Design Criteria Matrix

SUMMARY

ALEXANDER AVE, North end of Golden Gate Bridge to Sausalito city limit

begins immediately at the US 101 and Alexander Avenue interchange and ends in Sausalito, for 1.6 kilometers of roadway

Alexander Ave is classified as major urban arterial route with posted speeds of 45, 35, 25 and 15 mph approaching Sausalito. Roadway winds in a north-south direction through GGNRA

shared use facility for bicyclist and pedestrians traveling on the shoulder

two-lane road with median left turn lane at intersection of Alexander Ave/Danes Dr.

Roadway owners: GGBHTD & Caltrans through easement agreement with NPS

DESIGN STANDARDS FOR ALEXANDER AVENUE

·NPS

FLHD	http://flh.fhwa.dot.gov/resources/manuals/pddm/	Federal Lands
ASHTO	http://design.transportation.org/Pages/AASHTODesignPublications.aspx	Model Draina
Caltrans	http://www.dot.ca.gov/hq/oppd/hdm/hdmtoc.htm	Highway Des

deral Lands Highway Project Development and Design Manual, March 2008 odel Drainage Manual, 2006 ighway Design Manual

	SUMMARY (DF APPLICABLE DESIGN STANDARDS	
	AGENCY		
DESIGN CRITERIA	CFLHD	CALTRANS	
ROADWAY CLASSIFICATION	· · ·	·	
· High-Standard Road	· Design speed > 70 km/hr (45 mph)	· Conventional Highways	
	• Design Average Daily Traffic (ADT) > 1500	· Urban Arterial streets, speed 40-60 mph (Ch 100, Table 101.2)	
	 Designated as a critical access road (ex: emergency evacuation routes, sole access to a community, or sole access to critical facilities such as hospitals power plants, water supply and wastewater treatment facilities) 		
· Low-Standard Road	· All others		
HYDROLOGY			
	· Rational Method	· Rational Method	
	· basin less than 200 acres (80 hectares), 7-22	· basin less than 320 acres	· basin less than 200 acres (
	· use methods presented in HDS 2 Highway Hydrology, 7-22	· concentration time less than 1 hour	
	· use additional quidance presented in HEC 22 Urban Drainage Design Manual, 7-22	\cdot storm duration \geq concentration time	
	\cdot use state department or transportation or local flood control agency developed IDF curves	· rainfall uniformly distributed in time and space	
	• for states that are included in the NOAA Atlas 14, an IDF curve can be obtrained directly from the NWS PFDS. For states not covered by Atlas 14, use procedures give in Appendix A of HEC 12. 7-22	· runoff is primarily overland flow · negligible channel storage	
DESIGN CRITERIA			
	· USGS Regional Regression Equations	· Regional Regression Equations	
	 peak flows may be be estimated for recurrence intervals ranging from 2 to 500 years for natural streams 	· catchment area limit varies by region, use north coast for this project	
		· basin not located on floor of Sacramento or San Joaquin Valleys	
	 Primarily for natural, undeveloped watersheds, with exception for some urbanized areas where regression equations have been developed (otherwise use NFF program or HDS 2 for urban areas) 	· Peak discharge value for flow under natural conditions unaffected by urban development and little or no regulation by lakes or reservoirs	
	·ungaged channel or insufficient gage data	·ungaged channel	
	·NRCS (TR55)	· NRCS (TR55)	
	· small drainage areas	· small or midsize catchment (< 3 sq mi)	
	· concentration time between 0.1-10 hour	\cdot concentration time range from 0.1-10 hour (tabular hydrograph metod limit < 2 hour)	
	 WinTR-55 computer software package for areas smaller than 6,500 hectares=25 sq mi=16,000 acres 	· runoff is overland and channel flow	
		· simplified channel routing	
		· negligible channel storage	
	• Unit Hydrograph (Gaged data)	· Unit Hydrograph (Gaged data)	
	· HDS 2, Chapter 6	• midsize or large catchment (0.20 sq mi to 1,000 sq mi)	
	 most common method, NRCS procedure documented in NEH Part 630 of the NRCS National Engineering Handbood 	· uniformity of rainfall intensity and duration	
	\cdot WinTR-55 computer program generally applicable for areas < 6,500 ha=25 sq mi	· rainfall-runoff relationship is linear	
		· duration of direct runoff constant for all uniform-intensitey storms of same duration, regardless of differences in the total volume of the direct runoff.	
		• time distribution of direct runoff from a given storm duration is indepenent of concurrent runoff from preceding storms	
		· channel-routing techniques used to connect streamflows	

