute Fork					
Unnamed tributary	Alatna River	_	ns	SC	ns	_
	Malamute Fork					
Unnamed tributary	Alatna River	SS	ns	-	ns	_
	Malamute Fork					
Unnamed tributary	Alatna River	SS, CS	ns	_	ns	_
UN18	Bedrock Creek	_	_	-	NP	_
						CS, SS, KS, RS,
Koyukuk River	None	ns	_	ns	_	SF, WF
South Fork Koyukuk River	Koyukuk River South Fork	ns	_	ns	BB	CS, KS, WF
Unnamed tributary	Koyukuk River South Fork	_	ns	SC	ns	_
Unnamed tributary	Koyukuk River South Fork	-	ns	SC, AG	ns	-
Jim River	Koyukuk River	ns	CS	ns	AG	CS, KS
Unnamed tributary	Jim River	SS	ns	SC	ns	-
Unnamed tributary	Jim River	SS, KS	ns	AG, SC	ns	-
Hogatza River	Koyukuk River	CS	_	SC	AG	CS, SS, KS, WF
Unnamed tributary	Hogatza River	_	ns	SC, BB	ns	_
Unnamed tributary	Hogatza River	_	ns	AG	ns	_
Helpmejack Creek	Alatna River	_	_	DV, AG	ns	_
Unnamed tributary	Helpmejack Creek	_	-	DV, SC	ns	-

Table 1. Continued.

а DV = Dolly Varden; SS = Coho Salmon; KS = Chinook Salmon; SC = Slimy Sculpin; AG = Arctic Grayling; BB = Burbot;

NP = Northern Pike; CS = Chum Salmon; RS = Sockeye Salmon; WF = Whitefish species; SF = Sheefish; ns=not sampled Dolly Varden observed during ABR surveys are treated as freshwater resident fish because it cannot be shown that they areanadromous without additional analysis

Survey Transect	Waterbody	Date	Bankfull Width (m)	Wetted Width (m)	Thalweg Depth (m)	Stream Channel Substrate ^a	Discharge (m ³ /s)	Instream Cover ^{b,c}
SH-T1-13	Shungnak River	8/12/2013	59	52	nm	40% SI, 40% CY, 5% BO, 5% CB, 5% GR, 5% SA	nm	FA1, MA2, SWD1, OV1, BO1
SH-T2-13	Shungnak River	8/12/2013	49	37	0.85	40% GR, 30% CB, 25% SA, 5% BO	10.00	SWD1, OV1, BO1
SH-T3-13	Shungnak River	8/12/2013	40	49	0.82	40% GR, 35% CB, 20% SA, 5% BO	11.06	FA2, SWD1, LTR1, OV2, UB2, BO1
KG-T1-13	Kogoluktuk River	8/13/2013	120	102	1.02	90% SA, 5% CB, 5% GR (50% SA, 25% GR, 20% CB, 5% BO)	24.88	SWD1, BO1
KG-T2-13	Kogoluktuk River	8/13/2013	131	124	0.89	40% SA, 30% CB, 30% GR	22.84	FA2, SWD1, OV1
MN-T1-13	Mauneluk River	8/13/2013	97	58	nm	50% GR, 35% CB, 15% SA	34.43 ^d	FA2, LWD1, SWD1, LTR1, OV1
MN-T2-13	Mauneluk River	8/13/2013	nm	70	nm	40% CB, 40% SA, 20% GR	13.01	FA2, MA1, LWD1, SWD1, OV2
BV-T1-13	Beaver Creek	8/14/2013	34.2	31.5	0.66	50% CB, 25% GR, 15% BO, 5% SA, 5% CY	7.70	FA4, MA1, SWD1, OV2, UB1, BO2
BV-T2-13	Beaver Creek	8/14/2013	29.05	28	0.88	30% CB, 30% SA, 20% BO, 20% GR	7.86	FA4, MA1, SWD1, LTR1, OV2, UB1, BO2
RD-T1-13	Reed River	8/15/2013	79	56	0.98	35% GR, 35% SA, 20% CB, 10% BO	26.48	FA2, MA1, SWD1, LTR1, OV1 BO1
KB-T1-13	Kobuk River	8/15/2013	90	89	0.97	35% CB, 35% GR, 25% SA, 5% BO	29.67	UB1, BO1
AL-T2-13	Alatna River	8/17/2013	98.5	75.5	nm	35% SA, 25% CB, 20% SI, 10% BO, 10% GR	nm	SWD1, BO2
MF-T1-13	Malamute Fork Alatna River	8/17/2013	91	53.5	0.75	35% GR, 35% SA, 25% CB, 5% BO	12.28	FA1, SWD1, OV1, UB1, BO1
UN18-T1-13	Unnamed tributary to Malamute Fork Alatna River		15.5		0.39	50% BO, 30% CB, 15% GR, 5% SA	0.60	FA2, SWD1, LTR1, OV2, UB1, BO3
UN18-T2-13	Unnamed tributary to Malamute Fork Alatna River	8/16/2013	19.5	7.3	1.08	25% BO, 25% CB, 25% GR, 25% SA	0.31	FA3, SWD2, LTR1, OV2, UB2, BO1
SF-T1-13	South Fork Koyukuk River	8/22/2013	85	56	1.04	40% CB, 30% GR, 15% BO, 15% SA	13.75	SWD1, AS2
JM-T1-13	Jim River	8/22/2013	65	23.5	0.71	45% GR, 35% CB, 15% SA, 5% BO	5.07	FA1, LWD1, SWD1, BO1
UN30-T1-13n	Unnamed tributary to Mauneluk River	8/21/2013	46	19.5	0.97	50% BO, 30% CB, 15% GR, 5% SA	3.85	FA1, SWD2, OV1, BO3
MN-T1-13n	Mauneluk River	8/21/2013	60	33.7	0.99	65% GR, 15% CB, 15% SA, 5% BO	15.46	FA2, SWD1, OV1, UB1, BO1
RD-T1-13s	Reed River	8/19/2013	65.5	57	0.93	40% CB, 30% SA, 20% GR, 10% BO	21.51	FA1, SWD1, BO1

Table 2.Instream physical habitat parameters for waterbodies sampled in the Brooks East Corridor, Alaska, August 2013. Values in
parentheses represent side-channel habitat.

Survey Transect	Waterbody	Date	Bankfull Width (m)		Thalweg Depth (m)	Stream Channel Substrate ^a	Discharge (m ³ /s)	Instream Cover ^{b,c}
RD-T2-13s	Reed River	8/19/2013	80	46.5	0.81	35% CB, 30% GR, 30% SA, 5% BO (60% SA, 30% GR, 10% CB)	22.91	FA1, SWD1, OV1, UB1, BO1
KB-T1-13s	Kobuk River	8/19/2013	113	77	1.03	50% GR, 35% CB, 10% SA, 5% BO	28.22	FA2, SWD1, BO1
HG-T1-13s	Hogatza River	8/20/2013	27.5	9.2	0.42	40% CB, 35% GR, 15% SA, 10% BO	0.62	FA2, LWD1, SWD2, LTR1, OV2, UB1, BO1
HG-T2-13MCs	Hogatza River	8/20/2013	12.5	5.6	0.84	40% CB, 40% GR, 15% SA, 5% BO	0.59	FA1, SWD1, LTR1, OV2, UB1, BO1
HG-T2-13SCs	Hogatza River	8/20/2013	11.2	9.4	0.53	50% GR, 25% SA, 20% CB, 5% BO	0.12	FA2, SWD2, LTR1, OV2, UB2, BO1
HJ-T1-13s	Helpmejack Creek	8/18/2013	39.2	11.15	0.92	40% SA, 30% CB, 25% SI, 5% BO	1.75	FA1, LWD1, SWD2, OV1, UB1, BO1
HJ-T2-13s	Helpmejack Creek	8/18/2013	19.3	10.5	0.81	40% CB, 30% BO, 20% GR, 5% SA, 5% SI	1.62	FA1, SWD1, OV1, UB1, BO2
HJ-T3-13s	Helpmejack Creek	8/18/2013	24.2	10.9	0.69	50% CB, 20% GR, 20% SI, 10% BO	2.25	SWD1, OV1, BO1

^a BO, boulder; CB, cobble; GR, gravel; SA, sand; SI, silt; CY, clay

^b Each parameter was expressed as a qualitative percentage of the total stream cover within 10 m upstream and downstream of the water sampling site and was designated as 0=absent (0%), 1 = sparse (less than 10%), 2 = moderate (10–40%), 3 = moderately abundant (40–75%), or abundant (greater than 75%).

^c FA = Filamentous Algae; MA = Macrophytes; LWD = Large woody debris (more than 0.3 m at diameter breast height); SWD = Small woody debris (less than 0.3 m at diameter breast height); LTR = Live Tree Roots; OV = Overhanging Vegetation; UB = Undercut Bank; AS = Artificial Structures

^d Discharge measured downstream of transect at the end of the corridor because transect was unwadeable nm=not measured

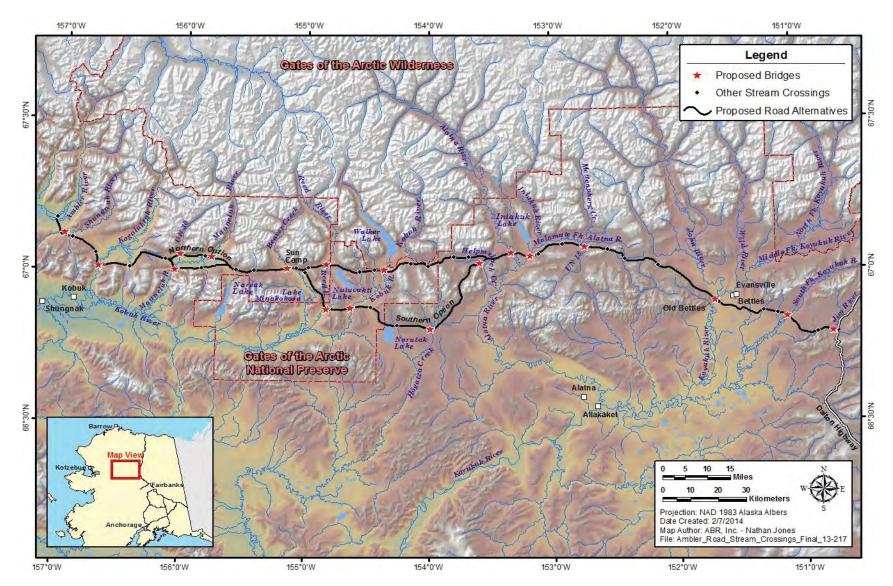


Figure 1. The Brooks East Corridor, including the northern and southern options, and proposed bridge crossings where stream habitat surveys were conducted in August 2013.

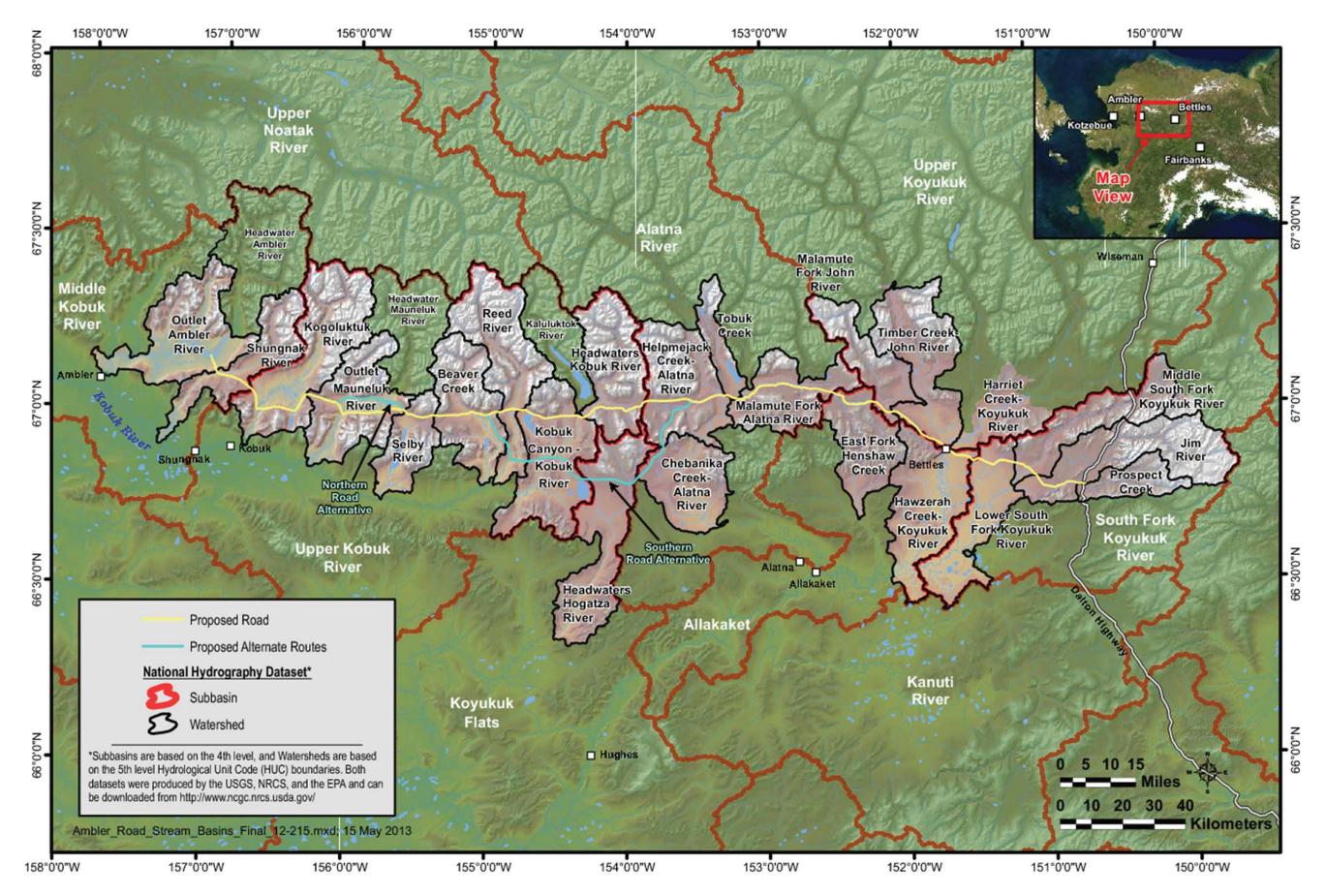


Figure 2. Subbasins and watersheds traversed by the proposed Brooks East Corridor, including the northern and southern options.

Stream Habitat Surveys

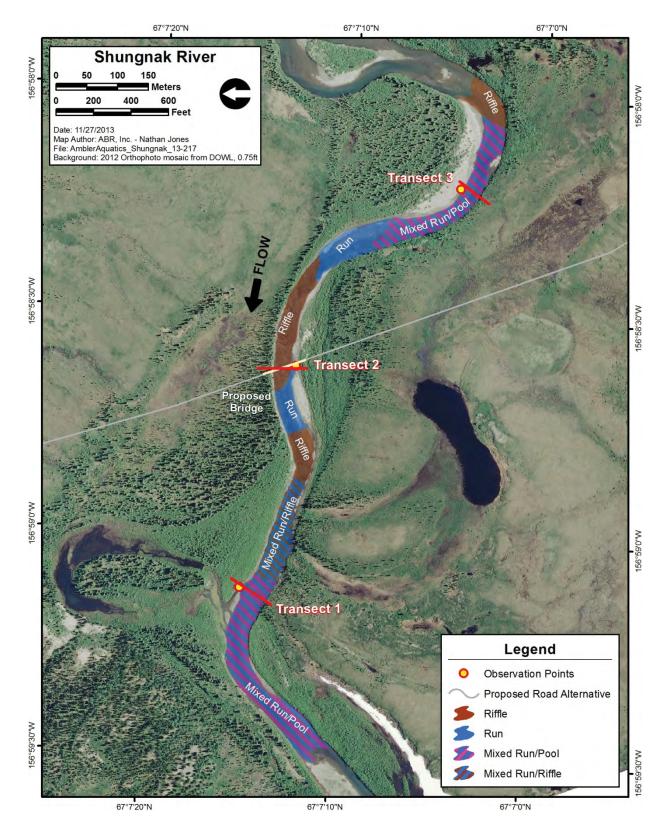


Figure 3. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Shungnak River, Alaska, August 2013.

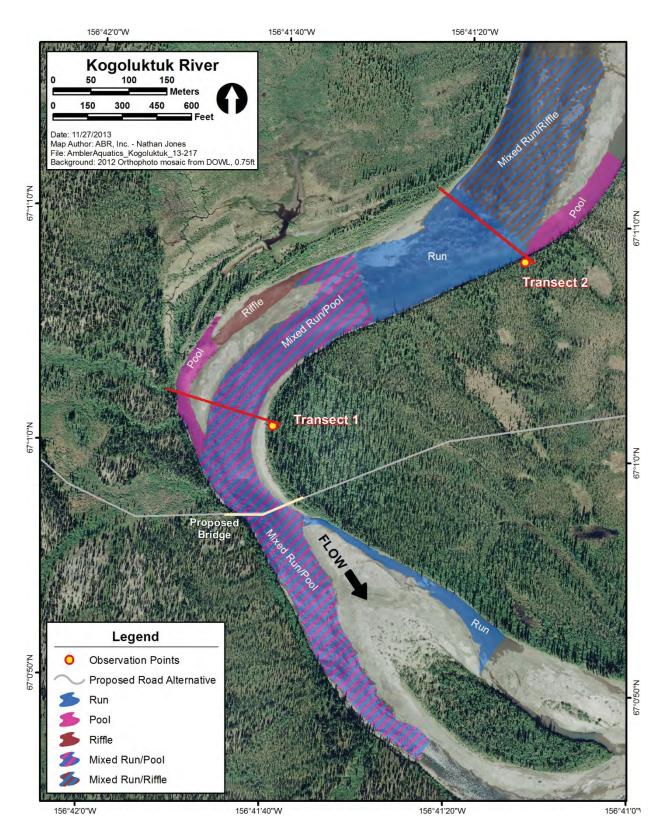


Figure 4. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Kogoluktuk River, Alaska, August 2013.

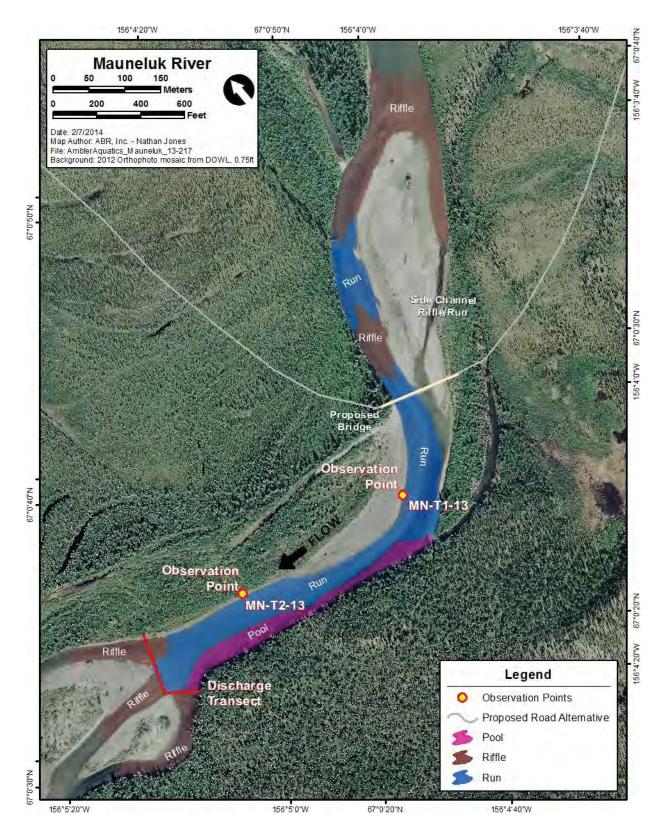


Figure 5. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Mauneluk River, Alaska, August 2013.

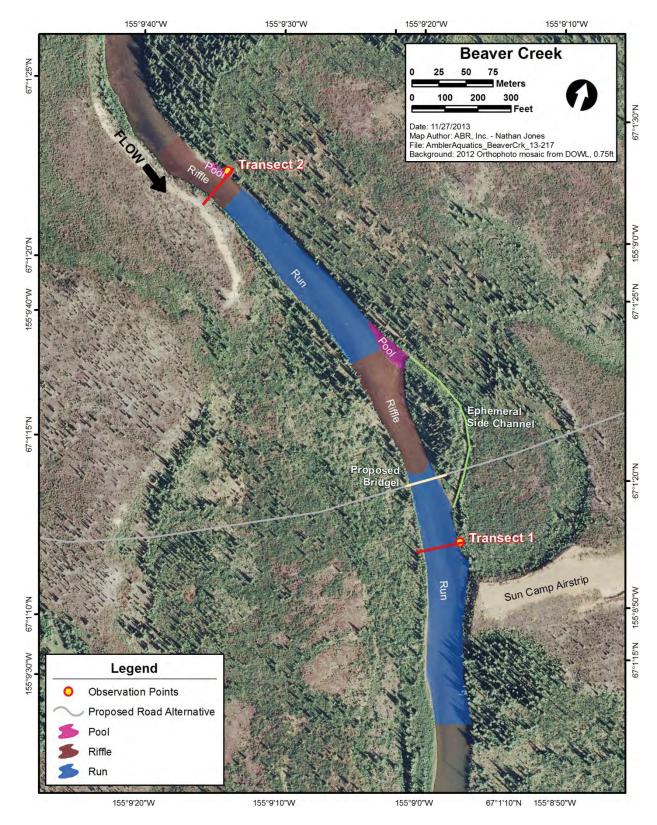


Figure 6. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Beaver Creek, Alaska, August 2013.

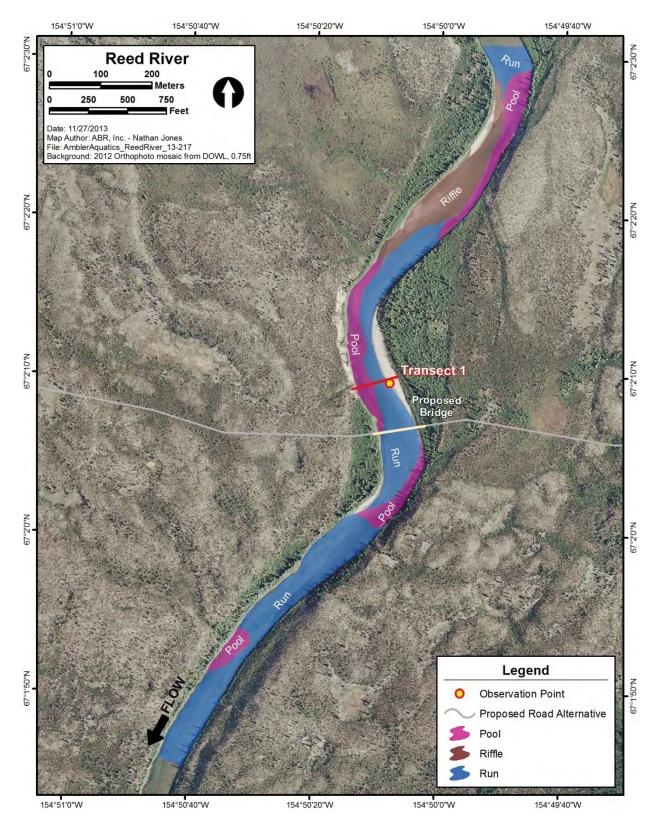


Figure 7. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Reed River, Alaska, August 2013.

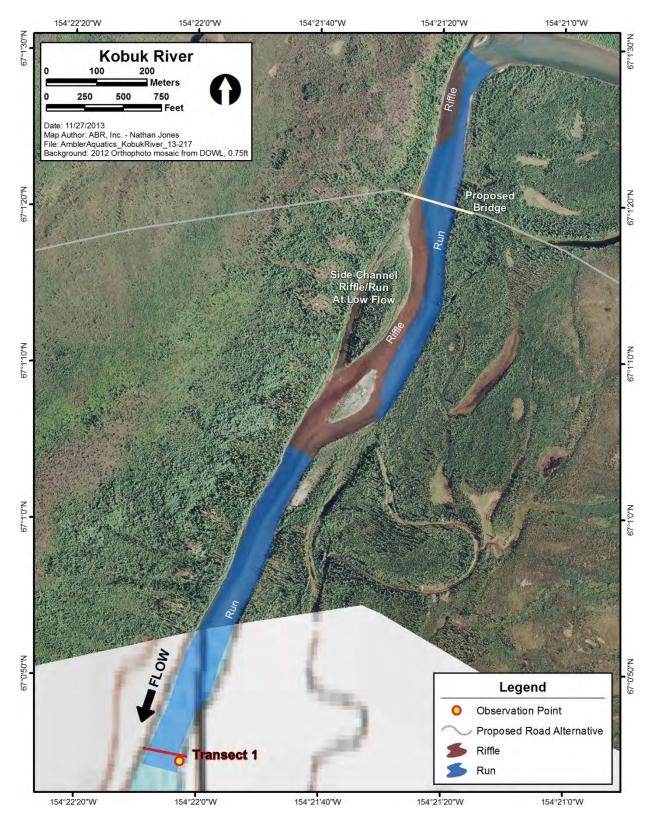


Figure 8. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Kobuk River, Alaska, August 2013.