APPLIED CRITERIA
(001
80 hectares), 7-22

SUMMARY OF APPLICABLE DESIGN STANDARDS						
		AGENCY				
DESIGN CRITERIA	CFLHD	CALTRANS				
		• Statistical (Gage Data)				
		· midsize or large catchments with stream gage data				
		\cdot appropriate station and/or generalized skew coefficient relationship applied				
		· channel storage				
		· Basin Transfer of Gage Data				
		· similar hydrologic characteristics				
		· channel storage				
CROSS DRAINAGE						
· METHODOLOGY	· FHWA HDS 5 "Hydraulic Design of Highway Culverts"	· FHWA HDS 5 "Hydraulic Design of Highway Culverts"	· FHWA HDS 5 "Hydraulic			
	· HY8	· AASHTO highway Drainage Guidelines	· HY8			
· SELECTION OF DESIGN FLOOD						
BRIDGES		· Pass 2% probability flood (50-year)				
		· Clearance between low chord and 1% probability flood (100-year)				
		· 2-feet of freeboard is often assumed for preliminary bridge designs				
· CULVERTS	• High Standard	• For all roadway classes, both storms should be considered	107 march ability flag d (100			
	· Culverts will convey runoff from the 50-year flood, 7-27	objectionable backwater depths or outlet velocities, 820-2	objectionable backwater de			
	• Culverts for temporary detours will convey runoff from the 10-year flood, unless seasonal	• 10% probability flood (10-year) without causing the headwater elevation to rise above the inlet top				
	· Low Standard	of the curvert, 820-2				
	Cultures will convey supeff from the 25 year flood 7.27	• 10% probability flood (10-year) without causing the headwater elevation to rise above the inlet top				
	Curvers win convey function from the 25-year flood, 7-27	of the culvert				
	construction justifies a lower standard, 7-27					
·MATERIAL	 Prefer to use CMP to maintain existing conditions, but will consider these materials: reinforced concrete, steel, aluminum, and plastic but are not all applicable, 7-30 & 7-49, 7.3.6 	· Reinforced concrete prefered (852.1)	CMP or RCP - will be base			
· COVER		· Minimum of 1-foot				
		See Table 856.5, See Index 626.2 for criteria for when and how to use flexible or rigid shoulders				
METAI	Diameter 12" to 06" minimum cover 12" ELU 602 1	(Note 4 Fig 602.1, 600-4)				
MEIAL	Diameter 102" to 144" minimum cover 18" ELH 602-1	1/5 (diameter or coap) or 2 feet minimum	1/5 (diameter or span) or 2			
		Rigid Payaments	175 (diameter of span) of 2			
		· 1/5 (diameter or span) or 1.2-feet minimum	· 1/5 (diameter or span) or			
CONCRETE	· Diameter 12" to 96" minimum cover 12" FLH 602-7	· Flexible Pavements	1/5 (ulunieter of span) of s			
CONCRETE	· Diameter 108" minimum cover 14" FLH 602-7	· 2-feet minimum	· 2-feet minimum			
		· Rigid Pavements	2 1000 11111111			
		· 1-feet minimum	· 1-feet minimum			
·ANCHORS	• Pipe anchors are required for any exposed pipe, (i.e., laid on embankment fill or natural ground). Use pipe anchors for concrete pipe on a slope of $\geq 10\%$ and fro CMP pipes on a slope $\geq 25\%$, 7-30	\cdot Where the pipe diameter is \leq 60" and the pipe slope is \geq 33% and fill over top of pipe < 1.5 times outside diameter of pipe measured perpendicular to slope	• Where the pipe diameter i outside diameter of pipe mo			
		• Where the pipe diameter is > 60" and the pipe slope is \ge 33% regardless of fill over top of pipe				
· SKEW	Maximum culvert skew, relative to the roadway centerline is 45 degrees	· Eliminate small skews, retain moderate, reduce either	• Maximum culvert skew, re			
· ENIRANCE TREATMENTS	• New structures $\mathbf{P}_{i}^{(1)} = \mathbf{P}_{i}^{(1)} + \mathbf{P}$	• Should be considered to improve culvert function	• New structures			
	 Pipe diameter \$\ge 48" (1200 mm): Hared end sections Pipe diameter \$\ge 48" (1200 mm): headwalls (with heyeled edges) 	· FES recommended at both ends	• Pipe diameter $\leq 48^{\circ}$ (1			
	Multiple pipes : headwalls (with beveled edges)		Multiple pipes : headw			
	Long culverts under inlet control : tapered inlets (improved inlets)	flared and section or headwall is required for circular culvarts 60" or granter in dismotor and for	Long culverts under in			
• OUTLET TREATMENTS	· Riprap, CFL C255-50 or HEC 14, design up to 50-year flood, 7-92	pipe arches of equivalent size	· Riprap, CFL C255-50			
	· Energy Dissipator, HEC 14, HY8	· Energy Dissipator, HEC 14, velocities > 18 fps, 820-9	• Energy Dissipator, HE			
. HEADWATED ELEVATION	. Existing Culverts	. Not stated	+			
· HEAD WATEK ELEVATION	· LAISUNG UNIVERIS	· not stated				