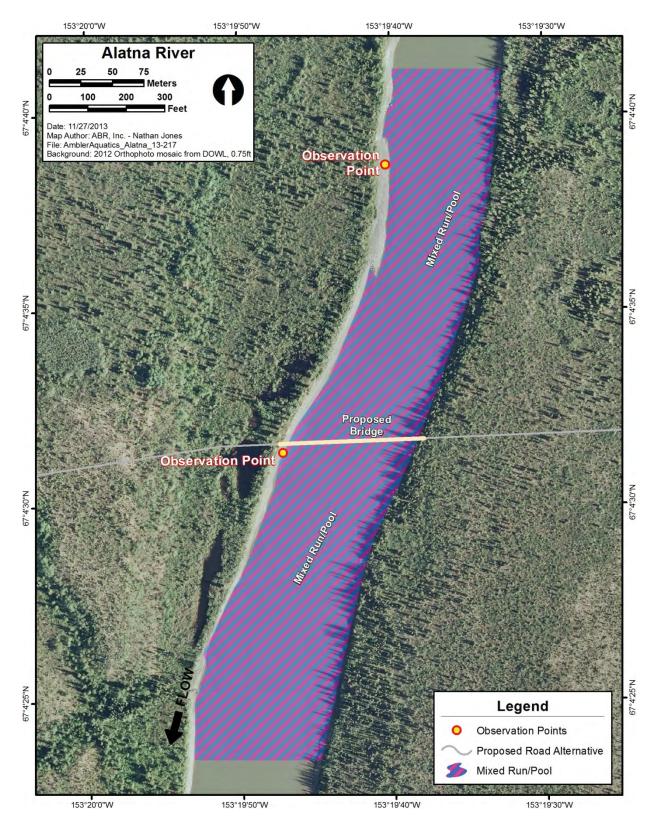


Figure 9. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Alatna River, Alaska, August 2013.

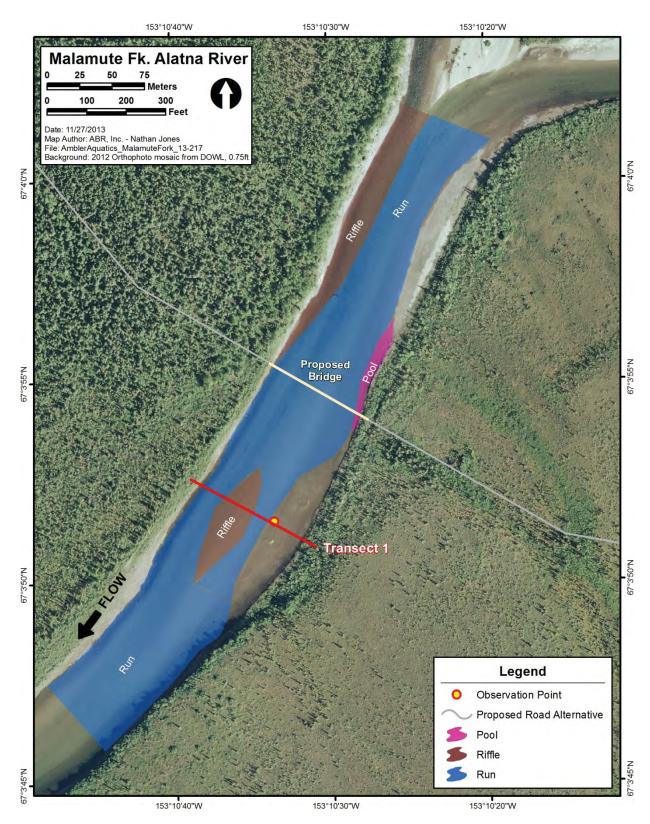


Figure 10. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Malamute Fork Alatna River, Alaska, August 2013.

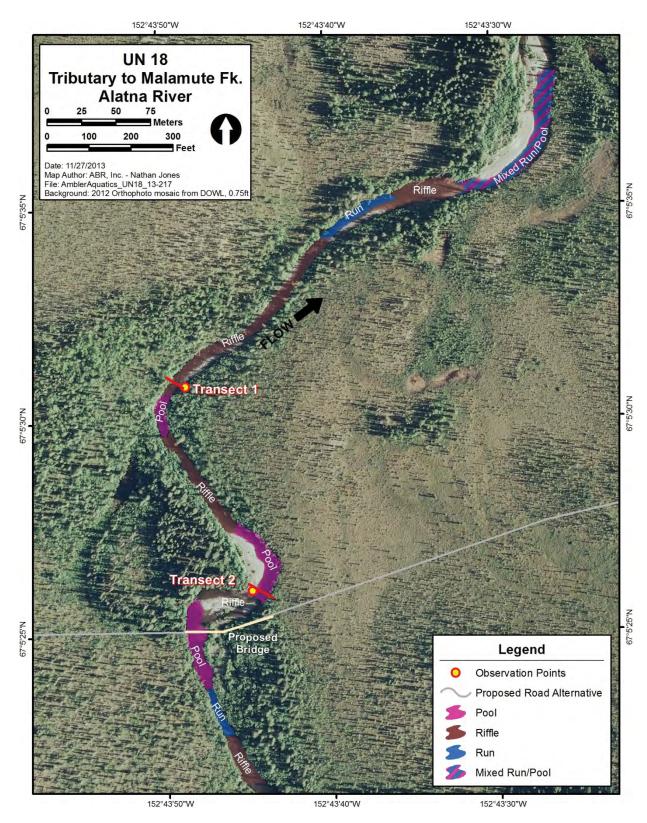


Figure 11. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of UN18, an unnamed tributary to the Malemute Fork Alatna River, Alaska, August 2013.

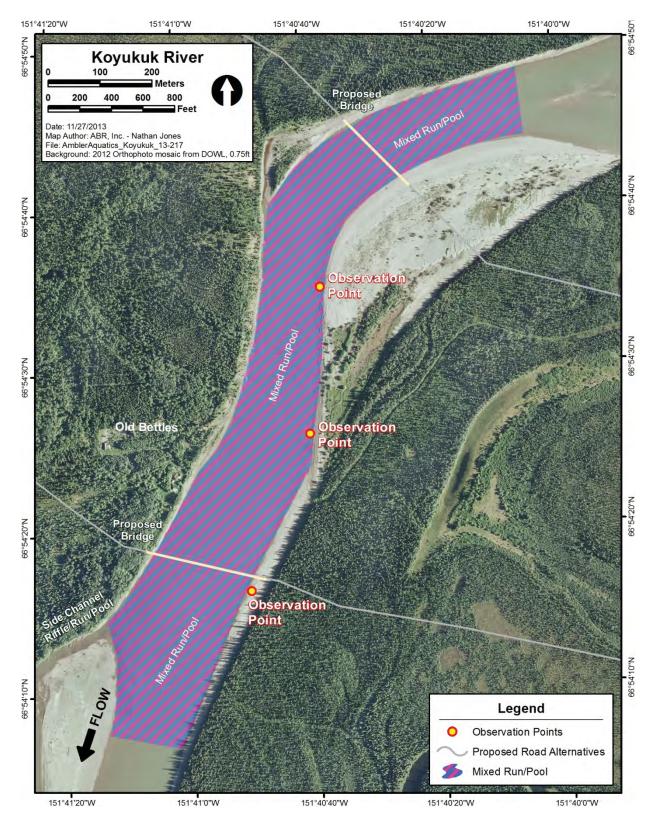


Figure 12. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Koyukuk River, Alaska, August 2013.

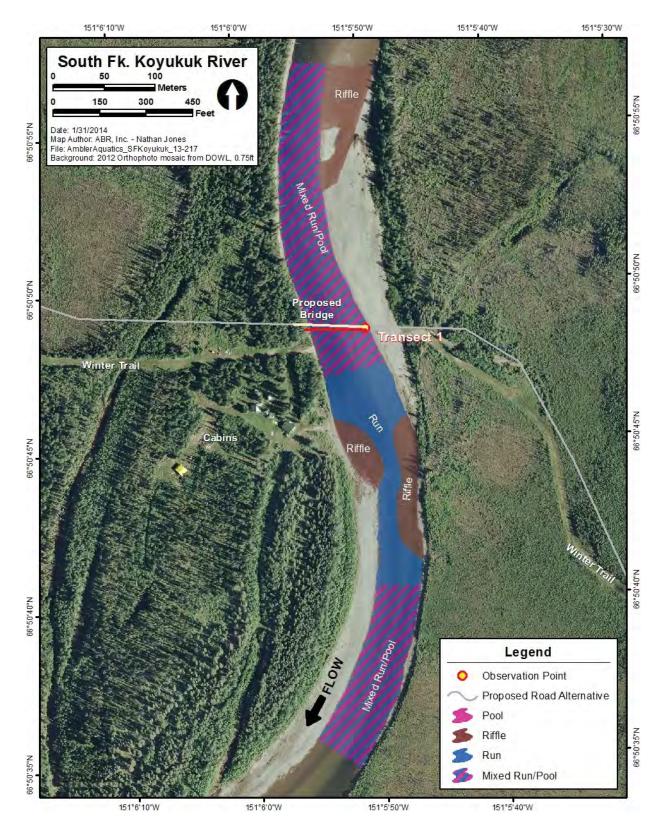


Figure 13. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the South Fork Koyukuk River, Alaska, August 2013.

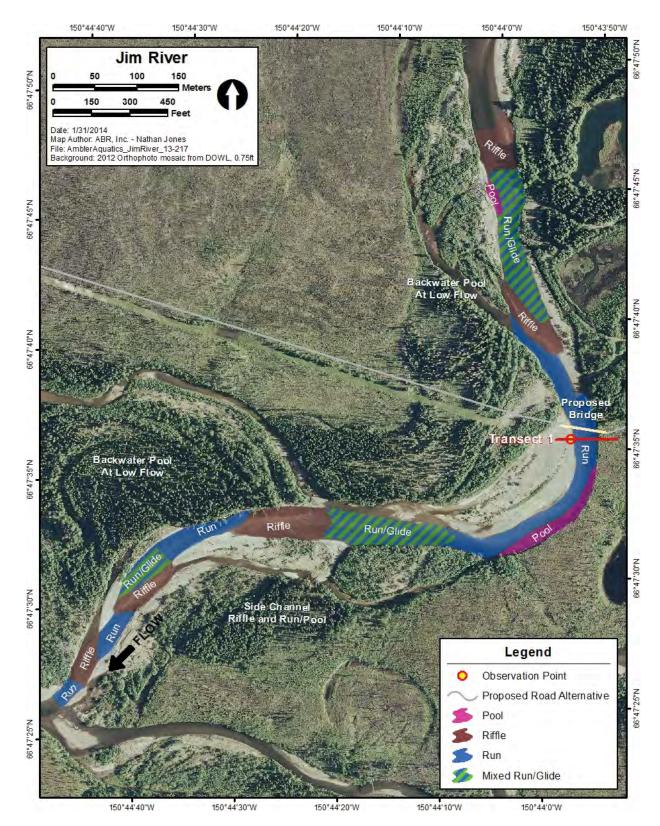


Figure 14. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the unnamed tributary to the Jim River, Alaska, August 2013.

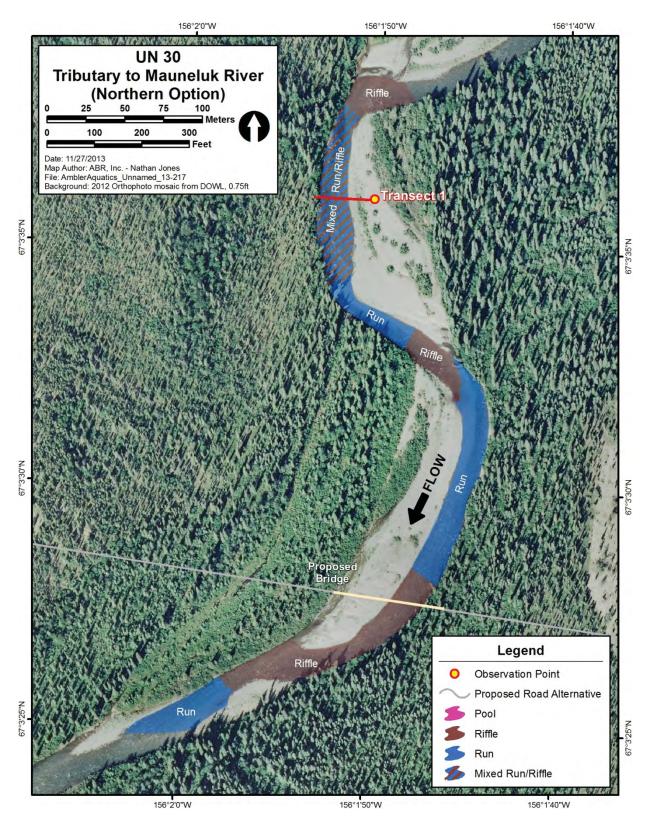


Figure 15. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of UN30, an unnamed tributary to the Mauneluk River on the northern road option, Alaska, August 2013.

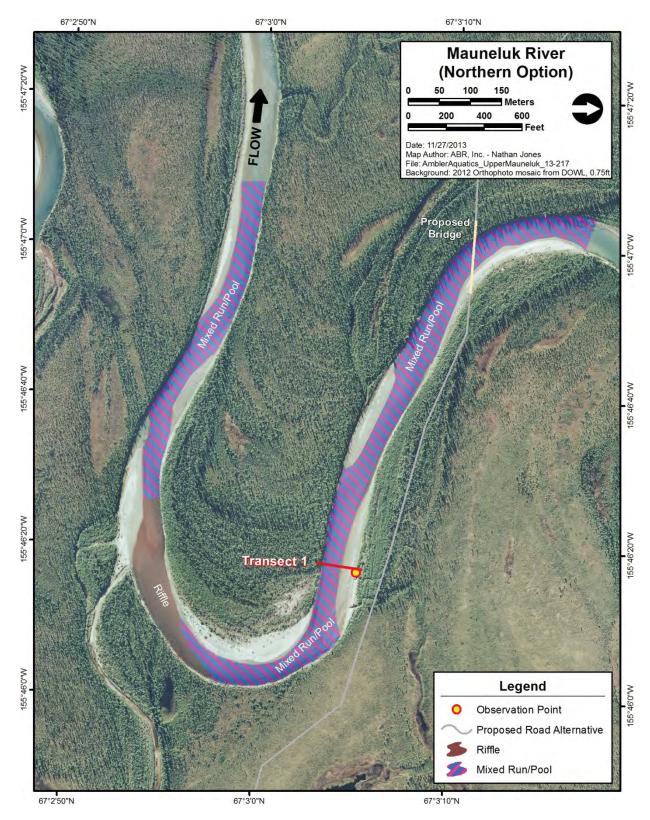


Figure 16. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Mauneluk River on the northern road option, Alaska, August 2013.

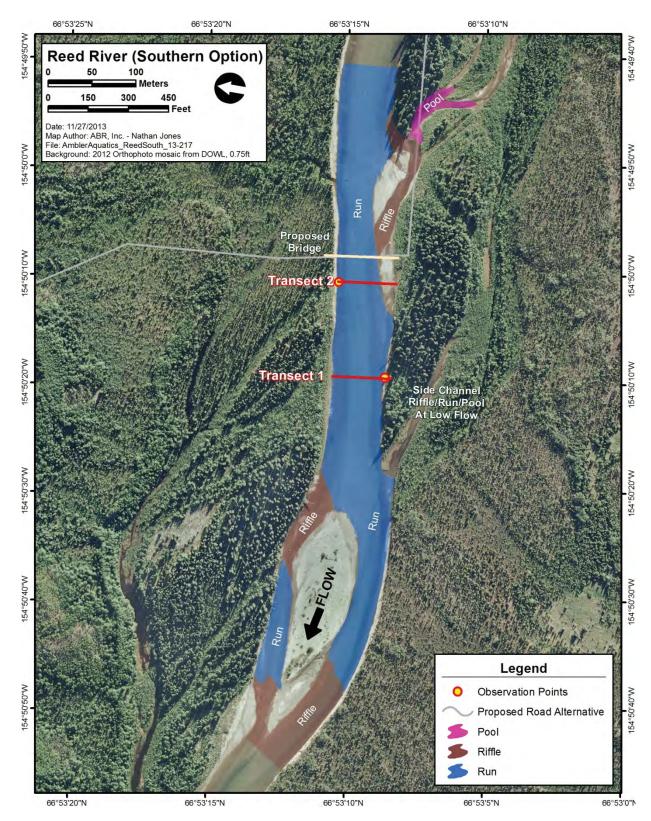


Figure 17. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Reed River on the southern road option, Alaska, August 2013.

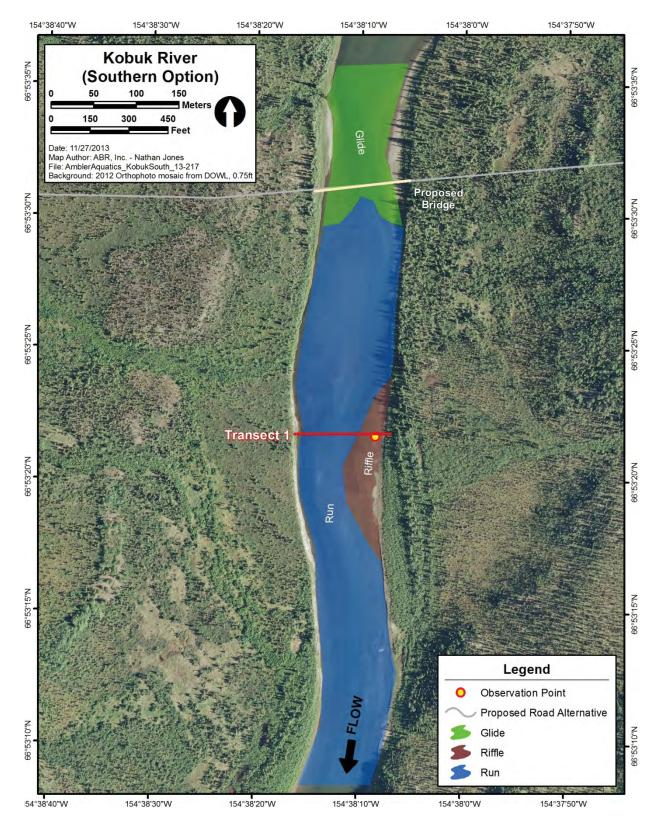


Figure 18. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of the Kobuk River on the southern road option, Alaska, August 2013.

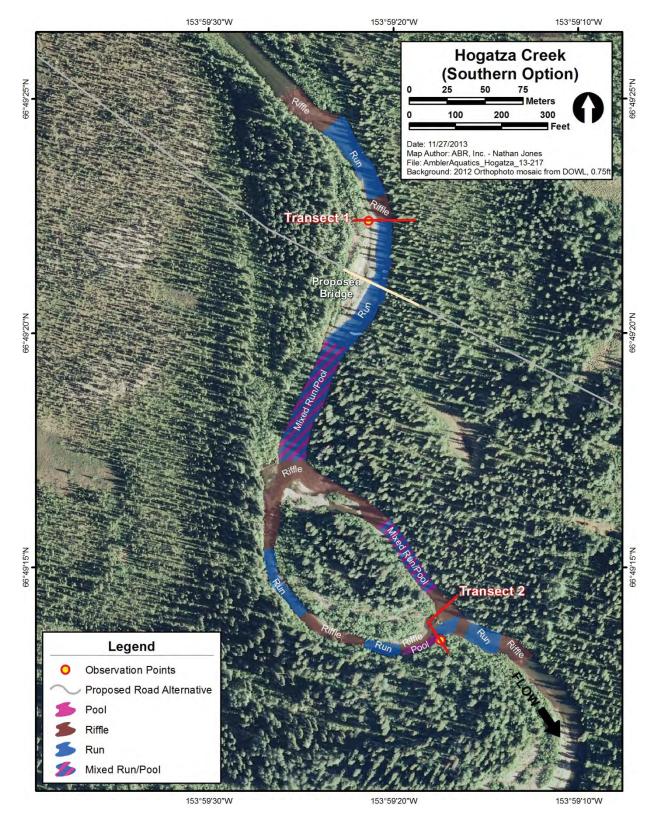


Figure 19. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of Hogatza Creek on the southern road option, Alaska, August 2013.

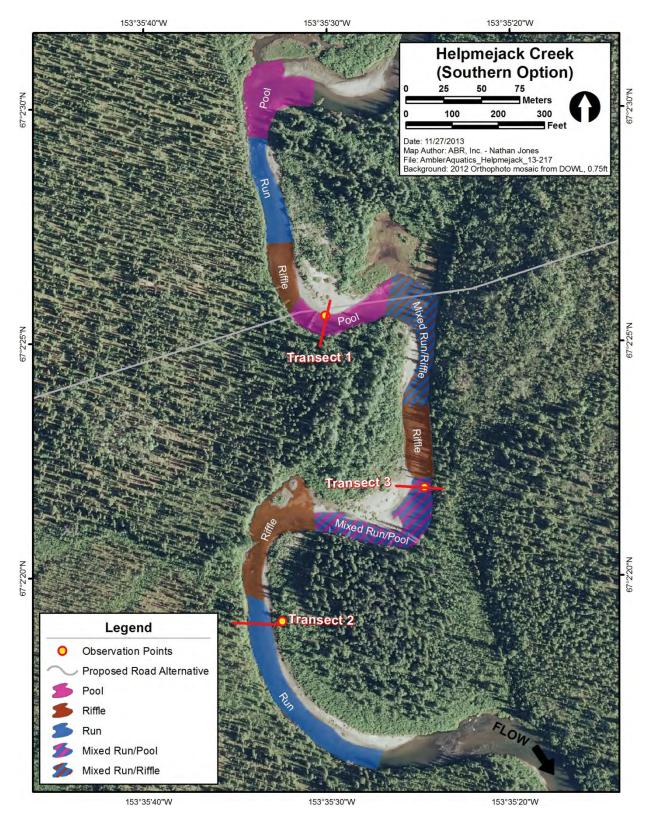


Figure 20. Stream habitat survey locations and flow characteristics at the proposed Brooks East Corridor crossing of Helpmejack Creek on the southern road option, Alaska, August 2013.

Appendix A. Anadromous Waters Catalog (AWC) nomination forms for Pacific salmon observed by ABR during 2012 fish surveys in waterbodies traversed by the Brooks East Corridor, Alaska. Forms were submitted to the Alaska Department of Fish and Game (ADFG) in September 2013.

	State of Alaska Department of Fish and Game Division of Sport Fish	Nomination Form Anadromous Waters Catalog						
Region ARC	CTIC	USGS Quad(s) AMBLER	RIVER A	9-2			
Anadromous Wat	ers Catalog Number of Waterway N	A, tributary	to Kugolukte	nK River (3	331-00-104	90-230-		
Name of Waterwa	Y CANYON CREEK		USGS	Name	Local Name			
Addition	Deletion	ection Bac	up Information					
		For Office Use						
Nomination #				1.1.1				
		Fisher	ries Scientist	Da	ate			
Revision Year:								
Revision to:	AtlasCatalog	Habitat Op	erations Manager	Da	ate			
	Both		- in the Distantian					
levision Code:		AVVC Pr	oject Biologist	Da	ate			
CVISION COUC.		Ca	tographer	Da	Date			
	OBSE	RVATION INFORMAT						
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous			
DOLLY VARI	DEN 07/13/2013		\checkmark	\checkmark				
and life stages observe upper extent of each sp barriers; etc.	ide all supporting documentation that this water body d; sampling methods, sampling duration and area so becies, as well as other information such as: specific enite Dolly Varden y Jena Lemke and ere Set at N67. 02 ited with disinfect ht-see attached se	ampled; copies of field note stream reaches observed	s; etc. Attach a copy of a as spawning or rearing hat	map showing location of moitat; locations, types, and	nouth and observed heights of any			
Name of Observer	(please print):SABRSignature:GOUMAgency:ABR, 1Address:J225 E	INA GAR re yan	rional Airpi	Date: 09	12/2013			
be included in or	it in my best professional judgment ar deleted from the Anadromous Water Area Biologist:			nce that this wate				

De	ate of Alaska epartment of Fish and (vision of Sport Fish	Game	Nomination Form Anadromous Waters Catalog					
	ERIDR			Y PASS A.				
Anadromous Waters	Catalog Number of Waterw	ay N/A, tribute	ary to Alatha R	iver (334-4	10-11006.	-2125-3661)		
Name of Waterway	HELPMEJACKCR			S Name	Local Name			
Addition	Deletion	Correction	Backup Information					
		For Office U	e					
Nomination #								
Nomination #			Fisheries Scientist	- Dat	e			
Revision Year:					Date			
Revision to: At	tlasCatalog	Habit	at Operations Manager	Dat	e			
1- 74 - 44	Both							
		A	NC Project Biologist	Dat	Date			
Revision Code:				_				
			Cartographer	Dat	te			
		OBSERVATION INFO						
Species	Date(s) Obse		ing Rearing	Present	Anadromous			
DOLLYVARD	EN OTIVIA	b13						
and life stages observed; sa upper extent of each specie barriers; etc.	all supporting documentation that this a ampling methods, sampling duration a es, as well as other information such a	nd area sampled; copies of fi	eld notes; etc. Attach a copy of	a map showing location of mo	outh and observed			
Comments: TVVO jUUC	nile dolly vara	den aught	at NG7.0	5835,W153	79528			
one man	Manager L-E	dual was	Courset las	lochofield				
Nops. III	e other indiv m). Fishers w	ere leno	COUNTING E	Mathen	Apline			
OF ARR SI	ee attached	CODV+for	condinen	rethedio	d map			
Name of Observer (pl	0.0	BRINAGAI				6		
	Signature: $(\land ($	- h /	via		2 2013			
	Agency: <u>AB</u>	R, Inc.						
	Address: $\frac{122}{AW}$	25 E. Interni Inornige, AK	ational Airpo 19518	WHROL. SUITE	0			
	n my best professional judg leted from the Anadromous		oove information is evid	lence that this water	oody should			
Signature of Are	ea Biologist:		Date:		Revision			