APPLIED CRITERIA
a Davian of Highway Culverte"
e Design of Highway Curvents
-year) without headwaters rising above an elevation that would cause pths or outlet velocities, 820-2
•
d on who will maintain
2-feet minimum
1.2-feet minimum
$s \le 60"$ and the pipe slope is $\ge 33\%$ and fill over top of pipe < 1.5 times easured perpendicular to slope
elative to the roadway centerline is 45 degrees
200 mm) : flared end sections
200 mm) : headwalls (with beveled edges)
alls (with beveled edges)
let control : tapered inlets (improved inlets)
or HEC 14, design up to 50-year flood, 7-92
C 14, HY8

SUMMARY OF APPLICABLE DESIGN STANDARDS				
	AGENCY			
DESIGN CRITERIA	CFLHD	CALTRANS		
	• Headwater elevation will not be greater than the shoulder hinge point at the local roadway low point (i.e. ponding will not be allowed to spread onto the shoulder of the roadway)		• Headwater elevation will (i.e. ponding will not be all	
	·New Culverts			
	Headwater elevation will not be greater than the bottom of the aggregate base layer for the		· Headwater elevation will	
	• Temporary Culverts		pavement structure at the ic	
	• Headwater elevation will not be greater than the shoulder hinge point at the local roadway low point (i.e. ponding will not be allowed to spread onto the shoulder of the roadway)		• Headwater elevation will (i.e. ponding will not be all	
· HW/D RATIO	· culverts ≤ 48" (1200 mm) : 1.5	· Not stated	· culverts \leq 48" (1200 mm)	
	· culverts > 48" (1200 mm) : 1.2		· culverts > 48" (1200 mm)	
	\cdot Debris or Sediment: ration between 0.8 - 1.0, if sedimetation is a concern			
· MINIMUM SIZE	\cdot 24" (600 mm) or equivalent	\cdot 18" or equivalent, if pipe exceeds 100-feet minimum pipe should be 24"	· 24" (600 mm) or equivale	
· MINIMUM SLOPE	 ≥ 2% whenever possible, minimum of 0.5%, maximum of 10% for concrete pipes or 25% for metal pipes, without using pipe anchors minimum of 0.5% 	· Not stated	$\cdot \ge 2\%$ whenever possible, metal pipes, without using	
	· maximum of (without using pipe anchors)			
	\cdot 10% for concrete pipes			
	· 25% for metal pipes			
	• where practical, the pipe slope should equal or exceed the roadside ditch grade			
ROADSIDE DITCHES			1	
· SELECTION OF DESIGN FLOOD				
· METHODOLOGY	· HEC 15			
· DITCH CAPACITY	Convey the runoff from the 10-year flood for both High- and Low-Standard roadways, but capacity should not exceed 50 cfs 7-33 & 7-34	· Not stated	Convey the runoff from the should not exceed 50 cfs. 7	
· DEPTH	• Existing Ditches		should not exceed 55 ers, 7	
	 Depth shall not exceed the shoulder hinge point on the roadway (i.e. flow should not spread onto the shoulder of the roadway) 	d · Not stated	• Depth shall not exceed the the shoulder of the roadway	
	· New Ditches			
	 Depth shall not exceed the elevation of the bottom of the aggregate base layer for the roadway pavement sturcture 		 Depth shall not exceed the pavement sturcture 	
CULVERTS	· Convey the runoff from the 10-year flood for both High- and Low-Standard roadways	· Not stated	· Convey the runoff from the	
· MINIMUM CULVERT SIZE	· 18" (450 mm) or equivalent	· 12" or equivalent or 18" if self-cleansing velocities are not produced	· 18" (450 mm) or equivale	
· DEPTH	• Existing Ditches			
	· Depth shall not exceed the shoulder hinge point on the roadway (i.e. flow should not spread	d · Not stated	· Depth shall not exceed the	
	onto the shoulder of the roadway)		the shoulder of the roadway	
	• New Differences		· Depth shall not exceed the	
	roadway pavement sturcture		pavement sturcture	
· SLOPE	\cdot Minimum of 0.5%, desired minimum of 1.0%	\cdot Minimum of 0.25% for earth ditches, 0.12% for paved ditches	· Minimum of 0.5%, desire	
· STABILITY	· For the 10-year flood for both High- and Low-Standard roadways , HEC 15 (7.3.2.2.2)	\cdot When grade is steep enough to cause erosion, the ditch should be paved. Permissible velocities range from 2.5 ft/s to 10 ft/s depending on the soil type, See Table 862.2 & 873.3E)	Both	
		• Fine loam (NRCS, dominant soil is 79% Tamalpais-Barnabe variant very gravelly loams) 3.5 fps for intermittent flow, 3.5 for sustained flow (Table 862.2)		
		· When ditch grade exceeds 4:1 slope, a downdrain is advisable		
· TEMPORARY LINING	· Temporary channel linings should be stable for the 2-year flood, 7-34	· Not stated	· Temporary channel lining	
· OVERSIDE DRAINS		· Metal or plastic	· Metal or plastic	
		\cdot Used where side slopes are \geq 4:1	\cdot Used where side slopes ar	
		· Minimum pipe diameter is 8"	· Minimum pipe diameter is	
		\cdot Energy dissipator should be used to prevent erosion	· Energy dissipator should l	
		\cdot For slopes \geq 3:1 drains should be anchored with 6-foot pipe stakes	\cdot For slopes \geq 3:1 drains sh	
MEDIAN DRAINAGE				
· DRAINAGE ACROSS MEDIAN	· Inlets are required immediately upstream of median breaks	· If sheet flow is allowed to cross median, slot drains or an equivalent facility should be used (See Standard Plan D98-B for slotted drain details)	· Inlets are required immed	
· GRADE AND CROSS SLOPE		· In Existing conditions control median grades and attainable cross slope on rehabilitation projects		
		· Earth medians, minimum desirable grade is 0.25%		
		· Paved medians, minimum desirable grade is 0.12%		

APPLIED CRITERIA
not be greater than the shoulder hinge point at the local roadway low point be been been been been been been been b
not be greater than the bottom of the aggregate base layer for the roadway cal roadway low point
not be greater than the shoulder hinge point at the local roadway low point by bowed to spread onto the shoulder of the roadway)
: 1.5
:1.2
nt minimum of 0.5%, maximum of 10% for concrete pipes or 25% for bipe anchors
e 10-year flood for both High- and Low-Standard roadways, but capacity -33 & 7-34
shoulder hinge point on the roadway (i.e. flow should not spread onto ')
elevation of the bottom of the aggregate base layer for the roadway
e 10-year flood for both High- and Low-Standard roadways
nt
shoulder hinge point on the roadway (i.e. flow should not spread onto)
elevation of the bottom of the aggregate base layer for the roadway
d minimum of 1.0%
s should be stable for the 2-year flood, 7-34
2 > 4.1
z ≥ 4.1 \$8"
be used to prevent erosion
build be anchored with 6-foot pipe stakes
ately upstream of median breaks

SUMMARY OF APPLICABLE DESIGN STANDARDS				
		AGENCY		
DESIGN CRITERIA	CFLHD	CALTRANS	APPLIED CRITERIA	
STREAM CROSSINGS				
· SELECTION OF DESIGN FLOOD	Designed to carry the design discharge from a basin without exceeding the allowable headwater criteria			
	 Pipe slope will generally conform to the average streambed flow line and should match channel elevations on both the upstream and downstream sides 			
ROADWAY DRAINAGE	· · · ·	·		
· STORM DRAIN METHODOLOGY	· HEC-22	· HEC-22	· HEC-22	
· SELECTION OF DESIGN FLOOD	 On-grade, Sags, and Parking Areas: Design roadway conveyance and collection systems for the 10-year flood (7.3.4) 	· Urban speeds 45 mph and under, 10-year, and Local Standards fro Design water spreard, Table 831.3	· Urban speeds 45 mph and under, 10-year, and Local Standards fro Design water spreard, Table 831.3	
	\cdot Sumps: Design drainage inlet system to accommodate the 50-year flood	· For depressed Sections the 2% or 50-year design storm shall be used	· For depressed Sections the 2% or 50-year design storm shall be used	
· INLET CLOGGING FACTOR	· On-grade			
	· Assume that on-grade inlets are not subject to debris clogging, unless clogging is a known	· Not stated, but typically 50%, 830-14	· Assume that on-grade inlets are not subject to debris clogging, unless clogging is a known problem	
	· Summs and Sags			
	· Grate Inlets: 50%		· Grate Inlets: 50%	
	• Curb Inlets: Assume that on-grade inlets are not subject to debris clogging, unless clogging		• Curb Inlets: Assume that on-grade inlets are not subject to debris clogging, unless clogging is a	
	is a known problem		known problem	
	 Rehabilitation Projects: Assume ALL inlets are not subject to clogging, unless clogging is a known problem 		• Rehabilitation Projects: Assume ALL inlets are not subject to clogging, unless clogging is a known problem	
· INLET TYPE	• Type 1 Catch Basin - grate inlet with a tilt-bar grate (Type A or B), intended for use on- grade in a curb and gutter section or in a ditch flowline, 7-40	· Standard Plan D72 through D75, D98-A and D98-B (See Figure 837.1, Storm Drain Inlet T ypes)	• Standard Plan D72 through D75, D98-A and D98-B (See Figure 837.1, Storm Drain Inlet T ypes)	
	• Type 2 Catch Basin with Down Drain - Grate Inlet with a tilt-bar grate (Type A or B), intended for use on-grade and gutter section, roadway in fill, 7-40	Type OS and OL for Type A or B curbs	Type OS and OL for Type A or B curbs	
	• Type 5A Inlet - Grate Inlet with a P 64 x 108 (P 2.5 x 4.24) grate, for use on-grade or in sags, 7-40	Standard Plan D77B for bicycle proof grates	Standard Plan D77B for bicycle proof grates	
	• Type 6B Inlet - Grate inlet with a cast iron grate, for use in valley gutters or parabolic ditches, 7-40	Type GO and GDO for Combination inlets	Type GO and GDO for Combination inlets	
	· Type 7A/B Inlet - Grate inlet with wide bar-spacing, for use in a ditch flowline, 7-40			