D	ate of Alaska epartment of Fish and Game ivision of Sport Fish		Nomination F Anadromous	orm Waters Catalog	l
Region INT	ERIOR	USGS Quad(s	HUGHE	SD-2	
Anadromous Waters	Catalog Number of Waterway 33	4-40-110	00-2125.	-3355	
Name of Waterway	HOGATZA RIVE		USGS	Name	Local Name
Addition	Deletion		 up Information		
		For Office Use			
Nomination #					
		Fisheri	es Scientist	Da	te
Revision Year:		, isner			
	tlas Catalog	Habitat Ope	erations Manager	Da	te
	Both				11.12
		AWC Pro	ject Biologist	Da	te
Revision Code:					·
		Cart	ographer	Da	ite
	OBSER	VATION INFORMATI	ON		
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous
CHUM SALME	N 07/21/2012			\sim	
and life stages observed; s upper extent of each speci barriers; etc.	all supporting documentation that this water body i ampling methods, sampling duration and area san es, as well as other information such as: specific s oservation of two lemke and mather ions occurred a- y and plate 6 in the	npled; copies of field notes tream reaches observed a	; etc. Attach a copy of a n s spawning or rearing hab	nap showing location of m itat; locations, types, and	outh and observed heights of any
see Figure photos.	. Yand plate 6 in t	re attache	areputt	(or morps	
Name of Observer (p	lease print): SABRIN	A GARCI	A	- 1	
	Signature: <u>Mabril</u>	elphia		Date: 09 [11/2013
		. Interna	n'onal Air 19518	odit Dr. St	2.101
	n my best professional judgment and eleted from the Anadromous Waters		formation is evide	nce that this water	body should
Signature of Are	ea Biologist:		Date:		Revision

7.7.7	State of Alaska Department of I Division of Spor		Nomination Form Anadromous Waters Catalog			g
Region IN-	TERIOR		USGS Quad(s	SURVEY	PASS A	-3
Anadromous Wate	ers Catalog Number	of Waterway 331	-00-10	190		
Name of Waterwa	KOBUK	RIVER		USGS	Name	Local Name
Addition	Deletion		n Back	up Information		
		For	Office Use			
Nomination #						
Revision Year:			Fisher	ies Scientist	D	Date
Revision to:	Atlas Cata	log	Habitat Op	erations Manager	D	Date
	Both					
			AWC Pr	oject Biologist	E	Date
Revision Code:					<u></u>	
			Car	tographer	E	Date
			TION INFORMAT	10N		
Species		te(s) Observed	Spawning	Rearing	Present	Anadromous
CHUM SALM	10N 091	04/2012				
			+ $+$			
			+ $+$			
and life stages observe upper extent of each sp barriers; etc. Comments: VISUAL by Jence	observat	tation that this water body is impliing duration and area sampled ormation such as: specific stream ion of spa and Matty of.02165, V ling method	d; copies of field note n reaches observed W NING NEW AP	s; etc. Attach a copy of a n as spawning or rearing hab adult Ch ling OF AF 5763 PLC	nap showing location of itat; locations, types, and	mouth and observed d heights of any
Name of Observer	(please print): Signature:	SABRIN Lobue ABR TH	A GAR	CIA C	•	11/2013
	Agency: Address:	I aas E.I Anchova	ge, AK o	ional Airpa 19518	-	
	Address: at in my best profes	I 225 E. I AMC/NDVG(sional judgment and be anadromous Waters Car	$\frac{\partial f}{\partial t}, \frac{\partial K}{\partial K}$	19518	-	

	tate of Alaska epartment of Fish and ivision of Sport Fish	Game	Nomination Form Anadromous Waters Catalog			g
Region ARC-	TIC		USGS Quad	(S) AMBLER	RRIVERA	-1
Anadromous Water	s Catalog Number of Waterv	vay Maur	RIUKI	River (331-	00-1049	0-2335)
Name of Waterway	Maunelykr	iver		USGS	Name	Local Name
Addition	Deletion	Correction	Ba	ckup Information		
		For O	ffice Use			
Nomination #						
Revision Year:			Fish	eries Scientist	Da	ate
	AtlasCatalog		Habitat C	perations Manager	D	ate
	Botn		AWC I	Project Biologist	D	ate
Revision Code:			C	artographer	D	ate
		OBSERVATIO				
Species	Date(s) Obse		Spawning	Rearing	Present	Anadromous
CHUM SALM	ION 07/25/20	212				
and life stages observed;	all supporting documentation that this sampling methods, sampling duration ies, as well as other information such a	and area sampled; c	opies of field no	tes; etc. Attach a copy of a n	nap showing location of n	nouth and observed
individ	venile Chum S ike ond Matti uals measur d of N67.002 Sampling mel	ed 41,5 .95, WI	55,00 56.00	01 57 mm 1182. P/2015e	CAPIME	
Name of Observer (p	elease print):	BRINA	GARC	.IA		11/0012
	Signature:	what	fore	la	Date: 041	11/2013
	Agency: <u>AB</u> Address: <u>123</u> <u>Av</u>	R, Inc 25 E. Int chorage	ternate, AK	honal Airpa 99518	prt Dr. sui	te 101
	in my best professional judg eleted from the Anadromou			information is evide	nce that this wate	rbody should
Signature of Ar	ea Biologist:			Date:		Revision

	State of Alaska Department of Fish and Division of Sport Fish	l Game	Nomination Form Anadromous Waters Catalog			g	
Region ARC	TIC		USGS Quad	(s) HUGHE	SD-4	· · · · · · · · · · · · · · · · · · ·	
Anadromous Wate	rs Catalog Number of Wate	way N/A, ty	ibutar	y to KOBUKI	River (331-	-0D-10490	
Name of Waterway	REED RIVE	.R			Name	Local Name	÷
Addition	Deletion	Correction	Ba	ckup Information			
		For C)ffice Use	-			
Nomination #							
			Fish	eries Scientist	D	ate	
Revision Year:							
Revision to:	Atlas Catalog	_	Habitat C	perations Manager	D	ate	
	Both						
			AWC	Project Biologist	D	late	
Revision Code: _		-		artographer		Date	
Species	Date(s) Ob	OBSERVATIC served	Spawning	Rearing	Present	Anadromous	
CHUM SALM		112		\checkmark	\checkmark		
and life stages observed upper extent of each spe barriers; etc.	e all supporting documentation that th ; sampling methods, sampling duratio ccies, as well as other information suc	n and area sampled; o	opies of field no	tes; etc. Attach a copy of a n	nap showing location of i	mouth and observed	
Comments: TWO JUV	enile chum sa A Lemke Ond Ugls were 3	almon c	aptur Rus A	ed via ele	ectrofish BR Turc	the	
Dy Serie	INCLINE CO O	6 and 3	2 mm	IDNO PLEO	se see a	attached	
roport f	or sampling	method	no zk	of maps. Ju	iveniles		
Name of Observer (0.0	BRINA		-			
	Signature:	0.1	ponce	<u>入</u>	Date: 09	11/2013	
	Agency: Ag	3R, INC	(
	Address:	25E. Jr	temg:	hànal Airpo 19518	rfDr.Ste.	101	
	in my best professional jud deleted from the Anadromo			e information is evide	nce that this wate	erbody should	
Signature of A	rea Biologist:			Date:		_ Revision	

	State of Alas Department o Division of Sp	of Fish a		Nomination Form Anadromous Waters Catalog			g
Region ARC	TIC			USGS Quad(s) HUGHE	SD-4	
Anadromous Wate	rs Catalog Numb	per of W	aterway NIA,	tributan	1 to KOBUKR	liver (331-	00-10490)
Name of Waterway	REED	RIVI	ER			Name	Local Name
Addition	Deleti		Correctio	on Bac	 kup Information		
			Fr	or Office Use			
Nomination #							
Nomination # _				Fishe	ries Scientist		Date
Revision Year:				TISHE			
	Atlas Ca	atalog		Habitat O	perations Manager	C	Date
	Both						
				AWC P	roject Biologist	C	Date
Revision Code: _							
				Ca	rtographer	Date	
				TION INFORMA			
Species	12.1 0.0	Date(s)	Observed	Spawning	Rearing	Present	Anadromous
CHUM SALM	UN 09	04	2012				
· · · · · · · · · · · · · · · · · · ·							
and life stages observed upper extent of each spe barriers; etc.	; sampling methods, s ccies, as well as other	ampling du information	ration and area sample such as: specific strea	ed; copies of field not am reaches observed	ning, rearing or migration of es; etc. Attach a copy of a m as spawning or rearing hab SQIMONS ING OF ABI 54.83643.	nap showing location of itat; locations, types, an	mouth and observed d heights of any
Adult of	Certiped (atr	166.881	030,WIS	54-83643.		
Name of Observer (please print): Signature: Agency: Address:		SABRIN MOLINAE ABR, JA 225 E. MCHOVOR	<u>clari</u>	~ tional Airpo		11 2013 101
This certifies that be included in or o					information is evide	nce that this wat	erbody should
Signature of A	rea Biologist:				Date:		Revision

Depa	e of Alaska rtment of Fish and Game on of Sport Fish	Nomination Form Anadromous Waters Catalog					
Region ARCTI	C	USGS Quad(s	AMBLER	RRIVER A	-2_		
Anadromous Waters Cat	alog Number of Waterway NA	, tributam	to Kogoluk	MKRIVEr(3	31-00-1	10490-2307	
Name of Waterway	LILEY CREEK	J	USGS		Local Name		
Addition	Deletion Correct	ion Back	up Information				
	F	or Office Use					
Nomination #							
		Fisher	es Scientist	Dat	te		
Revision Year:							
Revision to: Atlas	Catalog	Habitat Op	erations Manager	Dat	te		
	Both						
		AWC Pro	oject Biologist	Dat	te		
Revision Code:							
		Car	tographer	Dai	te	6	
C		ATION INFORMAT		Bragant	Anadromous	1	
Species DDLLN VARDEN	Date(s) Observed	Spawning	Rearing	Present	Anadromous		
	011.0 12.10						
and life stages observed; sampli upper extent of each species, as barriers; etc.	porting documentation that this water body is ng methods, sampling duration and area samp well as other information such as: specific stru	eam reaches of field notes	s; etc. Attach a copy of a is spawning or rearing hat	map showing location of mo bitat; locations, types, and h	outh and observed leights of any		
<u>Comments:</u> Three juver In minnow Minnow tro Ond left to sampling r	hile Dolly Varden trops by Jena La ps were baited soak overnight nethods and m	n (102,108 em Ke one with oli t. see at ops. Traps	, 128 mm) X Matthew sinfected tached r were set	were cap N Apling I salmort eport for at N67.05	tured	6.70256	
Name of Observer (please	e print): SABRIN	JAGARC	A	- 1	1		
Sigr	nature: MOUCA	alpare-	h.	Date: 0911	2 2013	>	
÷	ency: <u>ABR, W</u> dress: <u>1225 E.</u> <u>AMCMDY</u>	nc. Internationale, AK	ong (Alrpo) 79518	t or suite	101		
	y best professional judgment and d from the Anadromous Waters C		nformation is evide	nce that this water	oody should		
Signature of Area E	Biologist:		Date:		Revision		

TT V	State of Alaska Department of Fish and Game Division of Sport Fish		Nomination For Anadromous	orm Waters Catalog	9
	TERIOR	USGS Quad(s	SURVE	PASS A-	1
Anadromous Water	rs Catalog Number of Waterway N/A	, closest is	SAWC 334-	+0-11000 -	2125
Name of Waterway	TO BUK CREEK		USGS N	lame	Local Name
Addition	Deletion	on Back	up Information		
	Fo	or Office Use			
Iomination #					
		Fisheri	ies Scientist	D	ate
Revision Year:					
Revision to:	AtlasCatalog	Habitat Op	erations Manager	D	ate
	Both				
		AWC Pro	oject Biologist	D	ate
Revision Code: _		Cartographer			ate
				0	att
Species	OBSERVA Date(s) Observed	TION INFORMAT	ION Rearipg	Present	Anadromous
COHO SALN		opawning			
HINDOKSAL					
and life stages observed upper extent of each spe barriers; etc. <u>Comments:</u> Fishing W Jeng Lem took place juvenile n	e all supporting documentation that this water body is in ; sampling methods, sampling duration and area sample icies, as well as other information such as: specific stread as conducted via etc. Ke with ABR, Inc. wer e at N 67.07944, W 153 he as wred at 69 mm, ch g i from each specifes u Sampling methods and	ed; copies of field notes am reaches observed a c two fight e the ob- n 18635. The n 18635. The n 18635. We n 18635. We n 18635. Church	s; etc. Attach a copy of a m is spawning or rearing habit	ap showing location of r at; locations, types, and J AP 11 Ng (becc Frish	houth and observed heights of any
Name of Observer (A GARC	A		
		bonca		Date: 09	11/2013
	Agency: ABR, IM Address: 1225E.1	C.	inal Airport		
	in my best professional judgment and b deleted from the Anadromous Waters Ca		nformation is evider	ce that this wate	rbody should
Signature of A					

	State of Alaska Department of Fish and Ga Division of Sport Fish	me	Nomination F Anadromous	orm Waters Catalog		
Region ARC	TIC	USGS Quad(5) AMBLER	RIVER B.	-2	
Anadromous Wate	ers Catalog Number of Waterway	NIA, tributan	1 to Ambler	River (331	-00-1049	10-2205)
Name of Waterway	ULANEAK CRE	EK		Name	Local Name	
Addition	Deletion	Correction Bac	kup Information			
		For Office Use				
Nomination #						
		Fisher	ies Scientist	Dat	e	
Revision Year:						
Revision to:	AtlasCatalog	Habitat Op	erations Manager	Dat	e	
	Both					
Devision Coder		AWC Pr	oject Biologist	Dat	e	
Revision Code:	on Code:		Cartographer		Date	
Species	Date(s) Observe	BSERVATION INFORMAT	Rearing	Present	Anadromous	
DOLLY VARD	EN 07/13/20	013	\checkmark			
and life stages observed	le all supporting documentation that this wate l; sampling methods, sampling duration and acies, as well as other information such as: s	area sampled; copies of field note	s; etc. Attach a copy of a m	ap showing location of mo	uth and observed	
Comments:	in not in Nordan	coucht in			010.0	
Bjuven	ile Dolly Varden not Mathew An with disinfecte	pling of ARG	Minowi	to all	eve l	
Lemile	with disinfecto	d salmoneo	ar and let	ft to coo	k l	
DRINO C	A. see attache	a report for	samplin	e metro		
	DS. Mapswere su					
Name of Observer	(please print):	RINA GAR	LIA		- 10 - 10	
	Signature: 401	relponer	2	Date: 09 1	2/2013	
	Agency: ABK Address: 1225 Amc	, Inc. S.E. Internat novage, AK	nang Arpa 19518	ortpr.suit.	2101	
	: in my best professional judgme deleted from the Anadromous W		nformation is eviden	ice that this waterb	ody should	
Signature of A	rea Biologist:		Date:		Revision	

Comments (cont.):
Dolly Varalen FL (mm) were
112
109
108
109
124
87
83
98

see Appendix C in attached report

Depar	of Alaska tment of Fish and Game on of Sport Fish		Nomination Fo Anadromous V		g
Region INTER	IOR	USGS Quad(s	SURVEY	PASS A-	2
Anadromous Waters Cat	alog Number of Waterway N A ,	tributary	to Alatha Riv	er(334-4	0-11000-21
Name of Waterway	INAMED TRIBUTARY		USGS N	ame	Local Name
Addition	Deletion	n Back	up Information		
	For	Office Use			
Nomination #				1	
Revision Year:		Fisher	es Scientist	D	ate
Revision to: Atlas	Catalog Both	Habitat Operations Manager		D	ate
Revision Code:		AWC Project Biologist		D	Date
		Cartographer		C	ate
	OBSERVAT		ION		
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous
CHUM SALMON	07 23 2012				
CHINOOK SALMON	07/23/2012			\checkmark	
and life stages observed; samplir	porting documentation that this water body is imp ig methods, sampling duration and area sampled	; copies of field note:	; etc. Attach a copy of a ma	p showing location of	mouth and observed
	well as other information such as: specific stream				
	vation by Jena Lem 1 Salmon (67.22524, non (67.22868,-153 aeria) surveys. The nan 1 Km üpstream				
noide oliving 10cated 1855 + tributany wi	han 1 km üpstream	of the Alathar	iver and en	of the un	named (see back
Name of Observer (please	print): SABRINA		A	Date: 09	
-	ABR. TOC		onal Airpor-		
	best professional judgment and be d from the Anadromous Waters Cat		nformation is evidence	ce that this wate	erbody should
Signature of Area B	iologist:		Date:		Revision
<u></u>				- <u>1</u>	

omments (cont.):

"eport). The Chinook Salmon spawning area was down mented "eport). The Chinook Salmon spawning area was down mented approximately 1.8 km upstream (see Figure 6; plates 9 and 10 of the attached report).

	State of Alaska Department of Fish and Ga Division of Sport Fish	me	Nomination Form Anadromous Waters Catalog			
Region AR	CTIC	USGS Quad	I(S) SURVEY	PASS A-	5	
Anadromous Wat	ers Catalog Number of Waterway	NIA, tributary	to begiver C	reek (331-0	0-10490-2	2437)
Name of Waterwa			USGS		Local Name	
Addition			ckup Information			
		For Office Use				
Nomination #						
		Fish	eries Scientist	D	ate	
Revision Year:						
Revision to:	AtlasCatalog	Habitat (Operations Manager	D	ate	
	Both					
		AWC	Project Biologist	D	ate	
Revision Code:						
		(artographer	D	ate	
		DBSERVATION INFORM		Drecent	Anadromous	
Species	Date(s) Observe	-	Rearing	Present	Anadromous	
POLLYVAR	DEN UTISIZO					
and life stages observe	ide all supporting documentation that this wate ed; sampling methods, sampling duration and a pecies, as well as other information such as: sp	area sampled; copies of field n	otes; etc. Attach a copy of a n	nap showing location of r	nouth and observed	
<u>Comments:</u> Threej	uvenile dolly vav traps by Jena l t at NG7.01060	den (75,83	3,144mm) Mattern	caught	in	
minnou	, traps by send (SUNCESNO.	DFT TYDE	su eral	nited	
were se	sinfected salma	$p + a \alpha (\alpha p)$	alsing tod t	urenninh	F See	
with all	val report for m	lops and sai	mpling me	ethods.		
Name of Observer	r (please print): SAB	RINAGAR	CIA		10/00/0	
	Signature:	Indare	h	Date: 09	12/2013	
	Agency: <u>ABR</u> Address: <u>1223</u> <u>AMC</u>	, Inc. SE. Internation norage, Aks	nanal Airpor 19518	+ Rd. Sui-	te 101	
	at in my best professional judgme r deleted from the Anadromous W		e information is evide	nce that this wate	rbody should	
Signature of A	Area Biologist:		Date:		_ Revision	

State of Alaska Department of Fish and Game Division of Sport Fish	e Anadrom	on Form ous Waters Catalog
Region INTERIOR	USGS Quad(s) HUGH	HES D-5
Anadromous Waters Catalog Number of Waterway \mathbb{N}	IA, tributary to Beave	er Creek (331-00-10490-24
Name of Waterway UNNAMED TRIBUT		SGS Name Local Name
	rrection Backup Information)
	For Office Use	
Nomination #		
	Fisheries Scientist	Date
Revision Year:		
Revision to: Atlas Catalog	Habitat Operations Manag	ger Date
Both		
	AWC Project Biologist	Date
Revision Code:		
	Cartographer	Date
	SERVATION INFORMATION	
Species Date(s) Observed	Spawning Rearing	Present Anadromous
DOLLY VARDEN 07/24/201		
IMPORTANT: Provide all supporting documentation that this water be and life stages observed; sampling methods, sampling duration and area upper extent of each species, as well as other information such as: spec barriers; etc.	a sampled; copies of field notes; etc. Attach a copy	of a map showing location of mouth and observed
<u>Comments:</u> Two juvenile Dolly Varc electrofishing by Jena Ler DCULIVED OT N 66.98333, report for sampling met	olen (88 and 98 mm nice and Matthew W155.02530. Pleas hods and maps.	n) were cought via b Apling. Fishing se see attached
Name of Observer (please print): SABRI Signature: Agency: ABR,	INA GARCIA velocia	Date: 09/12/2013
Address: 1225 f	Inc. E. International Airpor Vage, AK99518	HDr. suite 101
Address: 12,25 f	and belief the above information is e	

Depa	e of Alaska artment of Fish and Game ion of Sport Fish		Nomination I Anadromous	Form Waters Catalog		
Region INTER	RIOR	USGS Quad(s)	BETTLE	ESD-2		
Anadromous Waters Ca	talog Number of Waterway N/A, †	ributary t	DJimRiver	(334-40-110	100-2125-3	3740-4080)
Name of Waterway	Deletion		USGS	Name	Local Name	
	For	Office Use				
Nomination #		Fisheri	es Scientist	- Dat	te	
Revision Year:	Catalog	Habitat Ope	rations Manager	- Dat	re l	
Revision to. Atlas	Both	Παυιτάτ Ορε	acions Manager	Du		
		AWC Pro	ject Biologist	Dat	te	
Revision Code:		_				
		Cart	ographer	Dat	te	
	OBSERVAT	TION INFORMATI	ON			
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
COMO SALMON		+ +				
CHINDOKSALMON	0+120/2012		V	V		
and life stages observed; sampl	pporting documentation that this water body is imp ling methods, sampling duration and area sampled s well as other information such as: specific stream	; copies of field notes	etc. Attach a copy of a	map showing location of mo	outh and observed	
Comments: NINE COMO SO	$1 \mod (55, 62, 49, 55, 62, 49, 55)$	66,55,1	52,61,551	mm) and electrofist	one	
CHINDOK SAL	MUT (48mm) WER	1014 du	Aplina	Filhing OC	urted	
at NUG. 78	mon (4Bmm) were Jeng Lemke chol 1 389, W150. 851 32. Pl	egse see	attached	d report fi		
samplingma	sthools and maps.					
Name of Observer (pleas	e print): SABRINA	GARCIA				
Sig		leanore	ź	Date: 09	12/2013	
-	gency: <u>ABR, INC</u> Idress: <u>1225 E. Ir</u> <u>AnchOVGQ</u>	ternatic R, AK 9	VICIAINPON 7518	+ Dr. suite 10		
	y best professional judgment and be ed from the Anadromous Waters Cat		formation is evide	nce that this water	oody should	
Signature of Area B	Biologist:		Date:		Revision	

Departu	of Alaska ment of Fish and Game n of Sport Fish		Nomination F Anadromous	orm Waters Catalog)
Region INTER	IDR	USGS Quad(s	BETTLE	5 D-2	
Anadromous Waters Catalo	og Number of Waterway $N A$,	hibutary	DJimRiver	334-40-110	00-2125-3740
	Deletion	RY	USGS Nup Information		Local Name
Addition		or Office Use			
Nomination #					
Revision Year:		Fisher	es Scientist	Da	ate
Revision to: Atlas	Catalog	Habitat Op	erations Manager	Da	ate
В	oth				
		AWC Pro	oject Biologist	Da	ate
Revision Code:					
			tographer	Da	ate
Species	OBSERVA Date(s) Observed	TION INFORMAT	ION Rearing	Present	Anadromous
COHO SALMON	07/23/2012	opawning		V	
COFIO STICI ION	11-01-01-				
and life stages observed; sampling upper extent of each species, as we barriers; etc. Comments: TWO COND SQI US CANFISHIN Fulloi ON OCCLUM	rting documentation that this water body is in methods, sampling duration and area sample ell as other information such as: specific stread MON(FL=610001) GSUWEYS by J-YEO Q+N 660.835POVT FDV SQMP1/V	62; copies of field notes am reaches observed a 62 mm) 62 mm) 602 Lem	were ca were ca 50.64531.	ap showing location of m lat; locations, types, and wight our atthew Are Pl-lease su	houth and observed heights of any
L Name of Observer (please p Signat Agen Addre	ure: <u>ABR, Inc</u> cy: <u>ABR, Inc</u> ess: <u>I225 E. In</u> <u>Anchoraa</u>	ternation e,AK995	á 21 Airport Dr 518	suite 101	12/2013
	est professional judgment and b from the Anadromous Waters Ca		nformation is evider	nce that this water	rbody should
-	logist:		Date:		Revision
02/08			<u>.</u>		

De	ate of Alaska partment of Fish and Game ⁄ision of Sport Fish	Nomination Form Anadromous Waters Catalog				
	ERIOR			Y PASS A		
Anadromous Waters	Catalog Number of Waterway N	A, Mibutaru	to Kichai	akaleac	reek	
Name of Waterway	UNNAMED TRIBU		<u> </u>	Name	Local Name	
Addition	Deletion	ection Backı	p Information			
		For Office Use				
Nomination #						
		Fisheri	es Scientist	D	ate	
Revision Year:	lasCatalog	Habitat Ope	rations Manager	D	ate	
Revision to. At	Both	nabitat Ope	aciona Manager			
		AWC Pro	ject Biologist	D	late	
Revision Code:		Cart	ographer	D	ate	
	OBSE	RVATION INFORMATI	ON			
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
DOLLY VARDE	N 09/07/2012					
and life stages observed; sa upper extent of each specie barriers; etc.	I supporting documentation that this water body mpling methods, sampling duration and area sa s, as well as other information such as: specific	ampled; copies of field notes	etc. Attach a copy of a	map showing location of	mouth and observed	
Zjuvenil	e Dolly Varden (1 Jeng Lemke ond	28 and 147	mm) can	ght in m	innow	
trops by	Jeng Lemile orde	MUTTREW	nping. M		2CI th	
were boi	ted with disin	FRICTEDI SAI	mori-ege	JS CIMOL 17	TTIU	
soak over	night. See attach s. Traps were set a	+ N67.0291	04, W154	01124	ethods	
Name of Observer (pla	CARD	INA GAR			1	
:	Signature:	rei porce	R	Date: 09	12 2013	
	Agency: <u>ABR, V</u> Address: <u>1225 E</u> Amuho	Inc. Internat Vaal, AK	199518	ovt Dr. sui	101	
	my best professional judgment ar leted from the Anadromous Water	d belief the above in		nce that this wate	erbody should	
Signature of Are	a Biologist:		Date:		Revision	

De	ate of Alaska epartment of Fish and Game vision of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region INT	ERIOR	USGS Quad	(5) SURVE	Y PASS A	-3	
Anadromous Waters	Catalog Number of Waterway	A, tributary	to KOBUKR	iver (331-0	10 - 10490)	
Name of Waterway	UNNAMED TRIBU	ITARY		Name	Local Name	
		For Office Use				
Nomination #		Fishe	eries Scientist	Da	ite	
Revision Year:	ilasCatalog	Habitat O	perations Manager	Da	ite	
	Both					
		AWC P	roject Biologist	Da	ate	
Revision Code:			artographer	D	ate	
	0.000					
Species	Date(s) Observed	RVATION INFORMA	Rearing	Present	Anadromous	
DOWN VARDE						
			· · · · · · · · · · · · · · · · · · ·			
and life stages observed; s upper extent of each specie barriers; etc.	Ill supporting documentation that this water bod ampling methods, sampling duration and area s is, as well as other information such as: specific	ampled; copies of field not c stream reaches observed	tes; etc. Attach a copy of a d as spawning or rearing ha	map showing location of m bitat; locations, types, and	routh and observed heights of any	
Comments: TWO JUVE	nile Dolly Varden Jena Lemke ond ited with disi	(128 and	130 mm)	cought in	minnai	
Maps by	Jeng Lemile us		soluciona.	FILMON N	iops	
were bo	ited with dish	ntected	samor e	eggs and	(1e++)	
to soak methools	overnight. See and maps Traps	were set	at N 67.015	tor full sa 101, WIS4	2 mpl/he 14464.	
Name of Observer (pl	CAPO	A -		/		
u u	Signature:	abore	æ	Date: 091	12/2013	
	Agency: <u>A'BR</u> Address: <u>1225</u> AMC/10	Inc. E. Intern Vage, AK	ational A 99518			
	n my best professional judgment a leted from the Anadromous Water		information is evide	ence that this water	rbody should	
Signature of Are	ea Biologist:		Date:	······································	Revision	

	e of Alaska rtment of Fish and Game on of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region INTER	RIDR	USGS Quad(s	SURVE	PASS A-	4	
Anadromous Waters Cat	alog Number of Waterway $N A$,	tributary	to KObuky	River (331	-60-1040	
Name of Waterway	NNAMED TRIBUT	¥	USGS		Local Name	
Addition	Deletion	on Back	up Information			
	Fc	or Office Use				
Nomination #						
		Fisher	ies Scientist	Da	ate	
Revision Year:	Catalog	Habitat Op	orations Manager	D:	ate	
Revision to: Atlas	CatalogBoth	парітат Ор	erations Manager	De		
		AWC Pr	oject Biologist	Da	ate	
Revision Code:						
		Car	tographer	D	ate	
	OBSERVA	TION INFORMAT				
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
DOLLY VARDEN	09 04 2012		V			
		_				
					·	
and life stages observed; samplin upper extent of each species, as barriers; etc.	opporting documentation that this water body is in ng methods, sampling duration and area sample well as other information such as: specific streat	ed; copies of field note am reaches observed a	s; etc. Attach a copy of a n as spawning or rearing hab	nap showing location of n itat; locations, types, and	nouth and observed heights of any	
3 Juvenile U	DILY VARALEN (116,1	131,140m	Adding	ion mini		
1 0 - 1	ing time und 10	INTINEW	121.12).121		M	
traps by st		1 - 1 - 1				
traps by Ja Were baited	d with disinfer	ited sal	mon éggs	and let	tto	
traps by Ja Were baited	d with disinfer	ited sal	.mon éggs ort for fi	and let	tto	
<u>Comments:</u> 3 juvenile 0 traps by 19 Were baited Soak overn Method 50	d with disinfer light. See attach nol maps. Mapsu	real rep		VII SAMID	illing	
snak overn	ight see attach not maps. Mapsu	vere set a	xt N 67.00	666, W154	+.55439.	
SOGK OVERN METHODSO Name of Observer (please	aprint): <u>SABRIN</u>	vere set a	1A	666, W154	illing	
SOGE OVERN METHODSO Name of Observer (please Sign	aprint): <u>SABRIN</u> Bature: <u>Gaven</u>	ecci rep pere set c pa Garc eleonc	1A	Date: 09	12 2013	
SOGK OVERN MethodsO Name of Observer (please Sign Ag	e print): <u>SABRIN</u> e print): <u>SABRIN</u> ency: <u>ABR, Inc</u> dress: <u>1225 E. In</u>	receited PERE Set of PA GARC ELeono A A A A A A A A A A A A A	1A Onal Airpon	Date: 09	12 2013	
SOGK OVERN Methods O Name of Observer (please Sign Ag Ado	e print): e print): ency: dress: <u>ABR, Inc</u> <u>ABR, Inc</u> <u>ABR, Inc</u> <u>ABR, Inc</u> <u>ABR, Inc</u> <u>ABR, Inc</u> <u>ABR, Inc</u> <u>AMUNOVO</u>	eccinepti pereset co a GARC eleance nternation ge, AK 9	011 (01 1) xt N 67.001 1A re 012 012 012 012 012 012 012 012	Date: 09	t.55439. 12/2013 te 101	
SOGK OVERN MethodSO Name of Observer (please Sign Age Ado	e print): <u>SABRIN</u> e print): <u>SABRIN</u> ency: <u>ABR, Inc</u> dress: <u>1225 E. In</u>	COLTEP DEKE SET C DA GARC DA G	011 (01 1) xt N 67.001 1A re 012 012 012 012 012 012 012 012	Date: 09	t.55439. 12/2013 te 101	

Dep	e of Alaska artment of Fish and Game sion of Sport Fish							
Region INTERIOR USGS Quad(s) WISEMAN A-6								
		ibitary to	Malamute For	KALAMA Riv	er (334-4	0-11000-2125-		
Name of Waterway	atalog Number of Waterway NA, N			Name	Local Name	3661-4100)		
	Deletion Correction	<u> </u>	up Information			-		
Addition			up mornation					
	F0	or Office Use						
Nomination #								
		Fisher	ies Scientist	Dat	te			
Revision Year:								
Revision to: Atla	sCatalog	Habitat Op	erations Manager	Dat	te			
	Both	A14/0 D-	last Dialasiat					
		AVVC Pro	oject Biologist	Dai	le			
Revision Code:		C		Da				
		Car	tographer	Da				
Spacing	OBSERVA Date(s) Observed	TION INFORMAT	ION Rearing	Present	Anadromous			
Species		Spawning	Nearing	- Treaching	Kinadi orgodo			
CHUM SALMON			V	N				
and life stages observed; sam	upporting documentation that this water body is in pling methods, sampling duration and area sample as well as other information such as: specific strea	d; copies of field note:	s; etc. Attach a copy of a r	map showing location of mo	outh and observed			
Comments: FOUV (COND)	salmon (FL=46,48,2	17, onal 47	tmm) and	tho chur	n			
Salmon (PL	= 38 and 44 mm) W	ere cou	ght Using	dipnets 6	M.			
Jeng Lemic	eand Matthew Ap	ing of)	TBR. Capt	ure occu	rred			
at NG7.11 methodsor	= 38 and 44 mm) w eard Matthew Ap 074, W152.93070. Not Maps.	See alto	iched repi	oit for son	mpling			
Name of Observer (plea		TGARCIA			1			
Si	se print): <u>SABRINF</u> gnature: <u>UCUVE</u>	Lonne	2	Date: 09	12/2013			
Д	Agency: ABR, INC.							
A	ddress: <u>1225 E.1</u> AMCHOYAC	nternatio	9518	A Dr. Suite				
	ny best professional judgment and b ted from the Anadromous Waters Ca		nformation is evide	nce that this water	oody should			
Signature of Area	Biologist:		Date:		Revision			

Dep	te of Alaska partment of Fish and Game ision of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region INTE	ERIOR	USGS Quad	(5) WISEM	AN A-6		
Anadromous Waters C	Catalog Number of Waterway 334	-40-11	000-2125	-3661	1100	
Name of Waterway	Deletion	n Ba	RIVER RIVER ckup Information	Name	Local Name	
	Fo	r Office Use				
Nomination #		Fish	eries Scientist	D	ate	
	asCatalog	Habitat C	perations Manager	D	ate	
	Both	AWC	Project Biologist	D	ate	
Revision Code:		C	artographer	D	ate	
	OBSERVA		TION			
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
COHO SALMON	071162013					
and life stages observed; san upper extent of each species, barriers; etc.	supporting documentation that this water body is im npling methods, sampling duration and area sample as well as other information such as: specific stream	d; copies of field no	tes; etc. Attach a copy of a n	nap showing location of i	mouth and observed	
Comments: TWO JUVEN in minno Minnow	nile Coho Salmon (w traps by Jena L rops were baited	(57 and emke with	d 58mm) (and Matth disinfect	vere ca ew Apli ed salm	ptured Ng. On eggs	
and left t	o soak overnight. <u>s. Traps were set at</u>	. See at N 67.11	tacheol re DD36, W152	port for	methods	
	ignature: Labra	élpan			12/2013 Suite 101	
This certifies that in	my best professional judgment and be	elief the above	19501	-		
Signature of Area	eted from the Anadromous Waters Ca	talog.				

Depar	e of Alaska rtment of Fish and Game on of Sport Fish		Nomination F Anadromous	orm Waters Catalog		
Region ARCTI	.C.	USGS Quad(s) AMBLER	RIVER A-1		
Anadromous Waters Cat	alog Number of Waterway N A ,-	hibutan	1 to Maunel	uKRiver (3	31-00-1	0490-2335
Name of Waterway	NNAMED TRIBUTAR		USGS		Local Name	
Addition	Deletion Correction		up Information			
	For	Office Use				
Nomination #						
		Fisher	ies Scientist	Dat	e	
Revision Year:						
Revision to: Atlas	Catalog	Habitat Op	erations Manager	Dat	e	
	Both					
		AWC Pr	oject Biologist	Dat	e	
Revision Code:						
		Car	tographer	Dat	e	
		ON INFORMAT			Anneliser	
Species CHUM SALMON	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
CHUIN SHE 1010	04/05/2012		~			
and life stages observed; sampling	oporting documentation that this water body is impoing methods, sampling duration and area sampled; well as other information such as: specific stream	copies of field note	s; etc. Attach a copy of a n	nap showing location of more	uth and observed	
Comments: TWO JUVENI ELECTOFISHI WERE CAPTU QHOICHED VEP	ile chum Salmon (ing by Jena Lemk ved of N 67.0269 Dort For sampling m	52 and e and p,WISI ethods	55mm) ca Mathew 6.04826.1 and Maps	ught via Apling. Please see	Fish	
Agi	ature: <u>haune</u> ency: <u>ABR, Iv</u> dress: <u>1225 E. In</u>	Learc	é onal Airpon	Date: 09/1		
	/ best professional judgment and bel d from the Anadromous Waters Cata		nformation is evide	nce that this waterb	ody should	
Signature of Area B	liologist:		Date:		Revision	

Depa	e of Alaska rtment of Fish and Game ion of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region ARCTIC			(S) AMBLER			
Anadromous Waters Cat	alog Number of Waterway $\mathbb{N}[\mathbb{A}]$	tributan	y to Maunelu	IKRIVER (3	31-00-10491	
	INNAMED TRIBUT		USGS I		Local Name	
Addition	Deletion Correctio	n Ba	ckup Information			
	Fo	Office Use				
Nomination #						
Revision Year:		Fishe	eries Scientist	Dat	te	
Revision to: Atlas	Catalog	Habitat O	perations Manager	Dat	te	
	Both					
		AWC F	Project Biologist	Dat	te	
Revision Code:						
			artographer	Dat	te	
Species	OBSERVA Date(s) Observed	Spawning	TION Rearing	Present	Anadromous	
DOLLY VARDEN	07/13/2013		\checkmark	\checkmark		
and life stages observed; sampli upper extent of each species, as barriers; etc. <u>Comments:</u> FOUV JUVEN MINDWTO MONDWTO TOUPS WEVE	poporting documentation that this water body is importing documentation that this water body is imported and area samplers well as other information such as: specific stream such as the specific stream such as the specific stream such as:	t; copies of field no n reaches observer (115,115 Ce and 6, W156 1000 e tfor f	, 122, 139 mr d as spawning or rearing habi Mathew b. 13206. Miv ggs and le MIMEMO	nap showing location of mo ital; locations, types, and h m) caugh Apling. M Apling. M Apling Sch Apli Sch	t in tinnow were ck	
Name of Observer (please	nature: Labre	yan	va		12/2013	
Ag	ency: <u>ABR, IN</u> dress: <u>IZZSE. In</u> <u>ANUNUTOC</u>	iterna	tional Airpl 99518	ort or sur	74 101	
Ag Adı This certifies that in my	dress: 1225 E.Ir	HERNA Be, AK	99518			

Depart	of Alaska ment of Fish and Game n of Sport Fish		Nomination F Anadromous	Form Waters Catalog		
legion INTER	IOR	USGS Quad(s)	SURVE	TPASS_A-	6.	
Anadromous Waters Cata	log Number of Waterway NIA	tributan	to Maun	elukriver	(331-00-	10490-233
	NAMED TRIBUT			Name	Local Name	
Addition	Deletion Correction		 p Information			
VAddition						
	FC	or Office Use				
Nomination #			0.1.1.1.1		+	
		Fisherie	s Scientist	Da	le	
Revision Year:		Liskitet One	retions Monogor	Da	te	
	Catalog	Habitat Ope	rations Manager	Da		
	Both	AWC Pro	ject Biologist	Da	ite	
		Awerno	Jeer biologist			
Revision Code:		Cart	ographer	Da	ite	
Species	OBSERV Date(s) Observed	ATION INFORMATIO	Rearing	Present	Anadromous	
POLLY VARDEN	07/14/2013			\checkmark		
					· · · · · · · · · · · · · · · · · · ·	
					1-11-1	
	porting documentation that this water body is i g methods, sampling duration and area samp well as other information such as specific stre	led conjec of field notes	etc Attach a convior a	map showing location of fr		
<u>Comments:</u> 20 jullille 1.em Ke ord	Dolly Varden cause mathew Apling	ght in m of ABR.	innow tra Minnow	traps by se	na reset	
	717 1. 1155 MY1 + M	IVON I	NTRUM	ITE ON WIT	'\	
Factor	1 (a) mon equilibrium of the contract of th	AND IPTI	10 20012	outrient	I.SEC	
attaclood	report for full say	mpling m	ethods a	d maps.	See back	۷.
Name of Observer (please	CAROIN	AGARC	IA			
	spinity.	ebarera		Date: 09	12/2013	3
-	ABO 7	inc		- Loc Cuil	RIN	
Add	dress: 1225 E. ANCHOY	age, AK	012) Airpi 99518	DH Dr. suit		
This certifies that in my be included in or delete	y best professional judgment and ed from the Anadromous Waters (belief the above i Catalog.	nformation is evid	ence that this wate	rbody should	
Signature of Area E	Biologist:		Date:		Revision	

```
Dolly Varden lengths were (for Klength, mm):
```

\sim	/	
011	100	123
129	123	114
118	117	168
111	97	128
135	99	122
102	125	78

100 113

see Appendix C in attached report.

Depar	of Alaska tment of Fish and Game on of Sport Fish		Nomination F Anadromous	Form Waters Catalog		
Region ARCTIC		USGS Quad(s)		RRIVER		
Anadromous Waters Cata	log Number of Waterway NIA ,	tributan	to Maun	elukriver	(331-00-1	0490-2335)
	Deletion	IRY	p Information		Local Name	
	Fo	r Office Use				
Nomination #						
		Fisherie	s Scientist	Dat	te	
Revision Year:	Catalan	Linkitat Ona	etione Menner	Dat		
	Catalog Both	Habitat Ope	rations Manager	Dai	le	
		AWC Pro	ect Biologist	Dat	te	
Revision Code:						
		Carto	ographer	Dat	te	
	OBSERVA		DN			
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
POLLY VARDEN	07/14/2013					
and life stages observed; samplin	porting documentation that this water body is in g methods, sampling duration and area sample well as other information such as: specific strea	d; copies of field notes;	etc. Attach a copy of a i	map showing location of mo	outh and observed	
of NG7.123	Dolly Varden caup Mathew Apling 383, W156.00801 1 Salmon eggs av eport for full san	nd left-	D SOGK	overnight	see	
	CARRIEN	AGARCI		1		
Age	ature: <u>ABR, J</u> ress: IR25 E. IV	barera	mg) Airpo	Date: 09	12/2013	
	best professional judgment and b d from the Anadromous Waters Ca		formation is evide	nce that this water	body should	
Signature of Area Bi	ologist:		Date:		Revision	

Lonments (cont.): Dolly Varden lengths were (forklength, mm):

see Appendix C in altached report.

Departm	f Alaska nent of Fish and Game of Sport Fish		Nomination For Anadromous W			
egion	OR	USGS Quad(s)	SURVEY	PASS_A-	- 6 ·	
nadromous Waters Catalo	g Number of Waterway NA,	tributan	to Maune	IUK River	- (331-00-10	7490-
lame of Waterway	IN AMED TRIBUTA	RY	USGS Na	ime	Local Name	
Addition	Deletion Correction		ip Information			
	For	r Office Use				
Nomination #		Fisheri	es Scientist	Di	ate	
Revision Year:				-		
	Catalog	Habitat Ope	rations Manager	D	ate	
NAME OF BEEL OF A DATE	oth					
		AWC Pro	ject Biologist	D	ate	
Revision Code:					ate	
			ographer	D	ate	
		TION INFORMATI	ON Rearing	Present	Anadromous	
Species DOLLY VARDEN	Date(s) Observed	Spawning	Kearing	11050.14		
POLLY VIRDER					C	
and life stages observed; sampling upper extent of each species, as we barriers; etc.	orting documentation that this water body is in methods, sampling duration and area sample ell as other information such as specific strea	am reaches observed a	is spawning or rearing habita	at; locations, types, and	d heights of any	
6 invenile 1	solly Varden cauc	int inm	innow ra	PS by Je	riq	
Lemke and h	solly Varden cauce	of ABR.	MINNOW T	rapswe	reset	
THE FULL CONTRACTOR						
		· ·				
at N67.054	COMPARIACIÓN O	VVA IFTI	10 300120		1. Sec 1	
at N67.054	COMPARIACIÓN O	VVA IFTI	10 300120		1. Sec 1	24
at NG7.054 disinfected attached (eport for full sar	npling m	rethools are	d mops.	See back	ě)
ot N67.054 disinfected attained (Name of Observer (please p	eport for full sar print): SABRIN	na ippling m A GARC	rethods are	d mops.	See back	
ot N67.054 disinfe(fod attained (Name of Observer (please p Signa	eport for full sar print): SABRIN ature: Labore	A GARC	rb source rethods one	2 M0p5. Date: 09	See back	ŝ)
ot N67.054 disinfected attained (Name of Observer (please p Signa Ager	eport for full sar print): SABRIN ature: Labore	A GARC	rb source rethods one	2 M0p5. Date: 09	See back	8)
ot N67.054 disinfe(fod attained (Name of Observer (please p Signa	eport for full sar print): SABRIN ature: Labore	A GARC	rb source rethods one	2 M0p5. Date: 09	See back	ŝ)
ot N67.054 disinfe(fod attained f Name of Observer (please p Signa Ager Addr	Salmorteggs a eport for full sar print): SABRIN ature: Gabrie ncy: ABR, J ress: IZZS E I ANCHOYO	npling M A GARC Marce Mc nc nernat 2ge, AK	ichals ora	Date: 09 Date: 09	See back 12/2013 12/2013	*
of N67.054 disinfe(fed attained fe Name of Observer (please p Signa Ager Addr	eport for full sar print): SABRIN ature: Labore	npling M A GARC Ware MC Mernet Oge, AK	ichals ora	Date: 09 Date: 09	See back 12/2013 12/2013	
of N67.054 disinfe(fed attained fe Name of Observer (please p Signa Ager Addr	SQIMOVILEGGS G eport for full SQF print): ature: ncy: ress: IZZS E I ANCHOY best professional judgment and I from the Anadromous Waters C	npling M A GARC Ware MC Mernet Oge, AK	information is eviden	Date: 09 Date: 09	See back 12/2013 12/2013	*

vomments(cont.):	
Dolly Varden for Klengths (mm) were:	
95	
104	
114	
117	
118	
126	

see Appendix C in attached report.

Dep	te of Alaska partment of Fish and Game ision of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region INTE	ERIOR	USGS Quad(s	SURVE	Y PASS A	-6	
Anadromous Waters C	Catalog Number of Waterway $N A, \uparrow$	ibutary	to Mauneli	aKRiver (3	31-00-104	<u>10-2335)</u>
Name of Waterway	Deletion Correction		USGS USGS	Name	Local Name	
Nomination #						
Revision Year:		Fisheri	es Scientist	Dat	e	
Letter in the second second	asCatalog	Habitat Ope	erations Manager	Dat	e	
	Both					
		AWC Pro	ject Biologist	Dat	e	
Revision Code:						
			ographer	Dat	.e	
Species	OBSERVATIO Date(s) Observed	ON INFORMATI	ON Rearing	Present	Anadromous	
DOLLY VARDEN			$\overline{\mathbf{A}}$	\checkmark		
		L L				
and life stages observed; sam	supporting documentation that this water body is impor pling methods, sampling duration and area sampled; a as well as other information such as: specific stream r	copies of field notes	etc. Attach a copy of a m	nap showing location of mo	uth and observed	
Comments: TWO juven electrofist occurred reportfor	ile Dolly Varden (85 ning by Jeng Lemke at 12433, W155 sampling method	5 onal 12 onal 14 5.63481 Sanal M	7 mm FL) 19thew A . Pleace S 20ps.) caught u pling. Fis le attack	nia hing hed	
Name of Observer (plea		The later is a second s			10012	
	ignature: <u>Addreal</u>		<u> </u>	Date: 09 [212013	
	Agency: <u>ABR, INC.</u> Address: <u>IZZSE. Ir</u> <u>AMUHOYCQ</u>	ternat	ional Airpo 9518	rt Dr. Suite	[0]	
	my best professional judgment and belie ted from the Anadromous Waters Cata		formation is evider	nce that this waterb	oody should	
Signature of Area	Biologist:		Date:		Revision	

Dep	te of Alaska partment of Fish and Game ision of Sport Fish	Nomination Form Anadromous Waters Catalog				
Region ARCT	TIC	USGS Quad(s)	AMBLER	RIVER A	+-1	
Anadromous Waters C	Catalog Number of Waterway NIA, †	vibutary	to Maunel	UKRIVER (331-00-1	0490-2335
Name of Waterway	UNNAMED TRIBUTF	IRY	USGS	Name	Local Name	
Addition	Deletion Correction		 Ip Information			
	For	Office Use				
Nomination #						
Revision Year:		Fisherie	es Scientist	Da	te	
	asCatalog Both	Habitat Ope	rations Manager	Da	ite	
Revision Code:		AWC Pro	ject Biologist	Da	ite	
		Carte	ographer	Da	ite	
	OBSERVATI	ON INFORMATIO	ON		-	
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous	
CHUM SALMON	1 07 25 2012					
and life stages observed; san upper extent of each species, barriers; etc.	supporting documentation that this water body is imponpling methods, sampling duration and area sampled; as well as other information such as: specific stream served as the information of Order of Order of the server of the of th	reaches observed as	etc. Attach a copy of a n spawning or rearing hab	hap showing location of militat; locations, types, and l	outh and observed heights of any	
tor samp	ase print): SABRINA					
	Address: 1225 E. In	onia	ona l Airpt	Date: 09/1	11/2013 ite 101	
	my best professional judgment and beli eted from the Anadromous Waters Cata		formation is evide	nce that this water	body should	
Signature of Area	a Biologist:	ţ.	Date:		Revision	

Appendix B. Raw stream habitat data collected at survey transects on waterbodies traversed by the Brooks East Corridor, Alaska, August 2013.

Site Name	SH-T1-13	
Date	12 August 2013	
Latitude N	67.120893	
Observers	JCS, MMA, SDG	

Event Code Time 10:43 Longitude W 156.985129

Aquatics Data			
Ambient Water	r Quality	Channel Characteristics	
Temperature	9.5 °C	Bankfull Width 59 m	
Dissolved Oxyge	en 100%	Wetted Width 52 m	
Dissolved Oxyge	en 11.32 mg/L	Thalweg Depth not measured (unwadeable)	
Conductivity	115.3 uS/cm	48 hr. Precipitation Low	
Sp. Cond.	0.164 mS/cm	Stream Gradient < 1 %	
рН	6.58	Stream Stage Low	
Turbidity	1.92 NTU	Water Color Mostly clear/Humic	

Bank Angle Sketches

LB Angle- Not measured (unwadeable)

RB Angle- 115°

	Substrate (inorganic) = 100%		
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	5	
Cobble	64-256mm (2.5-10in)	5	
Gravel	2-64mm (0.1-2.5in)	5	
Sand	0.06-2mm	5	
Silt	0.06-2mm	40	
Clay	0.004-0.06 mm	40	

Flow

Crew was unable to take flow measurements because transect was unwadeable

Comments:

Flowing at 0.33 m/s at the surface, generally it is slow flowing. Visual observation of approximately 5 inch juvenile fish Photos: US-0665 DS-0666 LB-0667 RB-0668 Substrate photos taken 15 August 2013-0823,0824 Site NameSH-T1-13Date12 August 2013Latitude N67.120893ObserversJCS, MMA, SDG

Event Code Time 11:34 Longitude W 156.985129

Channel Cover in Stream Transect

Cover in Transect			
Filamentous Algae	1		
Macrophytes	2		
Woody Debris (Big) >0.3m	0		
Brush/Woody Debris (Small) <0.3m	1		
Live Trees Root	0		
Overhanging Vegetation	1		
Undercut Bank	0		
Boulders	1		
Artificial Structures	0		

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Stream was unwadeable due to fines. Slack to slow flow. Low water level, potential rearing fish habitat. Bacterial foam flowing at the surface.