· CAPTURE EFFICIENCY	• The minimum recommended capture efficiency for on-grade inlets is 70%, 7-39	· Not stated	• The minimum recommended capture efficiency for on-grade inlets is 70%, 7-39	
·SPREAD	· High Standard			
	 Spread shall not exceed 3-feet (90 mm) of one travel lane for gutter flow, both on-grade and in roadway sags 	· Local Standards (Ch 830, Table 831.3)	· Spread shall not exceed 3-feet (90 mm) of one travel lane for gutter flow, both on-grade and in roadway sags	
	· Low Standard			
	 Spread shall not exceed half of one travel lane for gutter flow, both on-grade and in roadway sags 			
• DEPTH	· On-grade and Sags: the flow depth at the curb should not exceed the curb height or the allowable spread for the design discharge	• Depth of 0.5 the curb height for grades up to 10%, and 0.4 the curb height for grades over 10% in locations where parking is allowed or where driveways are constructed, 830-9	• On-grade and Sags: the flow depth at the curb should not exceed the curb height or the allowable spread for the design discharge	
	\cdot Sumps: the depth of flow at the gutter flowline shal not exceed 6" (150 mm)		\cdot Sumps: the depth of flow at the gutter flowline shal not exceed 6" (150 mm)	
	• Parking Areas: inlets adjacent to curbs, the flow depth should not exceed the curb height;		• Parking Areas: inlets adjacent to curbs, the flow depth should not exceed the curb height; for sags	
• MIN DIAMETER	· 15" or equivalent	• Trunk Drain 18"	• Trunk Drain 18"	
		• Trunk laterals 15" (18" if wholly or partly under roadbed)	• Trunk laterals 15" (18" if wholly or partly under roadbed)	
		· Inlet laterals 15" (18" if wholly or partly under the roadbed)	Inlet laterals 15" (18" if wholly or partly under the roadbed)	
· MIN SLOPE	· Sufficient to develop a self-cleansing velocity of 0.9 m/s (3 fps) when flowing full, slope less than 0.5% should be avoided for constructability reasons	• Minimum longitudinal slope should be such that when flowing half full, a self cleaning velocity of 3 fps is attained	Sufficient to develop a self-cleansing velocity of 0.9 m/s (3 fps) when flowing full, slope less than 0.5% should be avoided for constructability reasons	
·HGL	· Compute the HGL over the full length of storm drains with 4 or more inlets connected in series	·should be designed for full flow conditions	· Compute the HGL over the full length of storm drains with 4 or more inlets connected in series	
	· in sections where the HGL for design flood must exceed the pipe soffit (pipe flows under pressure) the HGL for the design flood will remain below the ground elevation at all inlets and access structures, and watertight gaskets should be specifid for the pipe joints	· closed conduits allowed to operate under pressure, provided the hydraulic gradient is 0.75 feet or more below the intake lip of any inlet that may be affected	• in sections where the HGL for design flood must exceed the pipe soffit (pipe flows under pressure) the HGL for the design flood will remain below the ground elevation at all inlets and access structures, and watertight gaskets should be specifid for the pipe joints	
		• energy gradient s hould not rise above the lip of the intake	· energy gradient s hould not rise above the lip of the intake	
· SPACING B/W STRUCTURES	· 15"-24" (375mm-600mm) 300' (90m)	< 48" 300-700'	· 15"-24" (375mm-600mm) 300' (90m)	
	· 27"-36" (675mm-900mm) 400' (120m)		· 27"-36" (675mm-900mm) 400' (120m)	
	· 42"-54" (1050mm-1350mm) 600' (180m)	· ≥ 48" 700-1200'	· 42"-54" (1050mm-1350mm) 600' (180m)	
	· 60"+ (1500mm +)1000' (300m)	· if self-cleansing velocity of 3 fps are unobtainable 300' spacing should be used	· 60"+ (1500mm +)1000' (300m)	
· INLET LOCATION	· At all low points in the gutter grade, 7-39	· Sag points, 830-14	Guidelines are the same	
	· Immediately upstream of median breaks, entrance/exit ramp gores, cross walks, and street intersections, i.e., at any location where a concentrated flow path could flow onto the travel lanes, 7-39	· Points of superelevation reversal, 830-14		

	SUMMARY OF APPLICABLE DESIGN STANDARDS			
	AGENCY			
DESIGN CRITERIA	CFLHD CALTRANS			
	· Immediately upgrade of bridges (to prevent water from flowing onto bridge decks), 7- 39	· Upstream of ramp gores, 830-14		
	· Immediately dowstream of bridges (to intercept bridge deck drainage), 7-39	\cdot Upstream and downstream of bridges - bridge drainage design prodedure assumes no flow onto bridge from approach roadway, and flow off bridge to be handled by the district, 830-14		
	· Immediately up grade of cross-slope reversals, 7-39	· Street intersections, 830-14		
	· Immediately up grade from pedestrian cross walks, 7-39	· Upstream of pedestrian crosswalks, 830-14		
	· On side streets immediately upgrade from intersections, 7-39	· Upstream of curbed median openings, 830-14		
	· At the end of channels in cut sections, 7-39			
	· Behind curbs, shoulders, or sidewalks to drain low areas, 7-39			
	· Additional on-grade inlets spaced to meet the allowable spread criteria, 7-39			
· OVERSIDE DRAINS		834.4		
Pipe Downdrains		· Metal & plastic adaptable to any slope	· Metal & plastic adapta	
		· slopes 4:1 or steeper	· slopes 4:1 or steeper	
		· long pipe downdrains should be anchored	· long pipe downdrains	
		\cdot Min 8", but large flows, debris or long pipe installations may dictate a larger diameter	· Min 8", but large flow	
		· watertight joints to prevent leakage, causing slope erosion	 watertight joints to pre 	
		· Standard Plan D87-A for pipe tapers	· Standard Plan D87-A	
Flume Downdrains		· corrugated metal flumes with tapered entrance	· corrugated metal flum	
		· Standard Plan D87-D	· Standard Plan D87-D	
		· best for slopes 2:1 or flatter, if 1.5:1 lengths over 60' are not recommended	• best for slopes 2:1 or f	
Paved Spillways		• only use on 4:1 or flatter	· only use on 4:1 or flat	