Islands present now due to low flow- likely submerged at high water.

Riparian Vegetation (percentage and	nd type 10 meters from bank)
Left Bank	Right Bank
Canopy (> 5 m)	
30% cover by black spruce, the only tree	No canopy 10+ m from the bank.
greater than 5 m.	
More dense upstream, less dense downstream.	
Understory (0	.5 - 5 m)
Mixed coniferous and deciduous (higher	Dominated by willow and tall grasses.
willow density).	
75-80% willow cover, grasses next highest	
density	
Ground (< 0	0.5 m)
Low percentage of open, bare ground.	Not much barren ground, less than 5%.
Mostly grasses. Low percentage of down wood,	Mostly grasses.
mostly within bankfull width.	

 Site Name
 SH-T2-13

 Date
 12 August 2013

 Latitude N
 67.120226

 Observers
 JCS, SDG, MMA

Event Code Time 12:20 Longitude W 156.979087

Aquatics Data

Ambient Water Quality		Channel Characteristics	
Temperature	9.9°C	Bankfull Width	37 m
Dissolved Oxygen	102.10%	Wetted Width	49 m
Dissolved Oxygen	11.51 mg/L	Thalweg Depth	0.85 m
Conductivity	115.7 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.162 mS/cm	Stream Gradient	1%
рН	7.95	Stream Stage	Low
Turbidity	1.71 NTU	Water Color	Clear

Bank Angle Sketches

LB Angle - 175°

RB Angle-165°

Substrate (inorganic) = 100%		
Diameter	% Composition	
	0	
>256mm (10in)	5	
64-256mm (2.5-10in)	30	
2-64mm (0.1-2.5in)	40	
0.06-2mm	25	
0.06-2mm	0	
0.004-0.06 mm	0	
	Diameter >256mm (10in) 64-256mm (2.5-10in) 2-64mm (0.1-2.5in) 0.06-2mm 0.06-2mm	

Flow

RB

#	Width (m)	Depth (cm)	Flow (m/s)
1	1.85	36	0.25
2	5.55	58	0.85
3	9.25	83	0.79
4	12.95	65	1.07
5	16.65	27	0.98
6	20.35	47	0.65
7	24.05	29	0.47
8	27.75	20	0.31
9	31.45	17	0.19
10	35.15	13	0.09

Comments:

LB

Right bank is higher than left. Area of transect is typical of most of 2,000 ft corridor, a shallow (< 2 ft) long run composed of cobble, boulder, gravel, sand. Returned to get flow measurements on 13 Aug. Substrate photos taken 15 August 2013- 0819,0820,0821,0822 Photos: 0669 (US), 0671 (DS), 0670 (LB), 0672 (RB)

Site Name	SH-T2-13
Date	12 August 2013
Latitude N	67.120226
Observers	JCS, SDG, MMA

 Event Code

 Time
 12:20

 Longitude W
 156.979087

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	0	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	0	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Mostly cobble and gravel with a few boulders on right bank, lots of sand on left bank. Figured out flowmeter had dead batteries (returned Aug 13).

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy	(> 5 m)	
None.	5% Black Spruce.	
Understory	(0.5 - 5 m)	
Grasses, 5-10%	Grasses, 10%	
Willow, 10-20%	Small spruce, 10%	
	Willow, 50%	
	Berries/shrubs, 30%	
	(High/Low Cran, Blueberry, Salmonberry)	
Ground (< 0.5 m)		
Short grass, 25%	Fireweed, 5%	
Small willow, 5%	Bare ground, 20%	
Bare ground, 50% minimum	Grass, 50%	
	Willow, 25%	

Site Name	SH-T3-13	Event Code	
Date	12 August 2013	Time	15:19
Latitude N	67.117791	Longitude W	156.968715
Observers	JCS, SDG, MMA		

Aquatics Data

ality	Channel Characteristics
10.5 °C	Bankfull Width 49 m
106.90%	Wetted Width 40 m
11.92 mg/L	Thalweg Depth 0.82 m
116.7 uS/cm	48 hr. Precipita Low
0.161 mS/cm	Stream Gradier 0.50%
7.57	Stream Stage Low
1.79 NTU	Water Color Clear
	10.5 ℃ 106.90% 11.92 mg/L 116.7 uS/cm 0.161 mS/cm 7.57

Bank Angle Sketches

LB Angle- 115°

RB Angle- 175°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	5	
Cobble	64-256mm (2.5-10in)	35	
Gravel	2-64mm (0.1-2.5in)	40	
Sand	0.06-2mm	20	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

Flow

RB

#	Width (m)	Depth (cm)	Flow (m/s)
1	2	2	0.1
2	6	33	0.44
3	10	34	0.73
4	14	45	0.9
5	18	65	0.78
6	22	62	0.87
7	26	60	0.86
8	30	35	0.38
9	34	55	0.38
10	38	39	0.16

Comments:

LB

Flow was measured 8/13 because of dead batteries 8/12. Photos: 0677 (US), 0678 (DS), 0680 (LB), 0681 (RB) 8 inch Arctic Grayling caught by Brett using rod and reel Substrate photos taken 15 August 2013-0815,0816,0817

Site Name	SH-T3-13
Date	12 August 2013
Latitude N	67.117791
Observers	JCS, SDG, MMA

Event Code Time 15:19 Longitude W 156.968715

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	2
Macrophytes	0
Woody Debris (Big) >0.3m	0
Brush/Woody Debris (Small) <0.3m	1
Live Trees Root	1
Overhanging Vegetation	2
Undercut Bank	2
Boulders	1
Artificial Structures	0

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Left bank angles variable (low angles, up to 90 degrees, and undercut in some places)

Riparian Vegetation (percentage	and type 10 meters from bank)	
Left Bank	Right Bank	
Canopy (> 5 m)		
Canopy dominated by black spruce-	No canopy 10 m from bank.	
10% cover.		
Understory	(0.5 - 5 m)	
Mostly willow, other woody shrubs,	5-10% mostly willow	
possibly alder (up to 50% cover).	<5% grasses	
Tall grasses (up to 25%)		
Ground (<	< 0.5 m)	
Bare, 25%	80% bare with gravel and sand	
Small saplings and grasses	10% saplings	
	10% grasses	

Site Name	KG-T1-13		Event Code	9	
Date	13 August 2013		Time	a 12:16	
Latitude N	67.016932		Longitude W	156.694493	
Observers	JCS, SDG, MMA		-		
		Aqua	atics Data		
Ambient Wa	ter Quality			Channel Characte	ristics
Temperature	11.3 °C			Bankfull Width	120 m
Dissolved Oxy	ygen 103.90%			Wetted Width	102 m
Dissolved Oxy	ygen 11.35 mg/L			Thalweg Depth	1.02 m
Conductivity	195.2 uS/cm	1		48 hr. Precipitation	Low
Sp. Cond.	0.264 mS/cm	ı		Stream Gradient	<1 %
рН	7.83			Stream Stage	Low
Turbidity	0.99 NTU			Water Color	Clear
		Bank Ar	ngle Sketches		
LB Angle- 175	5°			RB Angle- 160°	
		Substrate (in	norganic) = 100	0%	
	Туре	Diameter		% Compos	sition
				Main Channel	Side Channel
	Bedrock			0	0
	Boulder	>256mm (10in)		0	5
	Cobble	64-256mm (2.5-10in	ו)	5	20
	Gravel	2-64mm (0.1-2.5in))	5	25
	Sand	0.06-2mm		90	50
	Silt	0.06-2mm		0	0
	Clay	0.004-0.06 mm		0	0
			Flow		
	#	Width (m)	Flow Depth (cm)	Flow (m/s)	Channel
LB	# 1	Width (m) 5	-	Flow (m/s) 0.27	Channel Main
LB			Depth (cm)		
LB	1	5	Depth (cm) 40	0.27	Main
LB	1	5 15	Depth (cm) 40 81	0.27 0.53	Main Main
LB	1 2 3	5 15 25	Depth (cm) 40 81 79	0.27 0.53 0.54	Main Main Main
LB	1 2 3 4	5 15 25 35	Depth (cm) 40 81 79 63	0.27 0.53 0.54 0.45	Main Main Main Main
LB RB	1 2 3 4 5	5 15 25 35 45	Depth (cm) 40 81 79 63 65	0.27 0.53 0.54 0.45 0.48	Main Main Main Main Main
RB	1 2 3 4 5 6	5 15 25 35 45 55	Depth (cm) 40 81 79 63 65 86	0.27 0.53 0.54 0.45 0.48 0.39	Main Main Main Main Main Main
	1 2 3 4 5 6 7	5 15 25 35 45 55 60	Depth (cm) 40 81 79 63 65 86 43	0.27 0.53 0.54 0.45 0.48 0.39 0.3	Main Main Main Main Main Main Main
RB	1 2 3 4 5 6 7 8	5 15 25 35 45 55 60 81	Depth (cm) 40 81 79 63 65 86 43 20	0.27 0.53 0.54 0.45 0.48 0.39 0.3 0.03	Main Main Main Main Main Main Side
RB	1 2 3 4 5 6 7 8 9	5 15 25 35 45 55 60 81 85	Depth (cm) 40 81 79 63 65 86 43 20 38	0.27 0.53 0.54 0.45 0.48 0.39 0.3 0.03 0.11	Main Main Main Main Main Main Side Side
RB	1 2 3 4 5 6 7 8 9 10	5 15 25 35 45 55 60 81 85 89	Depth (cm) 40 81 79 63 65 86 43 20 38 63	0.27 0.53 0.54 0.45 0.48 0.39 0.3 0.03 0.11 0.25	Main Main Main Main Main Main Side Side Side

Comments: Photos: 0690 (Side channel RB), 0691(SC US), 0692(SC LB), 0693(SC DS), 0694(Main Channel RB), 0695(MC US), 0696(MC DS), 069 (MC LB). Last MC flow was taken 5 m from the sandbar. Sandbar was 14.05 m across at the transect. The thalweg was at 53.9 m from LB. Main channel 10 m from sandbar 50% SA, 50% GR and CO. Visual observation of approximately 50 cm Arctic Grayling. Substrate photos taken 15 August 2013: 0795-0799

Site Name	KG-T1-13
Date	13 August 2013
Latitude N	67.016932
Observers	JCS, SDG, MMA

 Event Code

 Time
 12:16

 Longitude W
 156.694493

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	0	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Riparian Vegetation (percentage a	nd type 10 meters from bank)
Left Bank Right Bank	
Canopy (>	5 m)
No canopy	50% Spruce/Alder
Understory (0	
Willow, fireweed, grass all combined- 10% cover	Willow-15%
	Alder-25% Tall grass/shrubs-15%
Ground (< 0	
Willow/grass- 25% cover	Bare-10%
Bare- 75%	Grass/shrubs-90%

KG-T2-13
13 August 2013
67.018092
JCS, SDG, MMA

Event Code Time 14:05 Longitude W 156.687062

Aquatics Data

Ambient Water	r Quality	Channel Characteristics	
Temperature	12.3 °C	Bankfull Width 131 m	
Dissolved Oxyge	en 106.10%	Wetted Width 124 m	
Dissolved Oxyge	en 11.35 mg/L	Thalweg Depth 0.89 m	
Conductivity	200.7 uS/cm	48 hr. Precipitation Low	
Sp. Cond.	0.265 mS/cm	Stream Gradient <1 %	
рН	8.11	Stream Stage Low	
Turbidity	0.89 NTU	Water Color Clear	

Bank Angle Sketches

RB Angle- 160°

	Substrate (inorganic)	= 100%
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	0
Cobble	64-256mm (2.5-10in)	30
Gravel	2-64mm (0.1-2.5in)	30
Sand	0.06-2mm	40
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

LB

LB Angle- 155°

#	Width (m)	Depth (cm)	Flow (m/s)
1	2	59	0.47
2	14	75	0.57
3	26	26	0.54
4	38	33	0.48
5	50	34	0.73
6	62	43	0.61
7	74	49	0.53
8	86	25	0.65
9	98	20	0.62
10	110	13	0.57
11	122	8	0.15

RB

Comments:

Photos: 0703 (US), 0704 (DS), 0705 (LB), 0706 (RB) More photos of substrate taken 15 August 2013-0804-0810

Site Name	KG-T2-13
Date	13 August 2013
Latitude N	67.018092
Observers	JCS, SDG, MMA

Event Code Time 14:05 Longitude W 156.687062

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	0	
Boulders	0	
Artificial Structures	0	
0		

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Riparian Vegetation (percentage a	nd type 10 meters from bank)
Left Bank	Right Bank
Canopy (>	• 5 m)
Spruce-10% cover	Spruce less than 10%
Understory (0	.5 - 5 m)
Alder and willow close to 100% cover	Willow/Alder- 20% cover
	Grass- 50% cover
Ground (<	0.5 m)
Bare-10%	Grass-75% cover
Grass/shrub close to 100%	Rose-5% cover
	Alder-5% cover
	<u> </u>

Site Name	MN-T1-13
Date	13 August 2013
Latitude N	67.008356
Observers	JCS, SDG, MMA

Event Code Time 15:50 Longitude W 156.074302

		Aquatics Data
Ambient Water Q	uality	Channel Characteristics
Temperature	11.1 °C	Bankfull Width 97 m
Dissolved Oxygen	110.30%	Wetted Width 58 m
Dissolved Oxygen	12.07 mg/L	Thalweg Depth not measured-unwadeable
Conductivity	151.6 uS/cm	48 hr. Precipitation Low
Sp. Cond.	0.206 mS/cm	Stream Gradient <1 %
pН	7.73	Stream Stage Low
Turbidity	1.14 NTU	Water Color Clear

Bank Angle Sketches

LB Angle- unmeasurable

RB Angle- 175°

	Substrate (inorganic) = 100%	
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	0
Cobble	64-256mm (2.5-10in)	35
Gravel	2-64mm (0.1-2.5in)	50
Sand	0.06-2mm	15
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

Crew was unable to take flow measurements because transect was unwadeable

Comments:

Photos: 0707- US 0708-DS 0709-LB 0710-RB 0711-Substrate Lots of fine gravel Brett (helicopter pilot) caught numerous Arctic Grayling Corridor section from lower end to bridge is consistent in terms of substrate Site NameMN-T1-13Date13 August 2013Latitude N67.008356ObserversJCS, SDG, MMA

Event Code Time 15:50 **Longitude W** 156.074302

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	2
Macrophytes	0
Woody Debris (Big) >0.3m	1
Brush/Woody Debris (Small) <0.3m	1
Live Trees Root	1
Overhanging Vegetation	1
Undercut Bank	0
Boulders	0
Artificial Structures	0

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Woody debris on left bank

Riparian Vegetation (percentage and type 10 meters from bank)			
Left Bank	Right Bank		
Canop	Canopy (> 5 m)		
Black spruce/Alder-30% cover	No canopy		
	y (0.5 - 5 m)		
Dominated by willow, alder, spruce (total cover)	No understory		
Ground	(< 0.5 m)		
Bare-5% Small grasses, fireweed,saplings	Bare-90% Fireweed and small grasses-10%		

Site Name	MN-T2-13
Date	13 August 2013
Latitude N	67.016628
Observers	JCS, SDG, MMA

Event Code Time 17:29 Longitude W 156.054698

Aquatics Data

Ambient Water Q	uality	Channel Characteristics
Temperature	11.9 °C	Bankfull Width nm
Dissolved Oxygen	110.40%	Wetted Width 70 m
Dissolved Oxygen	11.90 mg/L	Thalweg Depth not measured-unwadeable
Conductivity	155.9 uS/cm	48 hr. Precipitation Low
Sp. Cond.	0.208 mS/cm	Stream Gradient nm
рН	7.71	Stream Stage Low
Turbidity	0.95 NTU	Water Color Clear

Bank Angle Sketches

LB Angle- unmeasurable

RB Angle- 160°

	Substrate (inorganic) = 100%		
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	0	
Cobble	64-256mm (2.5-10in)	40	
Gravel	2-64mm (0.1-2.5in)	20	
Sand	0.06-2mm	40	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	
olay	0.001 0.000 11111	•	

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	3.5	34	0.24
2	8.5	52	0.25
3	13.5	62	0.43
4	18.5	82	0.52
5	23.5	82	0.53
6	28.5	95	0.65
7	33.5	103	0.65

Comments:

RΒ

LB

Half of stream unwadeable

Visual observation of 5 salmon

JCS saw Chum Salmon

Turbidity sample taken near helicopter LZ, approximately 100 m downstream from transect

Site Name	MN-T2-13
Date	13 August 2013
Latitude N	67.016628
Observers	JCS, SDG, MMA

Event Code Time 17:29 Longitude W 156.054698

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	2
Macrophytes	1
Woody Debris (Big) >0.3m	1
Brush/Woody Debris (Small) <0.3m	1
Live Trees Root	0
Overhanging Vegetation	2
Undercut Bank	0
Boulders	0
Artificial Structures	0
Commonto	•

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Riparian Vegetation (percentage and type 10 meters from bank)	
Left Bank	Right Bank
Canop	y (> 5 m)
Spruce, alder, and birch provide about	No canopy
80% cover	
Understo	ry (0.5 - 5 m)
Almost 100% cover by willow, alder,	Willow and alder-75% cover
and other shrubs	Grasses
Not much grasss	
Ground	l (< 0.5 m)
Grass and other herbaceous	Bare-10%
vegetation up to 75% cover	Small grasses-50% cover
Very little bare ground	

Site NameBV-T1-13Date14 August 2013Latitude N67.021206ObserversJCS, SDG, MMA

8.7 °C

126.9 uS/cm

0.184 mS/cm

7.86

0.86 NTU

Ambient Water Quality

Dissolved Oxygen 100.50%

Dissolved Oxygen 11.66 mg/L

Temperature

Conductivity

Sp. Cond.

Turbidity

pН

Event Code Time 12:40

Longitude W 155.150792

Aquatics Data

Bank Angle Sketches

Channel Characteristics

Bankfull Width	34.2 m
Wetted Width	31.5 m
Thalweg Depth	0.66 m
48 hr. Precipitation	Low
Stream Gradient	<1 %
Stream Stage	Low
Water Color	Clear

LB Angle- 163°

RB Angle- 160°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	15	
Cobble	64-256mm (2.5-10in)	50	
Gravel	2-64mm (0.1-2.5in)	25	
Sand	0.06-2mm	5	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	5	

Flow

Width (m) Depth (cm) Flow (m/s) # 0.06 1 1.6 9 2 4.8 21 0.19 8 0.53 3 39 4 11.2 53 0.79 5 14.4 66 0.56 17.6 62 0.75 6 7 20.8 57 0.55 24 48 0.71 8 34 9 27.2 0.53 10 30.4 20 0.34

LΒ

RB

Comments:

Photos: 0728-US, 0719-DS, 0730-LB, 0731-RB, 0732-Substrate at thalweg 0733- Substrate at thalweg Thalweg at 14.4 meters from left bank

Site Name	BV-T1-13	
Date	14 August 2013	
Latitude N	67.021206	
Observers	JCS, SDG, MMA	

Event Code Time 12:40 Longitude W 155.150792

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	4
Macrophytes	1
Woody Debris (Big) >0.3m	0
Brush/Woody Debris (Small) <0.3m	1
Live Trees Root	0
Overhanging Vegetation	2
Undercut Bank	1
Boulders	2
Artificial Structures	0

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton-very heavy cover

Riparian Vegetation (percentage and type 10 meters from bank)	
Left Bank	Right Bank
Canopy	(> 5 m)
Spruce-10% cover	Spruce-20%
Understory	(0.5 - 5 m)
Willow, tall grass, spruce combined is	Willow, tall grass, and herbaceous
90% coverage	vegetation is 65% coverage
Ground (/ < 0.5 m)
Grass, herbaceous vegetation-100% cover	Bare ground-15% Grass and herbaceous vegetation-85%

BV-T2-13	
14 August 2013	
67.023342	
JCS, SDG, MMA	

Dissolved Oxygen 11.78 mg/L

9.1 °C

102.70%

128.6 uS/cm

0.184 mS/cm

7.79

0.74 NTU

Ambient Water Quality

Event Code Time 14:10 Longitude W 155.158002

Aquatics Data

Channel Characteristics

Bankfull Width	29.05 m
Wetted Width	28 m
Thalweg Depth	0.88 m
48 hr. Precipitation	Low
Stream Gradient	<1%
Stream Stage	Low
Water Color	Clear

LB Angle- 73°

Temperature

Conductivity

Sp. Cond.

Turbidity

pН

Dissolved Oxygen

Bank Angle Sketches

RB Angle- 115°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	20
Cobble	64-256mm (2.5-10in)	30
Gravel	2-64mm (0.1-2.5in)	20
Sand	0.06-2mm	30
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

Width (m) Depth (cm) Flow (m/s) # 1 1.4 30 0.13 2 4.2 0.22 24 3 7 35 0.39 0.49 4 9.8 49 5 12.6 65 0.59 6 15.4 88 0.78 7 85 0.56 18.2 74 0.73 8 21 9 23.8 72 0.36 10 26.6 39 0.03

LB

RB

Comments:

0735-Right bank substrate, 0736-RB moving towards left bank substrate, 0737- RB moving towards LB substrate with JCS foot for scale, 0739- Center channel substrate, ski pole for scale, 0740-US 0741- DS, 0742-LB, 0743-RB, 0744-LB substrate

Site Name	BV-T2-13	
Date	14 August 2013	
Latitude N	67.023342	
Observers	JCS, SDG, MMA	

Event Code Time 14:10 **Longitude W** 155.158002

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	4
Macrophytes	1
Woody Debris (Big) >0.3m	0
Brush/Woody Debris (Small) <0.3m	1
Live Trees Root	1
Overhanging Vegetation	2
Undercut Bank	1
Boulders	2
Artificial Structures	0

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyon very heavy on all substrate

LB heavy sand, center heavy cobble, right bank heavy boudler

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy	/ (> 5 m)	
Spruce-10% cover	No canopy	
Understory	v (0.5 - 5 m)	
Willow, alder, berries, spruce- 30% cover	Willow, alder, herbaceous vegetation, and spruce- 30% cover	
Ground	(< 0.5 m)	
Moss, lichen, small herb, and grass- 90% cover Bare due to game trail -10% cover	Moss, lichen, small herb, grass- almost 100% cover	

Site Name	RD-T1-13
Date	15 August 2013
Latitude N	67.035785
Observers	SDG, MMA

Event Code Time 9:57 Longitude W 154.835141

Aquatics Data

Ambient Water Quality		Channel Characteris	stics
Temperature	8.1 °C	Bankfull Width	79 m
Dissolved Oxygen	103.0%	Wetted Width	56 m
Dissolved Oxygen	12.13 mg/L	Thalweg Depth	0.98 m
Conductivity	81.1 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.120 mS/cm	Stream Gradient	<1 %
рН	6.72	Stream Stage	Low
Turbidity	1.13 NTU	Water Color	Clear

Bank Angle Sketches

LB Angle- 169°

RB Angle- 170°

Substrate (inorganic) = 100%				
Туре	Diameter	% Composition		
Bedrock		0		
Boulder	>256mm (10in)	10		
Cobble	64-256mm (2.5-10in)	20		
Gravel	2-64mm (0.1-2.5in)	35		
Sand	0.06-2mm	35		
Silt	0.06-2mm	0		
Clay	0.004-0.06 mm	0		

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	2.8	37	0.48
2	8.4	45	0.62
3	14	59	0.58
4	19.6	89	0.67
5	25.2	92	0.81
6	30.8	87	0.77
7	36.4	86	0.8
8	42	67	0.65
9	47.6	81	0.61
10	53.2	61	0.64

LΒ

Comments:

RB

Thalweg 18.5 m from left bank. RB has cut bank at bankfull (photo taken). Periphyton cover heavy from RB to center of transect. Photos: 0763- JCS in pack raft, 0764- Cut bank at bankfull, right bank 0765- Substrate at RB, 0766-US, 0767-DS, 0768-LB, 0769-RB, 0771-Substrate at LB

Site Name	RD-T1-13
Date	15 August 2013
Latitude N	67.035785
Observers	SDG, MMA

Event Code Time 9:57 Longitude W 154.835141

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	1	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	1	
Overhanging Vegetation	1	
Undercut Bank	0	
Boulders	1	
Artificial Structures	0	
Comments:	-	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Riparian Vegetation (per	centage and type 10 meters from bank)
Left Bank	Right Bank
	Canopy (> 5 m)
No canopy	Spruce-less than 10%
	doretony (0.5 5 m)
Understory (0.5 - 5 m) No understory Willow, small spruce, alder-60% correction	
	Ground (< 0.5 m)
100% sand and gravel cover	Bare (fine sediment)-30% Small grasses, saplings, berries, moss, and lichen-50%

Site NameKB-T1-13Date15 August 2013Latitude N67.012346ObserversJCS, SDG, MMA

Event Code Time 13:18 Longitude W 154.367417

Aquatics Data

Temperature10.6 °CBankfull Width90 mDissolved Oxygen106.50%Wetted Width89 mDissolved Oxygen11.84 mg/LThalweg Depth0.97 m	Ambient Water Quality		Channel Characteristics		
	Temperature	10.6 °C	Bankfull Width	90 m	
Dissolved Oxygen 11.84 mg/L Thalweg Depth 0.97 m	Dissolved Oxygen	106.50%	Wetted Width	89 m	
	Dissolved Oxygen	11.84 mg/L	Thalweg Depth	0.97 m	
Conductivity 142.2 uS/cm 48 hr. Precipitation Low	Conductivity	142.2 uS/cm	48 hr. Precipitation	Low	
Sp. Cond. 0.196 mS/cm Stream Gradient <1 %	Sp. Cond.	0.196 mS/cm	Stream Gradient	<1 %	
pH 7.45 Stream Stage Low	pН	7.45	Stream Stage	Low	
Turbidity 0.68 NTU Water Color Clear	Turbidity	0.68 NTU	Water Color	Clear	