APPLIED CRITERIA
ble to any slope
should be anchored
s, debris or long pipe installations may dictate a larger diameter
vent leakage, causing slope erosion
for pipe tapers
es with tapered entrance
latter, if 1.5:1 lengths over 60' are not recommended
er

MEMORANDUM

TO:	Matt Wessell, P.E., PBS&J Project Manager		
	Tammy Kirkbride, P.E., PBS&J Water Resource Engineer		
FROM:	Amy Finseth, PBS&J Water Resources Engineer		
DATE:	January 13, 2009		
SUBJECT:	Hydrologic and Hydraulic Criteria and Computational Methods Technical Memorandum Alexander Avenue Task Order Number: CA PRA GOGA 99(2) PBS&J Project No. 100011041		

Acronyms

AASHTO: American Association of State Highway and Transportation Officials Caltrans: California Department of Transportation CEQA: California Environmental Quality Act CFLHD: Central Federal Lands Highway Division FEMA: Federal Emergency Management Agency FLH: Federal Lands Highway FHWA: Federal Highway Administration GGBHTD: Golden Gate Bridge, Highway and Transportation District GGNRA: Golden Gate National Recreational Area HEC: Hydraulic Engineering Circular HDS: Hydraulic Design Series HDM: Highway Design Manual NEPA: National Environmental Policy Act NOAA: National Oceanic and Atmospheric Administration NRCS: Natural Resource Conservation Service NPS: National Park Service PDDM: Project Development and Design Manual PWR: Pacific West Region USDOT: United States Department of Transportation USGS: United States Geological Survey

1.0 Purpose

The purpose of this Hydrologic and Hydraulic Criteria and Computation Methods Technical Memorandum is to provide a brief summary of the applicable criteria that will be applied to the planning study and for proposed improvements for Alexander Avenue.

2.0 Project Background and Description

The Federal Highway Administration, Central Federal Lands Highway Division, in cooperation with the National Park Service, Pacific West Region, Golden Gate National Recreational Area, California Department of Transportation, Golden Gate Bridge, Highway and Transportation District, Marin County and the City of Sausalito are proposing a planning study to identify deficiencies along the corridor and to develop conceptual alternatives for improvements to Alexander Avenue corridor. Alexander Avenue begins immediately at the US 101 and Alexander Avenue interchange, just north of the Golden Gate Bridge. The project extends for 1.6 kilometers (1.0 mile) to the City of Sausalito in Marin County. Alexander Avenue is classified as a major urban arterial route that functions as a shared use roadway for bicyclists and pedestrians traveling on the shoulder. Alexander Avenue also services several bus routes. Within the study limits, Alexander Avenue is primarily a two-lane road with a median left turn lane at the intersection of Alexander Avenue and Danes Drive. The owners of Alexander Avenue are GGBHTD and Caltrans through an easement agreement with NPS. The southern section, from Conzelman Road intersection to north of Highway 101 interchange to the City of Sausalito is owned by GGBHTD.

The general scope of this study is to conduct a coordinated, comprehensive evaluation of Alexander Avenue Corridor and to develop a multi-jurisdictional corridor management plan that includes stakeholder input and consensus on a set of prioritized improvements for Alexander Avenue. The study will build upon and update existing studies within the GGNRA and incorporate the most recent transportation forecasts based upon current land use plans for the county, park, and district throughout the corridor.

The proposed study will closely follow the existing road incorporating new design elements, as appropriate, to improve the roadway to current standards, reduce congestion, and better accommodate the mixed traffic uses. These elements will be designed and implemented in accordance with NPS, CFLHD, AASHTO, and Caltrans highway design standards. Input to the project elements will come from the stakeholder team which includes the GGNRA, PWR, GGBHTD, Caltrans, City of Sausalito, and Marin County.

Specific hydrologic and hydraulic components to the scope of this planning study will include the development of applicable criteria memorandum, identification and evaluation of existing drainage facilities, identify and evaluate potential floodplain encroachments and channel stability issues, support the planning process with water quality recommendations, preparation of a technical memorandum to document existing hydraulic conditions, and develop recommendations for proposed conditions as the study progresses.

At the completion of the study and compilation of alternatives NEPA and CEQA studies will be conducted.