Bank Angle Sketches

LB Angle- 95°

RB Angle- 160°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	5
Cobble	64-256mm (2.5-10in)	35
Gravel	2-64mm (0.1-2.5in)	35
Sand	0.06-2mm	25
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

#	Width (m)	Depth (cm)	Flow (m/s)	#	Width (m)	Depth (cm)	Flow (m/s)
LB-1	2.3	42	0.64	11	46.8	36	0.52
2	6.75	47	0.67	12	51.25	50	0.73
3	11.2	41	0.66	13	55.7	50	0.63
4	15.65	32	0.62	14	60.15	72	0.65
5	20.1	25	0.42	15	64.6	97	0.82
6	24.55	12	0.13	16	69.05	92	1.02
7	29	11	0.23	17	73.5	82	0.93
8	33.45	14	0.31	18	77.95	65	0.98
9	37.9	19	0.47	19	82.4	71	0.84
10	42.35	24	0.53	RB-20	86.85	44	0.62

Comments:

Brett caught an Arctic Grayling 100 m downstream of transect

Site Name	KB-T1-13
Date	15 August 2013
Latitude N	67.012346
Observers	JCS, SDG, MMA

Event Code Time 13:18 Longitude W 154.367417

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	1	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	1	
Overhanging Vegetation	2	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover heavy at banks only

Riparian Vegetation (percentage and type 10 meters from bank)			
Left Bank	Right Bank		
Canopy	y (> 5 m)		
Willow, alder-25%	Spruce, birch, alder-70%		
	(0.5 - 5 m)		
Tall grass, willow, berries-50%Spruce, alder (dominant), willow-almost			
	100% cover		
Ground	(< 0.5 m)		
Grass, willow, herb-100%	Moss, herb, grass, and willow-90% Bare-10%		

Site Name AL-T2-13 Date 17 August 2013 Latitude N 67.077422 Observers JCS,SDG

Event Code Time 16:25 Longitude W 153.327899

Aquatics Data

Ambient Water Qua	ality	Channel Characte	ristics	
Temperature	12.5 °C	Bankfull Width	98.5 m	
Dissolved Oxygen	103.10%	Wetted Width	75.5 m	
Dissolved Oxygen	10.97 mg/L	Thalweg Depth	not measurable	
Conductivity	355.8 uS/cm	48 hr. Precipitation	Low	
Sp. Cond.	0.467 mS/cm	Stream Gradient	<1%	
рН	7.83	Stream Stage	Low	
Turbidity	5.47 NTU	Water Color	Clear	

Bank Angle Sketches

LB Angle- not measured

RB Angle- 175°

Substrate (inorganic) = 100%			
Туре		Diameter	% Composition
Bedro	ck		0
Bould	er	>256mm (10in)	10
Cobble	e	64-256mm (2.5-10in)	25
Gravel		2-64mm (0.1-2.5in)	10
Sand		0.06-2mm	35
Silt		0.06-2mm	20
Clay		0.004-0.06 mm	0

Flow

Crew was unable to take flow measurements because transect was unwadeable

Comments:

Flow was unmeasurable because river was unwadeable Photos: 0867-US 0868-DS 0869-LB 0870-RB 0870-RB 0871- Substrate at RB 0872- Substrate at RB Transect 1 doesn't have a full habitat assessment (photos taken) Associated sonar saved as chart 1, sonar completed 8/18

Site Name	AL-T2-13	
Date	17 August 2013	
Latitude N	67.077422	
Observers	JCS,SDG	

Event Code Time 16:25 Longitude W 153.327899

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	0	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Undercut Bank	0	
Boulders	2	
Artificial Structures	0	

0 = Absent
1 = Sparse (<10%)
2=Moderate (10-40%)
3=Heavy (40-75%)
4=Very Heaw (>75%)

Comments:

Cover based on what was visible from the bank Very heavy periphyton cover mixed with silt Boulders on exposed banks

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank Right Bank		
Canopy	r (> 5 m)	
No canopy	No canopy	
Understory	/ (0.5 - 5 m)	
Alder-10% Grasses-50%	Alder-10% cover	
Ground	(< 0.5 m)	
Bare-60%	Bare ground-80%	
Small grass-10%	Herbaceous grasses-10%	

Site NameMF-T1-13Date17 August 2013Latitude N67.064310ObserversJCS,SDG

Event Code Time 14:20 Longitude W 153.176053

Aquatics Data

Channel Characteristics Ambient Water Quality Bankfull Width 91 m Temperature 12.6 °C Dissolved Oxygen 108.10% Wetted Width 53.5 m Dissolved Oxygen Thalweg Depth 0.75 m 11.4 mg/L 48 hr. Precipitation Conductivity 273.2 uS/cm Low Sp. Cond. 0.357 mS/cm Stream Gradient <1% Stream Stage pН 8.3 Low 0.98 NTU Turbidity Water Color Clear

LB Angle- 100°

Bank Angle Sketches

RB Angle- 115°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	5	
Cobble	64-256mm (2.5-10in)	25	
Gravel	2-64mm (0.1-2.5in)	35	
Sand	0.06-2mm	35	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

Flow

LB

#	Width (m)	Depth (cm)	Flow (m/s)
*1	2.7	3	n/a
2	8.05	9	0.14
3	13.4	14	0.22
4	18.75	41	0.47
5	24.1	52	0.64
6	29.45	52	0.61
7	34.8	62	0.69
8	40.15	69	0.73
9	45.5	55	0.67
10	50.85	42	0.26

RB

Comments:

* too shallow to measure flow. Thalweg was between flow measurements 7 and 8. Increment for flow was 5.35 m. Malamute Fork previously named UN15. Transect cut across gravel/cobble island and side channel. Side channel not flowing-mostly isolated pools.

Wetted width taken along main channel (side channel included in bankfull width)

Visual observation of spawning chum salmon upstream of transect (at top of corridor)

Photos: 0853-Substrate at RB, 0854-Center substrate, 0855 (US), 0856 (DS), 0857 (RB), 0858 (LB)

Site Name	MF-T1-13	Event Code	
Date	17 August 2013	Time	14:20
Latitude N	67.064310	Longitude W	153.176053

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	

0 = Absent
1 = Sparse (<10%)
2=Moderate (10-40%)
3=Heavy (40-75%)
4=Very Heavy (>75%)

Comments:

Filamentous Algae on left and right bank Heavy periphyton cover Small woody debris on right bank

Transect is indicative of corridor reach

Riparian Vegetation (percentage	and type 10 meters from bank)
Left Bank	Right Bank
Canopy	(> 5 m)
Alder-25% cover	No canopy
Spruce behind the 10 meter mark	
Understory	(0.5 - 5 m)
Willow, alder, tall grasses along bank-75%	Willow, alder, and grasses-70%
cover	
Ground (< 0.5 m)
Bare ground-20%	Bare ground-25%
Small grass, herbaceous vegetation-80%	Small grasses and saplings-75%

Site Name	UN18-T1-13	Event Code
Date	16 August 2013	Time 16:37
Latitude N	67.091882	Longitude W 152.730167
Observers	JCS,SDG, MMA	
		Aquatics Data
Ambient Wa	ater Quality	Channel Characteristics
Temperature	12.2 °C	Bankfull Width 15.5 m
Dissolved Ox	ygen 102.30%	Wetted Width 9.6 m
Dissolved Ox	xygen 10.96 mg/L	Thalweg Depth 0.39 m
Conductivity	116.5 uS/cm	48 hr. Precipitation Low
Sp. Cond.	0.154 mS/cm	Stream Gradient 1%
рН	7.33	Stream Stage Low
Turbidity	1.63 NTU	Water Color Mostly Clear

LB Angle- 145°

Bank Angle Sketches

RB Angle- 170°

Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	50
Cobble	64-256mm (2.5-10in)	30
Gravel	2-64mm (0.1-2.5in)	15
Sand	0.06-2mm	5
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

RB

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.48	2	0
*2	1.44	10	0.02
3	2.4	23	0.6
4	3.36	21	0.21
5	4.32	23	0.53
*6	5.28	30	0.07
7	6.24	20	0.46
8	7.2	22	0.07
9	8.16	24	0.35
10	9.12	34	0.3

Comments:

LΒ

* Flow measurements number 2 and 6 were behind a boulder

JCS took approximately 20 minute long video upstream of transect 1 on GoPro

Photos: 0838-Right bank substrate, 0839-Center substrate, 0840-Left bank substrate, 0841 (US),

0842 (DS), 0843 (LB), 0844 (RB). Corridor map needs to be drawn from GPS (too sinuous).

Visual observation of Northern Pike

Site NameUN18-T1-13Date16 August 2013Latitude N67.091882ObserversJCS,SDG, MMA

Event Code Time 16:37 Longitude W 152.730167

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	1	
Overhanging Vegetation	2	
Undercut Bank	1	
Boulders	3	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Small woody debris along left bank

Filamentous algae is zero, measurement of 2 accounts for periphyton cover

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy	r (> 5 m)	
Alder, spruce, birch - 75% cover	Spruce, alder, willow-10%	
Understory	ן v (0.5 - 5 m)	
Almost 100% cover	Willow and alder-50% cover	
Mainly alder, some spruce, some willow		
Ground	(< 0.5 m)	
Bare-15%	Herb, grass, moss-50%	
Grass and moss-85%	Bare ground (cobble, gravel, boulder)-50%	

Site Name	UN18-T2-13
Date	16 August 2013
Latitude N	67.090632
Observers	JCS,SDG, MMA

Event Code Time 17:30 Longitude W 152.728927

Aquatics Data

Ambient Water G	Quality	Channel Characte	eristics
Temperature	12.5 °C	Bankfull Width	19.5 m
Dissolved Oxygen	100.60%	Wetted Width	7.3 m
Dissolved Oxygen	10.76 mg/L	Thalweg Depth	1.08 m
Conductivity	117.1 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.154 mS/cm	Stream Gradient	1%
рН	7.47	Stream Stage	Low
Turbidity	1.92 NTU	Water Color	Mostly Clear

LB Angle- 165°

Bank Angle Sketches

RB Angle- 150°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	25
Cobble	64-256mm (2.5-10in)	25
Gravel	2-64mm (0.1-2.5in)	25
Sand	0.06-2mm	25
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

LB

#	Width (m)		Flow (m/s)
1	0.36	6	0.01
2	1.10	35	0.05
3	1.83	52	0.1
4	2.56	61	0.13
5	3.29	72	0.12
6	4.02	78	0.06
7	4.75	96	0.08
8	5.48	94	0.05
9	6.21	50	0.03

Comments:

RB

Photos:

0845-Right bank substrate, 0846- Center substrate, 0847- Left bank substrate,

0848 (US), 0849 (DS), 0850 (LB), 0851 (RB), 0852 (US)

Not mapped, needs to be mapped with GPS due to sinuousity

Site Name	UN18-T2-13
Date	16 August 2013
Latitude N	67.090632
Observers	JCS, SDG, MMA

Event Code Time 17:30 Longitude W 152.728927

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	3	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	2	
Live Trees Root	1	
Overhanging Vegetation	2	
Undercut Bank	2	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Lots of dead tree roots on right bank

Heavy periphyton cover all along transect

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy (> 5 m)	
No canopy	Spruce-10% cover	
Understory (0.5 - 5 m)	
Dominated by willow-15% cover	Dominated by willow, some alder, some spruce-35% cover	
Ground (<	: 0.5 m)	
85% bare ground (cobble, gravel)	Herbaceous vegetation, berries, labrador tea-almost total cover No bare ground	

 Site Name
 SF-T1-13

 Date
 22 August 2013

 Latitude N
 66.846855

 Observers
 SDG,LIM

Event Code Time 15:33 Longitude W 151.097338

Aquatics Data

Ambient Water Quality Channel Characteristics		stics	
Temperature	10.5 °C	Bankfull Width	85 m
Dissolved Oxygen	102.70%	Wetted Width	56 m
Dissolved Oxygen	11.42 mg/L	Thalweg Depth	1.04 m
Conductivity	180.8 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.250 mS/cm	Stream Gradient	<1%
рН	7.89	Stream Stage	Low
Turbidity	1.14 NTU	Water Color	Clear

Bank Angle Sketches

LB Angle- 178°

RB Angle- 173°

	Substrate (inorganic) = 100%		
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	15	
Cobble	64-256mm (2.5-10in)	40	
Gravel	2-64mm (0.1-2.5in)	30	
Sand	0.06-2mm	15	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	
	Flow		

LB

#	Width (m)	Depth (cm)	Flow (m/s)
1	2.8	9	0.06
2	8.4	23	0.34
3	14	44	0.33
4	19.6	51	0.34
5	25.2	63	0.54
6	30.8	72	0.78
7	36.4	93	0.51
8	42	87	0.5
9	47.6	55	0.41
10	53.2	19	0.1

Comments:

RB

Sluffed bank above right bank angle measurement. Increment=5.6 m. We ended 1.55 meters from right bank instead of 2.8 m (used range finder for wetted width). Wetted width and bankfull measured with rangefinder. A meter from WW left bank angle decreases to 169°. Visual observation of dead burbot (LIM touched it). Thalweg was 2.3 meters towards right bank from flow measurement 7. Photos: 0066 (Winter trail at RB), 0067 (US), 0068 (DS), 0069 (LB), 0070 (LB), 0071 (RB), 0072 (Center substrate), 0073 (LB substrate), 0074 (LB substrate)

Site NameSF-T1-13Date22 August 2013Latitude N66.846855ObserversSDG,LIM

Event Code Time 15:33 Longitude W 151.097338

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	0	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Undercut Bank	0	
Artificial Structures	2	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover is moderate to heavy

Beyond our 10 meter zone there is overhanging vegetation due to sluffed bank

Artificial structure was the winter trail which took up almost half of our 10 meter buffer downstream of transect. Cabin and mailbox were within sight of transect.

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank Right Bank		
Canopy	(> 5 m)	
No canopy	Mainly birch, willow, and spruce-10%	
	Lack of more canopy may be due to	
	presence of winter trail	
Understory	(0.5 - 5 m)	
Willow, rose, fireweed-15%	Poplar, fireweed, rose, tall grasses, and	
	willow-70%	
Ground	(< 0.5 m)	
Bare ground-90% (cobble, gravel, and sand)	Bare ground-25%	
Herbaceous vegeation, fireweed, and small	(Less than 10% of bare ground is natural,	
willow-10%	most of the 25% can be attributed to the	
	winter trail)	
	Herbaceous vegetation, moss, poplar	
	saplings-75%	

Site Name JM-T1-13 Date 22 August 2013 Latitude N 66.793188 Observers SDG,LIM

Event Code Time 12:50 Longitude W 150.732181

Aquatics Data

Ambient Water Quality		Channel Characteristics	
Temperature	6.4 °C	Bankfull Width	65.0 m
Dissolved Oxygen	105.50%	Wetted Width	23.5 m
Dissolved Oxygen	13.00 mg/L	Thalweg Depth	0.71 m
Conductivity	53.6 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.083 mS/cm	Stream Gradient	<1%
рН	7.04	Stream Stage	Low
Turbidity	1.35 NTU	Water Color	Mostly Clear

Bank Angle Sketches

LB Angle- 158°

RB Angle- 175°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	5	
Cobble	64-256mm (2.5-10in)	35	
Gravel	2-64mm (0.1-2.5in)	45	
Sand	0.06-2mm	15	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

RB

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	1.17	6	0.03
2	3.52	23	0.13
3	5.87	47	0.29
4	8.22	65	0.37
5	10.57	68	0.43
6	12.92	71	0.44
7	15.27	60	0.52
8	17.62	67	0.44
9	19.98	64	0.43
10	22.33	64	0.41

Comments:

LB

Thalweg is 51 cm towards right bank from flow measurement 5. Increment=2.35 m Crew was going to do a second transect downstream of first transect but didn't because of visual observation of grizzly bear sow and two cubs in proximity to the transect site. Photos: 0051 (Vegetation above bankfull width onLB), 0052 (RB from LB BFW), 0053 (US), 0054 (DS), 0055 (RB), 0056 (LB), 0057 (Substrate), 0058 (Substrate), 0059 (Substrate)

Site Name	JM-T1-13
Date	22 August 2013
Latitude N	66.793188
Observers	SDG,LIM

Event Code Time 12:50 Longitude W 150.732181

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	1	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Undercut Bank	0	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover is heavy along transect

No undercut at wetted width, moderate undercut at bankfull due to sluffing Sluffed bank with live vegetation 2 meters from wetted width

Riparian Vegetation (percentage and type 10 meters from bank)			
Left Bank Right Bank			
Canopy	(> 5 m)		
No canopy	No canopy		
Understory	(0.5 - 5 m)		
Willow, alder, birch (predominately birch),	Willow and fireweed-15%		
some fireweed- 60%			
Ground (< 0.5 m)			
Bare ground-50%	Bare ground-90%		
Moss, herbaceous vegetation, fireweed,	Small fireweed and willow-10%		
and small birch-50%			

UN30-T1-13n
21 August 2013
67.060008
JCS,SDG,LIM

Event Code Time 12:48 Longitude W 156.030637

Aquatics Data

Ambient Water Quality		Channel Characteristics	
Temperature	5.8 °C	Bankfull Width	46 m
Dissolved Oxygen	103.20%	Wetted Width	19.5 m
Dissolved Oxygen	12.79 mg/L	Thalweg Depth	0.97 m
Conductivity	140.0 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.221 mS/cm	Stream Gradient	1%
рН	7.95	Stream Stage	Low
Turbidity	0.72 NTU	Water Color	Clear

Bank Angle Sketches

LB Angle- 170° (estimated)

RB Angle- 165°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	50	
Cobble	64-256mm (2.5-10in)	30	
Gravel	2-64mm (0.1-2.5in)	15	
Sand	0.06-2mm	5	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

Flow

LB

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.97	10	0.04
2	2.92	16	0.29
3	4.87	38	0.35
4	6.82	15	0.63
5	8.77	59	0.79
6	10.72	71	0.76
7	12.67	80	0.49
8	14.62	54	0.36
9	16.57	44	0.14
10	18.52	24	0.18

RB

Comments:

Thalweg is 50 cm towards left bank from flow measurement 7. More sand on exposed banks and on bends with slower flow (as compared to our transect). Above where right bank angle was measured, bank angle increases towards 90 degrees. Increment=1.95 m. Photos: 0005 (US), 0006 (DS), 0007 (LB), 0008 (RB), 0009 (Substrate), 0010 (Substrate)

Site Name	UN30-T1-13n
Date	21 August 2013
Latitude N	67.060008
Observers	JCS,SDG,LIM

Event Code Time 12:48 Longitude W 156.030637

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	1
Macrophytes	0
Woody Debris (Big) >0.3m	0
Brush/Woody Debris (Small) <0.3m	2
Live Trees Root	0
Overhanging Vegetation	1
Undercut Bank	0
Boulders	3
Artificial Structures	0

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover from center to right bank was moderate

If water was higher, overhanging vegetation would be moderate

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canop	/ (> 5 m)	
No canopy	Paper birch, willow, spruce, alder-30%	
Understor	y (0.5 - 5 m)	
Willow-30%	Herbaceous vegetation, willow, alder, and	
	spruce-50%	
Ground	(< 0.5 m)	
Bare ground-50%	Bare ground-20%	
Small willow, grasses, and fireweed-50%	Moss, lichen, small grasses,	
	cranberry, blueberry, and woody shrubs-80%	

Site Name	MN-T1-13n	
Date	21 August 2013	
Latitude N	67.051217	
Observers	JCS,SDG,LIM	

Event Code Time 16:16 Longitude W 155.765139

Aquatics Data

Addition Data					
Ambient Water Quality		Channel Characteristics			
	Temperature	8.3 °C	Bankfull Width	60 m	
	Dissolved Oxygen	106.40%	Wetted Width	33.7 m	
	Dissolved Oxygen	12.47 mg/L	Thalweg Depth	0.99 m	
	Conductivity	171.3 uS/cm	48 hr. Precipitation	Low	
	Sp. Cond.	0.251 mS/cm	Stream Gradient	<1%	
	рН	7.67	Stream Stage	Low	
	Turbidity	0.63 NTU	Water Color	Clear	

Bank Angle Sketches

LB Angle- 170° (estimated)

RB Angle- 115°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	5	
Cobble	64-256mm (2.5-10in)	15	
Gravel	2-64mm (0.1-2.5in)	65	
Sand	0.06-2mm	15	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	1.69	6	0.12
2	5.06	20	0.37
3	8.43	36	0.5
4	11.8	54	0.58
5	15.17	68	0.7
6	18.54	81	0.7
7	21.91	91	0.89
8	25.28	99	0.92
9	28.65	95	0.9
10	32.02	62	0.64

RB

LΒ

Comments:

Flow measurement 8 marks the thalweg. Increment=3.37 m Photos: 0015(US), 0016 (DS), 0017 (LB), 0018 (RB), 0019 (Substrate), 0020 (Substrate), 0021 (LB from LB)

Site Name	MN-T1-13n
Date	21 August 2013
Latitude N	67.051217
Observers	JCS,SDG,LIM

 Event Code

 Time
 16:16

 Longitude W
 155.765139

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	

0 = Absent
1 = Sparse (<10%)
2=Moderate (10-40%)
3=Heavy (40-75%)
4=Very Heavy (>75%)

Comments:

Filamentous algae is low-moderate Periphyton is moderately high

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy (> 5 m)		
No canopy	No canopy	
Understory (0.5 - 5 m)		
No understory	Willow and tall grass-40%	
Ground (< 0.5 m)		
Bare ground is > 95% composed of	Fireweed, herbaceous vegetation, and	
cobble, gravel, sand	willow-50%	
	Bare ground-50% (sand and silt)	
Remainder is horsetail		
Also some standing water at outskirts of		
10 meter buffer, shows signs of redox		

RD-T1-13s
19 August 2013
66.886494
JCS,SDG,LIM

Event Code Time 13:35 Longitude W 154.837675

Aquatics Data

Ambient Water Qu	ality	Channel Character	istics
Temperature	9.1 °C	Bankfull Width	65.5 m
Dissolved Oxygen	106.70%	Wetted Width	57 m
Dissolved Oxygen	12.24 mg/L	Thalweg Depth	0.93 m
Conductivity	94.1 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.135 mS/cm	Stream Gradient	<1%
pН	7.56	Stream Stage	Low
Turbidity	3.11 NTU	Water Color	Mostly Clear

LB Angle- 170°

Bank Angle Sketches

RB Angle- 165°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	10
Cobble	64-256mm (2.5-10in)	40
Gravel	2-64mm (0.1-2.5in)	20
Sand	0.06-2mm	30
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

LB

#	Width (m)	Depth (cm)	Flow (m/s)
1	2.85	36	0.29
2	8.55	81	0.45
3	14.25	92	0.58
4	19.95	72	0.67
5	25.65	73	0.66
6	31.35	84	0.73
7	37.05	86	0.71
8	42.75	61	0.63
9	48.45	40	0.54
10	54.15	18	0.19

Comments:

RB

Increment= 5.7 m. Thalweg was 93cm deep and very close to flow measurement #3. Photos: 0941 (US), 0942 (DS), 0943 (LB), 0944 (RB), 0945-Right bank substrate, 0946-Righ bank substrate, 0947-Center substrate, 0948-Center substrate, 0949-Left bank substrate.

Site Name	RD-T1-13s
Date	19 August 2013
Latitude N 66.886494	
Observers	JCS,SDG,LIM

Event Code Time 13:35 Longitude W 154.837075

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Undercut Bank	0	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover is heavy

Riparian Vegetation (percentage and type 10 meters from bank)			
Left Bank	Right Bank		
Canopy (> 5 m)			
Birch and spruce-40%	No canopy		
Understory (0.5 - 5 m)			
Alder, grasses, willow, herbaceous vegetation-	Willow, alder, grasses-70%		
40% cover			
Ground (< 0.5 m)			
Bare ground-50%	Bare ground-20%		
Grasses, willow, fireweed, herbaceous	Herbaceous-80%		
vegetation. Woody shrubs, moss-50% cover			

RD-T2-13s
19 August 2013
66.887137
JCS,SDG,LIM

Event Code Time 12:16 Longitude W 154.834857

Aquatics Data

Ambient Water Quality		Channel Characteri	Channel Characteristics	
Temperature	8.7 °C	Bankfull Width	80 m	
Dissolved Oxygen	102.80%	Wetted Width	46.5 m	
Dissolved Oxygen	11.93 mg/L	Thalweg Depth	0.81 m	
Conductivity	91.4 uS/cm	48 hr. Precipitation	Low	
Sp. Cond.	0.133 mS/cm	Stream Gradient	<1%	
рН	7.55	Stream Stage	Low	
Turbidity	2.27 NTU	Water Color	Clear	

Bank Angle Sketches

LB Angle- 82°

RB Angle- 175°

Туре	Diameter	% Composition	
		Main Channel	Side Channel
Bedrock		0	0
Boulder	>256mm (10in)	5	0
Cobble	64-256mm (2.5-10in)	35	10
Gravel	2-64mm (0.1-2.5in)	30	30
Sand	0.06-2mm	30	60
Silt	0.06-2mm	0	0
Clay	0.004-0.06 mm	0	0

	R
_	ப

RB

Main Channel						
#	Width (m)	Depth (cm)	Flow (m/s)			
1	2.33	12	0.33			
2	6.98	58	0.54			
3	11.63	72	0.7			
4	16.28	57	0.76			
5	20.93	65	0.8			
6	25.58	81	0.85			
7	30.23	77	0.99			
8	34.88	71	0.85			
9	39.53	57	0.84			
10	44.18	36	0.57			

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.64	19	0.08
2	1.92	44	0.13
3	3.2	58	0.18
4	4.48	58	0.19
5	5.76	70	0.25
6	7.04	76	0.35
7	8.32	92	0.34
*8	9.6	88	0.05
9	10.88	66	0.26
10	12.16	52	0.38

Side Channel

LB

Comments:

Wetted width of main channel is 46.5 m. Island is 15 m across. Wetted width of side channel is 12.8 m Main channel thalweg is 25.5 m from left bank.

Side channel thalweg is 0.76 m before flow measurement #7, depth is 1.03 m.

Main channel increment= 4.65 m, Side channel increment= 1.28 m

* flow measurement taken behind mound of sand

Main Channel Photos-

0929-US	0933-Center substrate
0930-DS	0934/0935- Right bank substrate
0931-LB	
0932-RB	
Side Channel Photos-	
0936-US	0939-LB
0937-DS	0940-Substrate
0938-RB	

Page 2 of 2

RΒ

Site Name RD-T2-13s	
Date	19 August 2013
Latitude N	66.887137
Observers	JCS,SDG,LIM

Event Code Time 12:16 Longitude W 154.834857

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	
	-	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Undercut bank is on left bank by side channel

Periphyton is heavy (mostly on banks)

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank Right Bank		
Canopy (:	> 5 m)	
No canopy Mainly spruce-309		
Understory (l 0.5 - 5 m)	
Dominated by willow, some grasses-65% cover	Alder, spruce saplings, willow, grasses, berries, roses-80%	
Ground (< 0.5 m)		
Bare ground-30%	Bare ground-40%	
Small grasses, herbaceous vegetation-70%	Small grasses, moss, berries-60%	

Site Name	KB-T1-13s	
Date	19 August 2013	
Latitude N	66.889348	
Observers	JCS,SDG,LIM	

Event Code Time 15:45 Longitude W 154.635693

Aquatics Data

Ambi	ent	water	Quality	
-				~~

Temperature	12.4 °C
Dissolved Oxygen	109.40%
Dissolved Oxygen	11.67 mg/L
Conductivity	140.1 uS/cm
Sp. Cond.	0.184 mS/cm
рН	8.31
Turbidity	1.21 NTU

Channel CharacteristicsBankfull Width113 mWetted Width77 mThalweg Depth1.03 m48 hr. PrecipitatioLowStream Gradient< 1% (estimated)</td>Stream StageLowWater ColorClear

LB Angle- 177°

Bank Angle Sketches

RB Angle- 172°

Substrate (inorganic) = 100%				
Туре	Type Diameter % Compositio			
Bedrock		0		
Boulder	>256mm (10in)	5		
Cobble	64-256mm (2.5-10in)	35		
Gravel	2-64mm (0.1-2.5in)	50		
Sand	0.06-2mm	10		
Silt	0.06-2mm	0		
Clay	0.004-0.06 mm	0		
Flow				

LΒ

#	Width (m)	Depth (cm)	Flow (m/s)
1	3.85	17	0.12
2	11.55	57	0.72
3	19.25	86	0.77
4	26.95	93	0.83
5	34.65	96	0.63
6	42.35	77	0.57
7	50.05	38	0.55
8	57.75	40	0.65
9	65.45	24	0.79
10	73.15	18	0.6
11	80.85	14	0.63

RB

Comments:

Wetted width measured with range finder, may be a few meters off from actual wetted width (as shown by flow measurements). Increment= 7.7 m. Thalweg was 41 meters from left bank. Photos: 0950 (US), 0951 (DS), 0952 (LB), 0953 (RB), 0955 (Substrate between LB and center), 0956 (LB substrate), 0958 (Center sand substrate)

Site Name KB-T1-13s	
Date	19 August 2013
Latitude N	66.889348
Observers	JCS,SDG,LIM

Event Code Time 15:35 Longitude W 154.635693

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	2	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	0	
Undercut Bank	0	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Beaver activity on right bank

Outisde of transect overhanging vegetation is moderate on right bank only

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy (> 5 m)		
No canopy	One black spruce on high bank- 5%	
Understory	(0.5 - 5 m)	
No understory	Willow, spruce, fireweed, blueberry-50%	
Ground (< 0.5 m)		
Bare ground-95%	Bare ground-60%	
Woody saplings, moss, and small grasses-5%	Woody and herbaceous vegetation, blueberry, fireweed-40%	

Site Name HG-T1-13s Date 20 August 2013 Latitude N 66.822889 Observers JCS,SDG,LIM

Event Code Time 12:31 Longitude W 153.989294

_----j--------

Aquatics Data

Ambient Water Quality Channel Characte		Channel Characteristics	
Temperature	6.8 °C	Bankfull Width 27.5	m
Dissolved Oxygen	98.70%	Wetted Width 9.2 r	n
Dissolved Oxygen	12.0 mg/L	Thalweg Depth 0.42	m
Conductivity	71.3 uS/cm	48 hr. Precipitation Low	1
Sp. Cond.	0.109 mS/cm	Stream Gradient 0%	
рН	6.69	Stream Stage Low	/
Turbidity	0.82 NTU	Water Color Clea	ır

LB Angle- 80°

RB Angle- 174°

Substrate (inorganic) = 100%			
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	10	
Cobble	64-256mm (2.5-10in)	40	
Gravel	2-64mm (0.1-2.5in)	35	
Sand	0.06-2mm	15	
Silt	0.06-2mm	0	
Clay	0.004-0.06 mm	0	

Bank Angle Sketches

Flow

RB

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.46	3	0
2	1.38	4	0.01
3	2.3	9	0.15
4	3.22	16	0.32
5	4.14	27	0.36
6	5.06	34	0.25
7	5.98	30	0.43
8	6.9	30	0.47
9	7.82	32	0.37
10	8.74	14	0.31

Comments:

LB

Thalweg about 3 meters from left bank. Visual observation of Arctic Grayling 25 meters downstream of transect. Depth variable due to substrate. Increment-0.92 m

Photos: 0963 (US), 0964 (DS), 0965 (LB), 0966 (RB), 0967 (Center substrate), 0968 (Center substrate), 0969 (Center substrate)

Site Name	HG-T1-13s	
Date	20 August 2013	
Latitude N	66.822889	
Observers	JCS,SDG,LIM	

Event Code Time 12:31 Longitude W 153.989294

Channel Cover in Stream Transect

Cover in Transect	
Filamentous Algae	2
Macrophytes	0
Woody Debris (Big) >0.3m	1
Brush/Woody Debris (Small) <0.3m	2
Live Trees Root	1
Overhanging Vegetation	2
Undercut Bank	1
Boulders	1
Artificial Structures	0

0 = Absent	
1 = Sparse (<10%) 2=Moderate (10-40%)	
2=Moderate (10-40%)	
3=Heavy (40-75%)	
3=Heavy (40-75%) 4=Very Heavy (>75%)	

Comments:

Heavy periphyton cover all along transect

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy (> 5 m)	
Spruce-20%	No canopy	
Outside 10 meter zone spruce density is		
heavier		
Understory (0.5 - 5 m)	
Willow, alder, berries, tall grass-80% cover	Willow-15%	
Ground (< 0.5 m)		
Bare ground-10%	Bare ground-90%	
Moss, small grass, saplings, berries-90%	Small grass, willow, and fireweed-10%	

HG-T2-13MCs	
20 August 2013	
66.820099	
JCS,SDG,LIM	

Event Code Time 13:39 Longitude W 153.990330

Aquatics Data

Ambient Water Quality

Temperature	7.3 °C
Dissolved Oxygen	100.60%
Dissolved Oxygen	12.13 mg/L
Conductivity	72.2 uS/cm
Sp. Cond.	0.109 mS/cm
рН	6.87
Turbidity	1.42 NTU

Channel Characteristics

Bankfull Width	12.5 m
Wetted Width	5.6 m
Thalweg Depth	0.84 m
48 hr. Precipitation	Low
Stream Gradient	< 1%
Stream Stage	Low
Water Color	Clear

LB Angle- 160°

Bank Angle Sketches

RB Angle- 155°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	5
Cobble	64-256mm (2.5-10in)	40
Gravel	2-64mm (0.1-2.5in)	40
Sand	0.06-2mm	15
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

Width (m) Depth (cm) Flow (m/s) 1 0.28 14 0.01 2 0.84 31 0.12 3 1.4 44 0.18 4 1.96 60 0.2 5 2.52 72 0.22 6 3.08 72 0.29 7 3.64 77 0.3 8 4.2 62 0.24 9 4.76 42 0.12 10 5.32 22 0.06

LB

RB

Comments:

Transect is side channel-island-side channel. 16 Arctic Grayling on right bank of first side channel (GoPro video). Thalweg is 2.65 meters from left bank. Side channel 2-see separate data sheet. Photos: 0970 (US), 0971 (DS), 0972 (LB), 0973 (RB), 0974 (Center substrate), 0975 (RB substrate) 0976 (LB substrate). Increment=0.56 m

Site Name HG-T2-13MCs	
Date	20 August 2013
Latitude N	66.820099
Observers	JCS,SDG,LIM

Event Code Time 13:39 **Longitude W** 153.990330

Channel Cover in Stream Transect

Cover in Transect		
Oover in manseet		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	1	
Overhanging Vegetation	2	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton cover is moderate to heavy

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank Right Bank		
Canopy	r (> 5 m)	
No canopy	Willow-40%	
Understory (0.5 - 5 m)		
Willow, tall grasses-50%	Tall grasses and willow-50%	
Ground	(< 0.5 m)	
Bare ground-30% Small grasses, willow, fireweed, moss-70%	Bare ground-10% Herbaceous vegetation, small grasses-90%	

Site NameHG-T2-13SCsDate20 August 2013Latitude N66.820099ObserversJCS,SDG,LIM

Event Code Time 14:27 Longitude W 153.990330

Aquatics Data

Ambient Water Q	uality	Channel Characte	ristics
Temperature	7.6 °C	Bankfull Width	11.2 m
Dissolved Oxygen	95.30%	Wetted Width	9.4 m
Dissolved Oxygen	11.29 mg/L	Thalweg Depth	0.53 m
Conductivity	72.7 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.109 mS/cm	Stream Gradient	<1%
рН	6.53	Stream Stage	Low
Turbidity	1.45 NTU	Water Color	Clear

LB Angle- 120°

Bank Angle Sketches

RB Angle- 70°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	5
Cobble	64-256mm (2.5-10in)	20
Gravel	2-64mm (0.1-2.5in)	50
Sand	0.06-2mm	25
Silt	0.06-2mm	0
Clay	0.004-0.06 mm	0

Flow

LB

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.47	4	0
2	1.41	6	0
3	2.35	6	0
4	3.29	26	0.05
5	4.23	22	0.07
6	5.17	29	0.07
7	6.11	30	0.05
8	7.05	27	0.07
9	7.99	33	0.06
10	8.93	48	0.05

RB

Comments:

Flow measurement 3 was on top of gravel mound. Flow measurement 5 was on top of rock. Thalweg is 41 cm from right bank. Photos: 0977 (US), 0978 (DS), 0979 (LB), 0980 (RB), 0981 (Left substrate), 0982 (Left substrate), 0983 (Left substrate)

Site Name HG-T2-13SCs	
Date	20 August 2013
Latitude N	66.820099
Observers	JCS,SDG,LIM

Event Code Time 14:27 Longitude W 153.990330

Channel Cover in Stream Transect

Cover in Transect		
2		
0		
0		
2		
1		
2		
2		
1		
0		

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton moderate cover

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canop	y (> 5 m)	
Spruce, alder-60%	Spruce, alder-50%	
	. (0.5	
Understory (0.5 - 5 m)		
Alder, willow, tall grasses-30%	Willow, tall grasses, alder-50%	
Ground	(< 0.5 m)	
Bare ground-25%	Bare ground-20%	
Moss, herbaceous vegetation, woody shrubs	Moss, small grasses, herbaceous vegetation,	
(small alder and willow)- 75%	woody shrubs (willow and rose)- 80%	

HJ-T1-13s
18 August 2013
67.040438
JCS,SDG,LIM

Event Code Time 15:05 **Longitude W** 153.591748

Aquatics Data

Ambient Water Q	uality	Channel Characte	ristics
Temperature	9.2 °C	Bankfull Width	39.2 m
Dissolved Oxygen	103.30%	Wetted Width	11.15 m
Dissolved Oxygen	11.74 mg/L	Thalweg Depth	0.92 m
Conductivity	156.5 uS/cm	48 hr. Precipitation	Low
Sp. Cond.	0.224 mS/cm	Stream Gradient	<1%
рН	7.67	Stream Stage	Low
Turbidity	5.6 NTU	Water Color	Clear/Glacial Low Turbidity

LB Angle- 177°

Bank Angle Sketches

RB Angle- 80°

Substrate (inorganic) = 100%		
Туре	Diameter	% Composition
Bedrock		0
Boulder	>256mm (10in)	5
Cobble	64-256mm (2.5-10in)	30
Gravel	2-64mm (0.1-2.5in)	0
Sand	0.06-2mm	40
Silt	0.06-2mm	25
Clay	0.004-0.06 mm	0

Flow

LB

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.55	10	0
2	1.65	17	0.02
3	2.75	32	0.03
4	3.85	52	0.13
5	4.95	72	0.26
6	6.05	82	0.36
7	7.15	88	0.27
*8	8.25	88	0.27
9	9.35	88	0.24
10	10.45	68	0.5

RB

Comments:

Sinusodal river. Thalweg is 7.7 meters from right bank.

Photos: 0910 (US), 0911 (DS), 0912 (LB), 0913 (RB), 0914 (Left bank substrate)

Site Name	HJ-T1-13s
Date	18 August 2013
Latitude N	67.040438
Observers	JCS,SDG,LIM

Event Code Time 15:05 Longitude W 153.591748

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	1	
Brush/Woody Debris (Small) <0.3m	2	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	1	
Boulders	1	
Artificial Structures	0	

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Comments:

Periphyton mixed with silt = Heavy (greater than 40%)

Riparian Vegetation (percentage and type 10 meters from bank)		
Left Bank	Right Bank	
Canopy (> 5 m)		
No canopy	Spruce and alder-20% (more alder than	
	spruce)	
Understory	(0.5 - 5 m)	
Willow-25%	Alder, some willow, tall grass-75%	
Ground (< 0.5 m)		
Small willow-20%	Bare ground-10%	
Bare gravel and cobble-80%	Herbaceous vegetation, small grasses,	
	moss, blueberries, and roses-90%	

Site Name	HJ-T2-13s
Date	18 August 2013
Latitude N	67.038627
Observers	JCS,SDG,LIM

Event Code **Time** 16:18 153.592427 Longitude W

Aquatics Data

Ambient Water Quality		Channel Characte	Channel Characteristics	
Temperature	10.3 °C	Bankfull Width	19.3 m	
Dissolved Oxygen	106.10%	Wetted Width	10.5 m	
Dissolved Oxygen	11.74 mg/L	Thalweg Depth	0.81 m	
Conductivity	161.7 uS/cm	48 hr. Precipitation	Low	
Sp. Cond.	0.224 mS/cm	Stream Gradient	<1%	
pН	7.84	Stream Stage	Low	
Turbidity	4.55 NTU	Water Color	Mostly Clear	

Bank Angle Sketches

LB Angle- 175°

RB Angle- 105°

	Substrate (inorganic) = 100%		
Туре	Diameter	% Composition	
Bedrock		0	
Boulder	>256mm (10in)	30	
Cobble	64-256mm (2.5-10in)	40	
Gravel	2-64mm (0.1-2.5in)	20	
Sand	0.06-2mm	5	
Silt	0.06-2mm	5	
Clay	0.004-0.06 mm	0	

Flow

#	Width (m)	Depth (cm)	Flow (m/s)
1	0.52	8	0.16
2	1.57	26	0.4
3	2.62	39	0.46
4	3.67	59	0.29
5	4.72	63	0.38
6	5.77	78	0.36
7	6.82	68	0.44
*8	7.87	30	0.56
9	8.92	20	0.35
10	9.97	32	0.07

Comments:

LB

RB

Thalweg is 5.57 meters from left bank, shortly before flow measurement number 6. Increment= 1.05 m * Measurement taken on top of boulder. Photos: 0915 (US), 0916 (DS), 0917 (LB), 0918 (RB), 0919 (Substrate at LB with JCS boot), 0920 (Substrate in center-boulders), 0921 (Substrate in center)

Site Name	HJ-T2-13s
Date	18 August 2013
Latitude N	67.038627
Observers	JCS,SDG,LIM

Event Code Time 16:18 **Longitude W** 153.592427

Channel Cover in Stream Transect

Cover in Transect		
Filamentous Algae	1	
Macrophytes	0	
Woody Debris (Big) >0.3m	0	
Brush/Woody Debris (Small) <0.3m	1	
Live Trees Root	0	
Overhanging Vegetation	1	
Undercut Bank	1	
Boulders	2	
Artificial Structures	0	
Comments:		

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

Boulders highly moderate

Heavy periphyton mixed with silt cover

Riparian Vegetation (percentage and type 10 meters from bank)	
Left Bank	Right Bank
Canopy (> 5 m)
No canopy	All spruce-35% cover
Understory (0.5 - 5 m)
Mostly willow and some spruce-20% cover	Dense with willow, herbaceous vegetation, spruce saplings, blueberry, and rose- almost total cover
Ground (<	: 0.5 m)
Bare ground (gravel and cobble)-65% Small grass-35%	Bare ground-5% Moss, small grass, berries, and rose-95%

Site NameHJ-T3-13sDate18 August 2013Latitude N67.039417ObserversJCS,SDG,LIM

Ambient Water Quality

11.0 °C
11.0 C
106.40%
11.64 mg/L
164.6 uS/cm
0.225 mS/cm
7.75
3.71 NTU

 Event Code

 Time
 17:05

 Longitude W
 153.590255

Aquatics Data

Channel Characteristics								
Bankfull Width	24.2 m							
Wetted Width	10.9 m							
Thalweg Depth	0.69 m							
48 hr. Precipitation	Low							
Stream Gradient	1%							
Stream Stage	Low							
Water Color	Clear							

LB Angle- 175°

Bank Angle Sketches

RB Angle- 90°

	Substrate (inorganic) = 100%						
Туре	Diameter	% Composition					
Bedrock		0					
Boulder	>256mm (10in)	10					
Cobble	64-256mm (2.5-10in)	50					
Gravel	2-64mm (0.1-2.5in)	20					
Sand	0.06-2mm	0					
Silt	0.06-2mm	20					
Clay	0.004-0.06mm	0					

Flow

Width (m) Depth (cm) Flow (m/s) # 0 1 0.55 3 2 1.64 19 0.01 3 2.73 31 -0.01 -0.01 4 3.82 52 5 4.91 52 0.11 0.36 6 6 60 7 7.09 68 0.61 8 8.18 68 0.83 9 9.27 68 1.03 10 10.36 58 0.2

LB

RB

Comments:

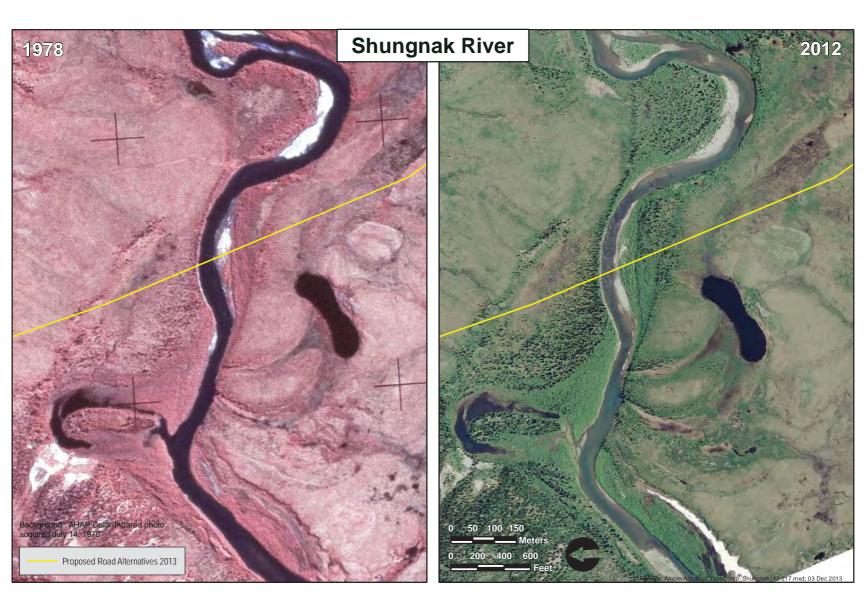
Increment=1.09 m. Thalweg was 3.22 meters from left bank Photos: 0922 (US), 0923 (DS), 0924 (LB), 0925 (RB)

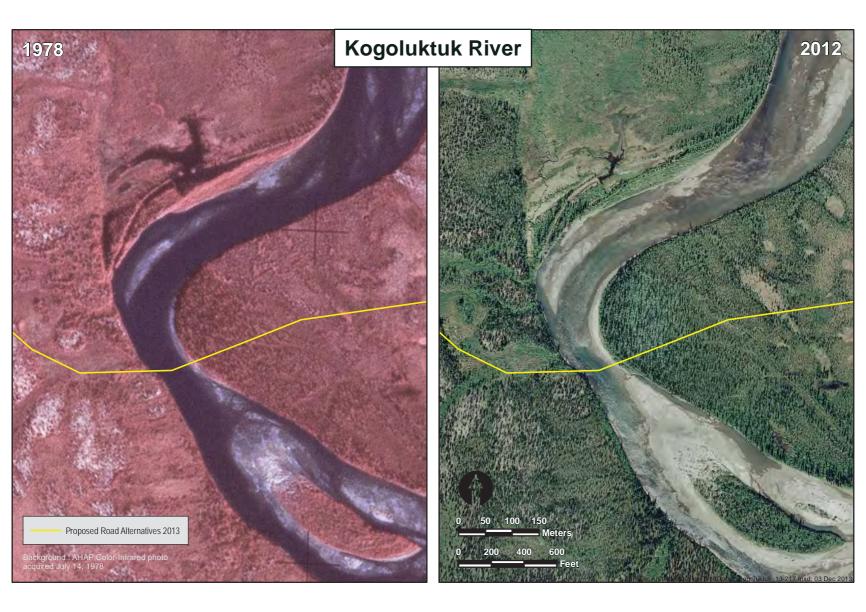
Site Name HJ-T3-13s	
Date	18 August 2013
Latitude N	67.039417
Observers	JCS,SDG,LIM

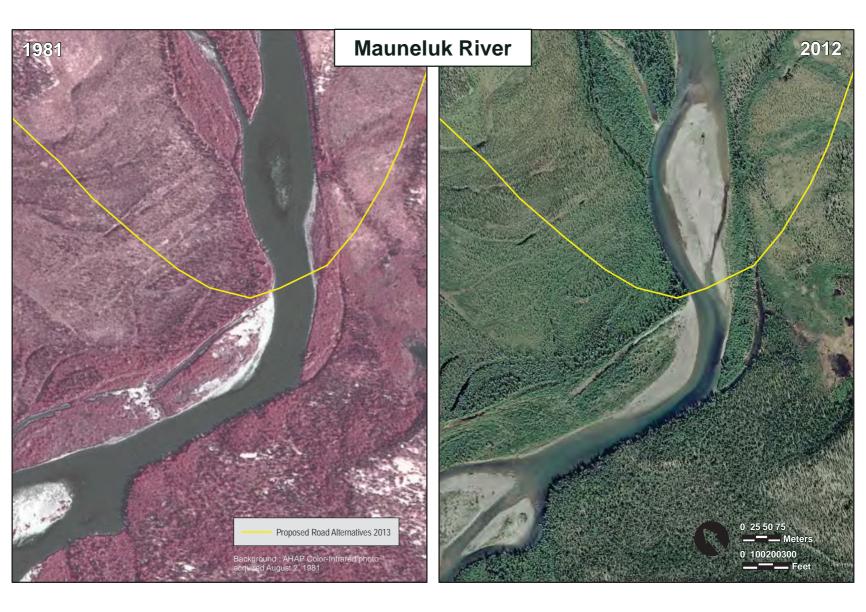
Event Code Time 17:05 **Longitude W** 153.590255

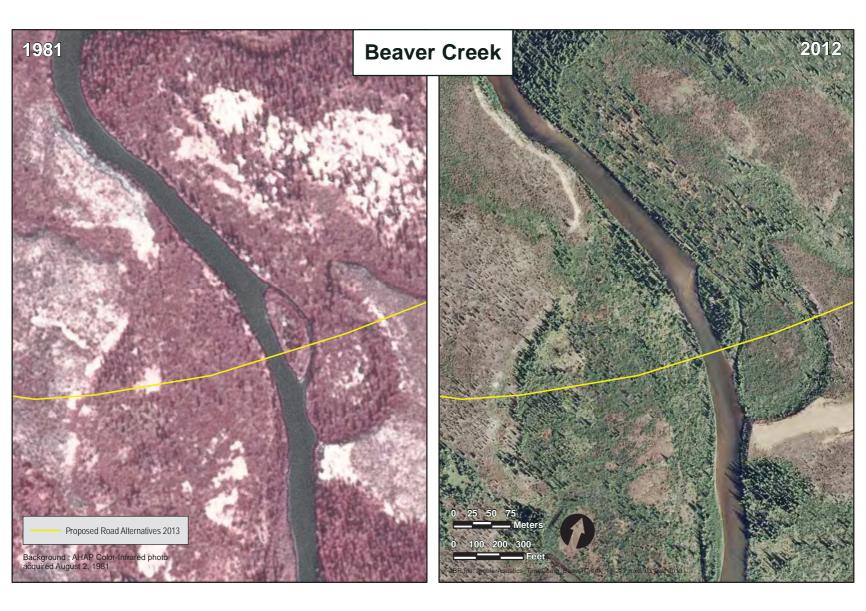
Channel Cover in Stream Transect

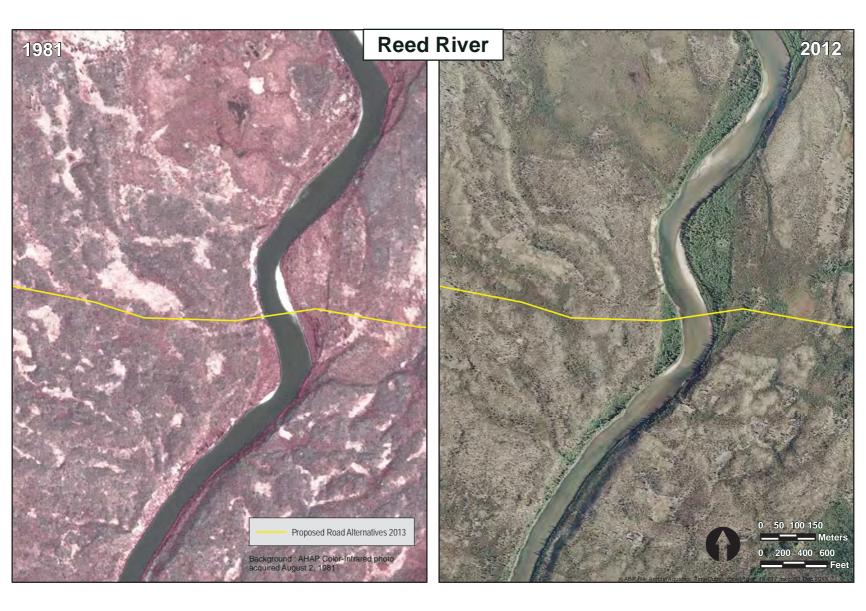
Cover in Transect							
Filamentous Algae	0						
Macrophytes	0						
Woody Debris (Big) >0.3m	0						
Brush/Woody Debris (Small) <0.3m	1						
Live Trees Root	0						
Overhanging Vegetation	1						
Undercut Bank	0						
Boulders	1						
Artificial Structures	0						

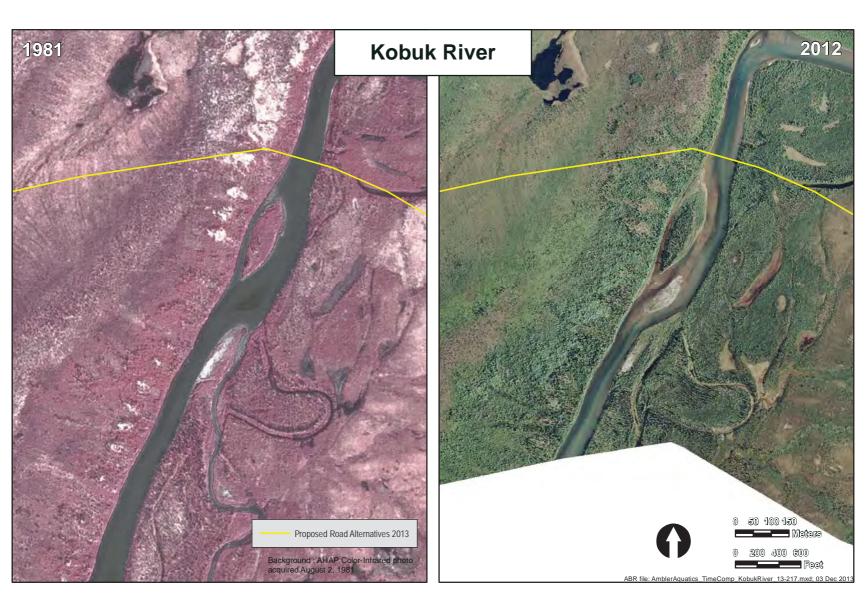

0 = Absent 1 = Sparse (<10%) 2=Moderate (10-40%) 3=Heavy (40-75%) 4=Very Heavy (>75%)

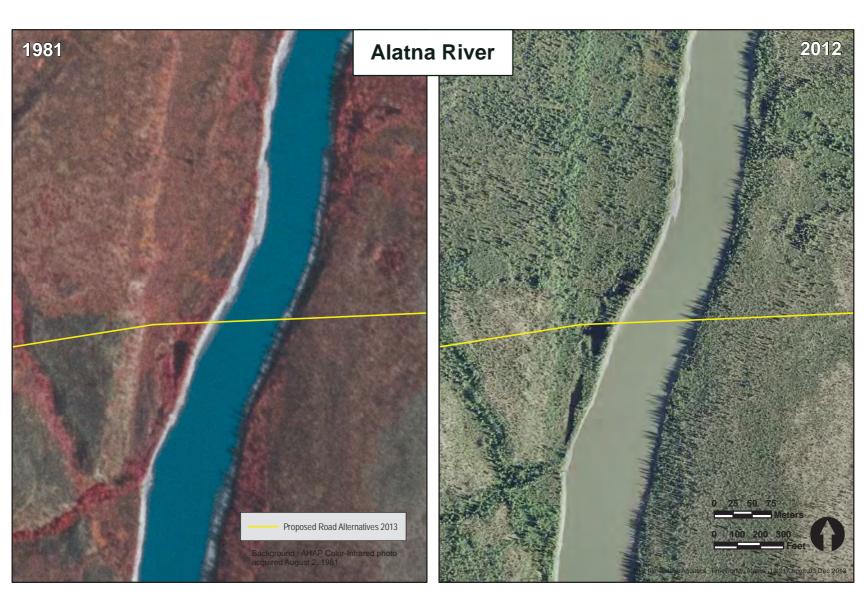

Comments:

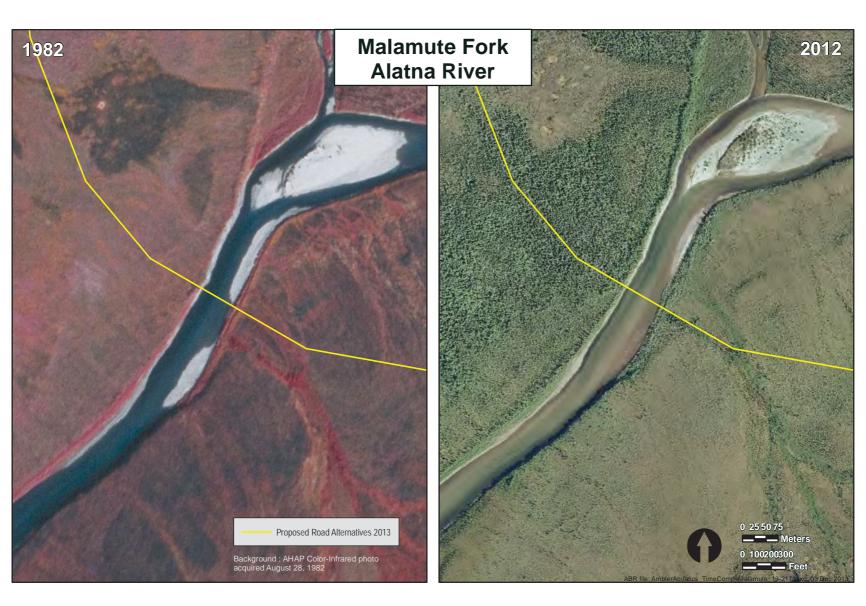

Periphyton = heavy (mixed with silt)

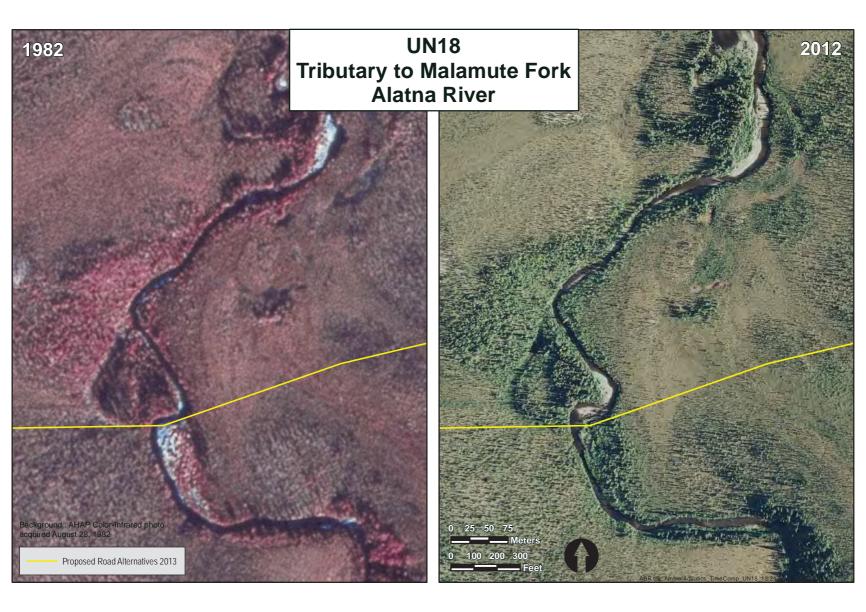

Riparian Vegetation (percentage and type 10 meters from bank)								
Left Bank Right Bank								
Canopy (> 5 m)								
Spruce-40%	No canopy							
Understory (0.5 - 5 m)							
Willow, alder, blueberry, and spruce-70%	Willow and tall grass-10%							
Ground (<	0.5 m)							
Bare ground-0% Grasses, herbs, and willow-100%	Bare ground-95% Small grasses-5%							

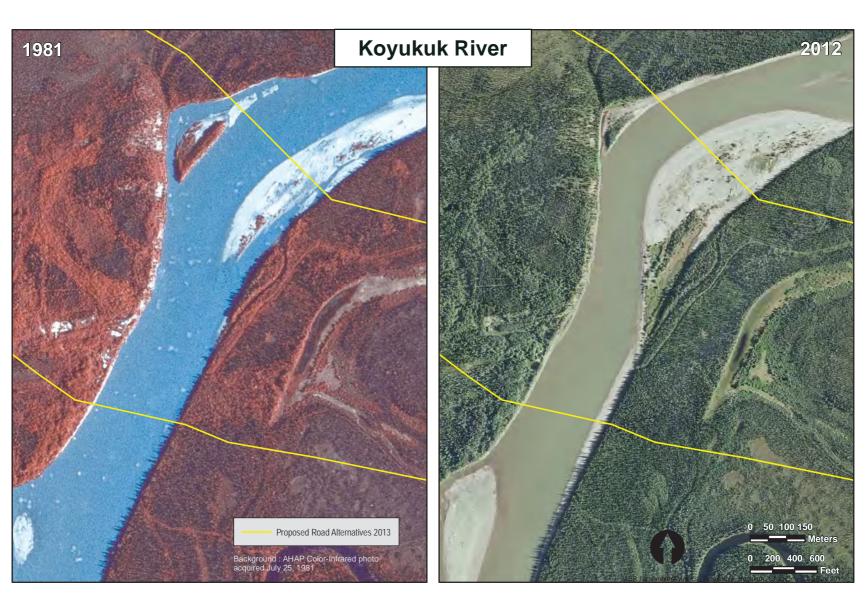

Appendix C. A comparison of stream corridor aerial imagery from 1978–1982 versus imagery from 2012 of waterbodies traversed by the Brooks East Corridor, Alaska.

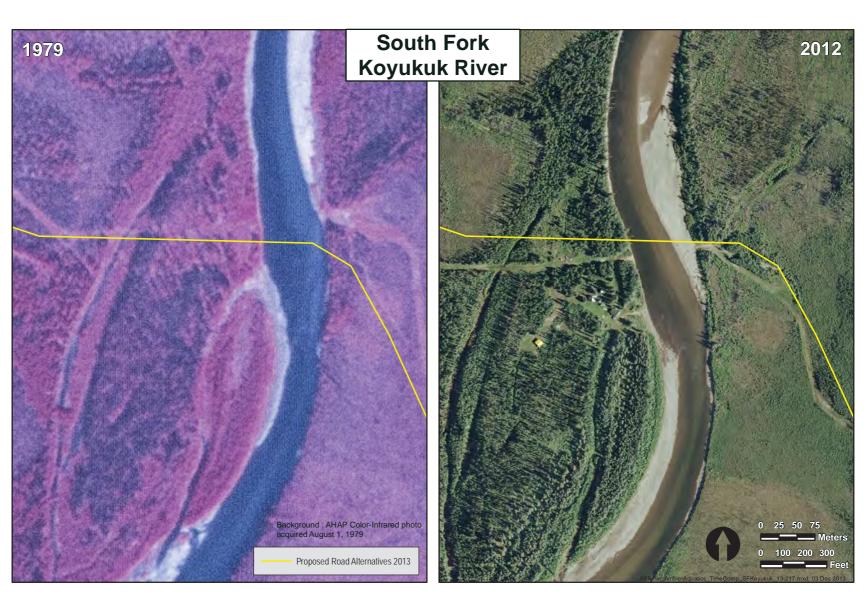


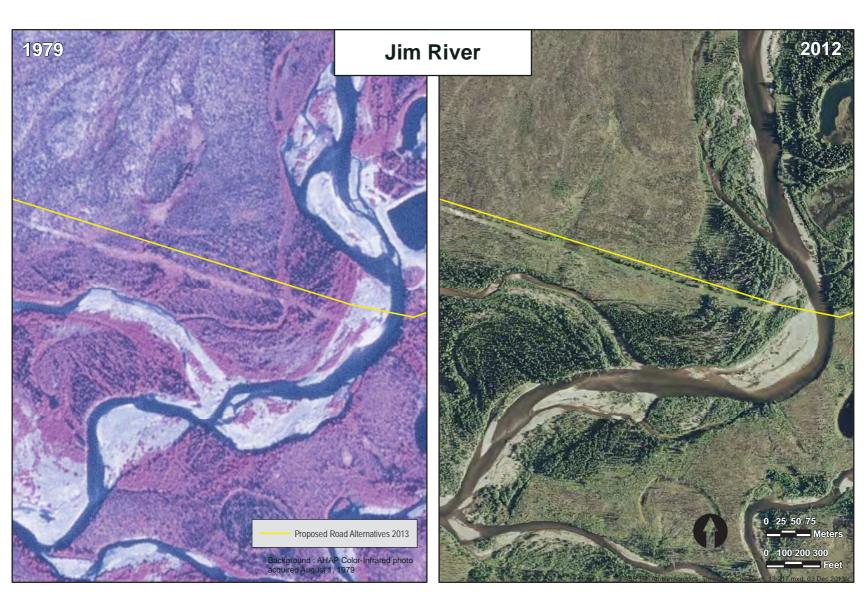


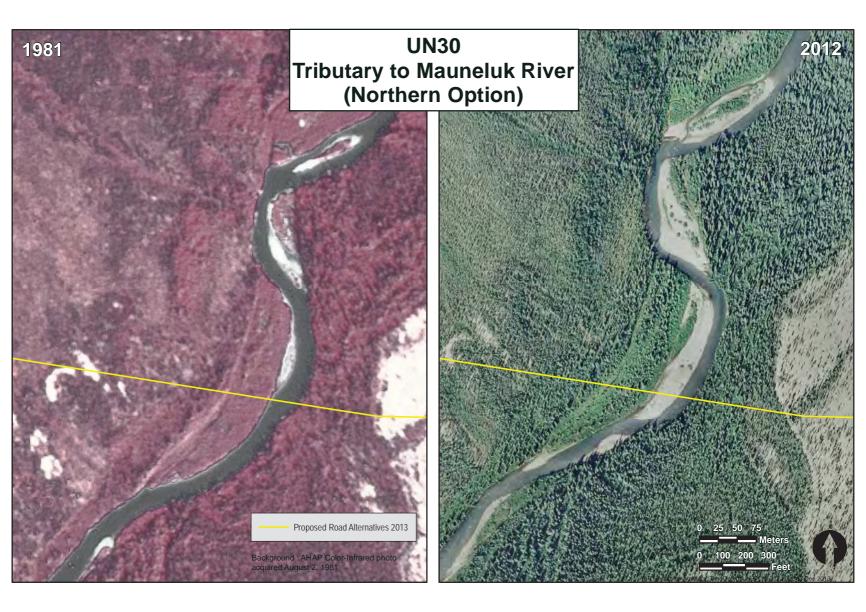




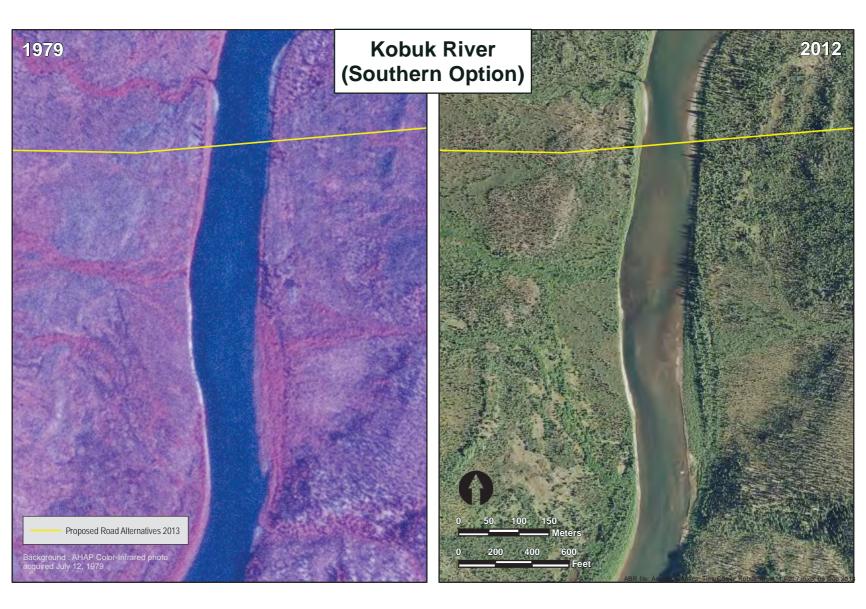


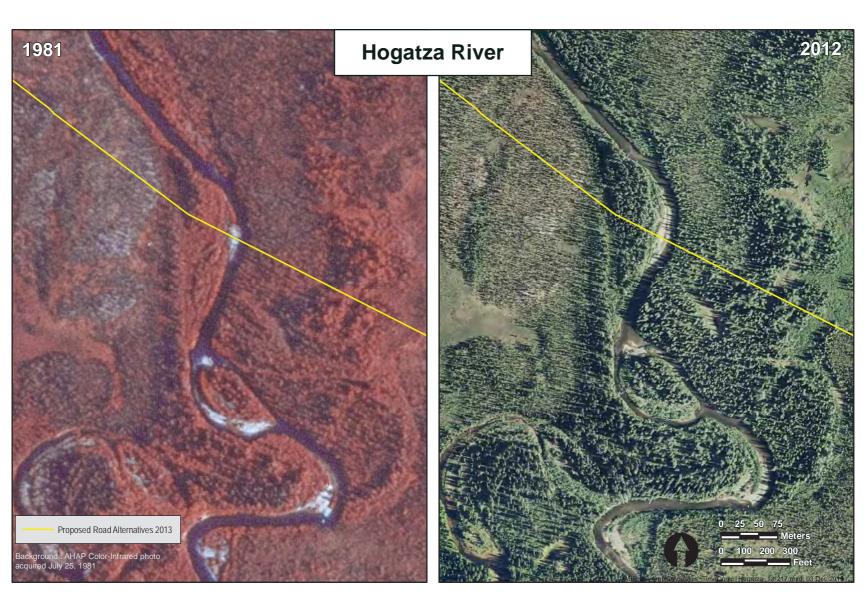


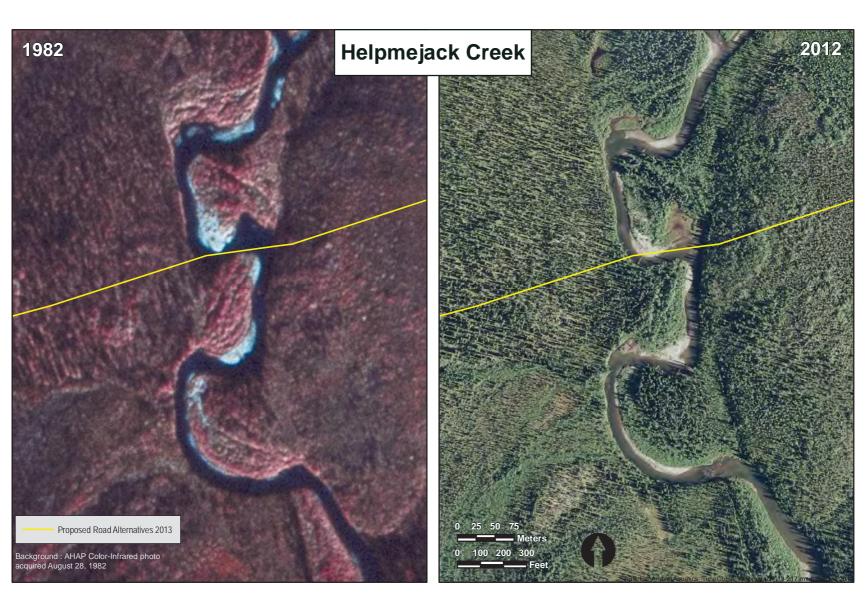












Transect	Waterbody	Latitude (°N)	Longitude (°W)	, Date	Temperature (°C)	DO (%)	DO (mg/L)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	pН	Turbidity (NTU)
SH-T1-13	Shungnak River	67.120893	-156.98513	8/12/2013	9.5	100	11.32	115.3	0.164	6.58	1.92
SH-T2-13	Shungnak River	67.120226	-156.97909	8/12/2013	9.9	102.1	11.51	115.7	0.162	7.95	1.71
SH-T3-13	Shungnak River	67.117791	-156.96872	8/12/2013	10.5	106.9	11.92	116.7	0.161	7.57	1.79
KG-T1-13	Kogoluktuk River	67.016932	-156.69449	8/13/2013	11.3	103.9	11.35	195.2	0.264	7.83	0.99
KG-T2-13	Kogoluktuk River	67.018092	-156.68706	8/13/2013	12.3	106.1	11.35	200.7	0.265	8.11	0.89
MN-T1-13	Mauneluk River	67.008356	-156.0743	8/13/2013	11.1	110.3	12.07	151.6	0.206	7.73	1.14
MN-T2-13	Mauneluk River	67.016628	-156.0547	8/13/2013	11.9	110.4	11.9	155.9	0.208	7.71	0.95
BV-T1-13	Beaver Creek	67.021206	-155.15079	8/14/2013	8.7	100.5	11.66	126.9	0.184	7.86	0.86
BV-T2-13	Beaver Creek	67.023342	-155.158	8/14/2013	9.1	102.7	11.78	128.6	0.184	7.79	0.74
RD-T1-13	Reed River	67.035785	-154.83514	8/15/2013	8.1	103	12.13	81.1	0.12	6.72	1.13
KB-T1-13	Kobuk River	67.012346	-154.36742	8/15/2013	10.6	106.5	11.84	142.2	0.196	7.45	0.68
AL-T2-13	Alatna River	67.077422	-153.3279	8/17/2013	12.5	103.1	10.97	355.8	0.467	7.83	5.47
MF-T1-13	Malamute Fork Alatna River	67.06431	-153.17605	8/17/2013	12.6	108.1	11.4	273.2	0.357	8.3	0.98
UN18-T1-13	Unnamed tributary to Malamute Fork Alatna River	67.091882	-152.73017	8/16/2013	12.2	102.3	10.96	116.5	0.154	7.33	1.63
UN18-T2-13	Unnamed tributary to Malamute Fork Alatna River	67.090632	-152.72893	8/16/2013	12.5	100.6	10.76	117.1	0.154	7.47	1.92
SF-T1-13	South Fork Koyukuk River	66.846855	-151.09734	8/22/2013	10.5	102.7	11.42	180.8	0.25	7.89	1.14
JM-T1-13	Jim River	66.793188	-150.73218	8/22/2013	6.4	105.5	13	53.6	0.083	7.04	1.35
UN30-T1-13n	Unnamed tributary to Mauneluk River	67.060008	-156.03064	8/21/2013	5.8	103.2	12.79	140	0.221	7.95	0.72
MN-T1-13n	Mauneluk River	67.051217	-155.76514	8/21/2013	8.3	106.4	12.47	171.3	0.251	7.67	0.63
RD-T1-13s	Reed River	66.886494	-154.83768	8/19/2013	9.1	106.7	12.24	94.1	0.135	7.56	3.11
RD-T2-13s	Reed River	66.887137	-154.83486	8/19/2013	8.7	102.8	11.93	91.4	0.133	7.55	2.27
KB-T1-13s	Kobuk River	66.889348	-154.63569	8/19/2013	12.4	109.4	11.67	140.1	0.184	8.31	1.21
HG-T1-13s	Hogatza River	66.822889	-153.98929	8/20/2013	6.8	98.7	12	71.3	0.109	6.69	0.82

Appendix D. Ambient water chemistry collected at habitat survey transects located on waterbodies traversed by the Brooks East Corridor, Alaska, August 2013.

Transect	Waterbody	Latitude (°N)	Longitude (°W)	Date	Temperature (°C)	DO (%)	DO (mg/L)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	pН	Turbidity (NTU)
HG-T2-13MC	's Hogatza River	66.820099	-153.99033	8/20/2013	7.3	100.6	12.13	72.2	0.109	6.87	1.42
HG-T2-13SCs	s Hogatza River	66.820099	-153.99033	8/20/2013	7.6	95.3	11.29	72.7	0.109	6.53	1.45
HJ-T1-13s	Helpmejack Creek	67.040438	-153.59175	8/18/2013	9.2	103.3	11.74	156.5	0.224	7.67	5.6
HJ-T2-13s	Helpmejack Creek	67.038627	-153.59243	8/18/2013	10.3	106.1	11.74	161.7	0.224	7.84	4.55
HJ-T3-13s	Helpmejack Creek	67.039417	-153.59026	8/18/2013	11	106.4	11.64	164.6	0.225	7.75	3.71