3.0 Drainage Criteria References

Drainage analysis and design work associated with the proposed improvements will be in accordance with the methods, guidelines, and criteria set forth by NPS, CFLHD, AASHTO, and Caltrans highway design standards. Of these agencies FLH (CFLHD) and Caltrans have developed drainage criteria manuals establishing guidance or references to aid in the design process and or specific design standards.

- Federal Lands Highway Project Development and Design Manual (FLH PDDM, March 2008)
- California Department of Transportation, Highway Design Manual (Caltran HDM, September 2006)

A design matrix was developed with criteria from both agencies and the more stringent criteria will be applied as the design criteria for this planning study.

4.0 Hydrology

Hydrologic analysis for the Alexander Avenue planning study will be determined using the Rational Method. Design rainfall used for this analysis is based on criteria obtained from the National Oceanic and Atmospheric Administration and rainfall depth-duration-frequency data obtained from California Department of Water Resources from the Marin City Station (station number, E20 5342 35). Design Point Rainfall values for the site are shown in Table 1. These curves will be used with the Rational Method for the hydrologic comparative analysis performed as part of the drainage calculations.

Table 1: Design Point Rainfall			
Return Period	1-hour (inches)	6-hour (inches)	24-hour (inches)
2-year	0.64	1.26	1.92
5-year	0.91	1.77	2.69
10-year	1.08	2.11	3.22
50-year	1.46	2.86	4.34
100-year	1.62	3.16	4.81

Watershed basin delineations will be prepared using available U.S. Geological Survey Quad maps and surveyed topography.

Soil survey data and maps were obtained from the NRCS. Based on the NRCS soil survey of the project area, the soils in the vicinity of Alexander Avenue are primarily part of the Tamalpais-Barnabe Variant. These soils have a slow infiltration rate. Additional soil types in the area include Cronkhite-Barnabe Complex and Xerorthents-Urban Land Complex. All of the soils are classified as a Type "C" hydrologic soil group. These soils have a "slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission" (NRCS).

Alexander Avenue lies within Flood Insurance Rate Map Panel numbered 06041C0526D and 06041C0528D. Alexander Avenue does not lie within a FEMA mapped flood zone.

5.0 Hydraulic Analysis

5.1 Culverts

Existing culverts will be evaluated for the 10-, 50- and 100-year events for potential encroachments and to determine water surface elevations and determine whether they meet current criteria. Culverts will be analyzed using HY8 Culvert Analysis software.

Corrugated metal pipe (CMP) is proposed for use with the culverts requiring replacement. Existing culverts will be evaluated, if they do not meet current criteria culverts will be replaced in-kind. Existing conditions will be evaluated during the first design phase. For proposed conditions, culverts will be evaluated and designed based on the lowest headwater elevation based on the criteria given in Table 3. It is recommended that culverts have end treatments to increase efficiency, embankment stability, aesthetics and safety for vehicles.

Table 3: Culverts		
Storm Event:	100-year for proposed cross culverts (Caltrans)	
	50-year for proposed cross culverts (CFLHD)	
	10-year for culverts conveying roadside ditches	
Headwater Elevation (HW)	• Existing: HW shall not be greater that the shoulder hinge point at	
	the local roadway low point and not allowed to spread onto roadway	
	shoulder	
	• New: HW shall not be greater than the bottom of the aggregate base	
	layer for the roadway pavement structure at the local roadway low	
	point	
HW/D Ratio	1.5 for culverts less than or equal to 48-inches	
	1.2 for culverts greater than 48-inches	
Minimum Pipe Size	Cross Culverts : 24-inches or equivalent	
	Parallel Culverts in ditches : 18-inches or equivalent	
Slope	Minimum: 0.5% All Materials	
	Desirable: Greater than or equal to 2%	
	Maximum: 25% Metal, 10% Concrete	
Cover	Flexible Pavements: 2-feet	
	Rigid Pavements: 1.2-feet	
Anchors	Metal: Slopes 25% or greater	
Materials	Corrugated Metal Pipe	
Maximum Culvert Skew	45-degrees with roadway centerline	
End Treatments	For new structures:	
	• Pipe diameters less than or equal to 48-inches, use flared end	
	sections	
	• Pipe diameters greater than 48-inches or multiple pipes, use	
	headwalls with beveled edges	
Outlet Protection	• No scour potential or expected scour can be tolerated: no	
	protection required	
	• Standard outlet treatment: simple riprap outlet protection,	
	Standard Detail CFL C255-50	
	• Minimal Outlet Protection: bedding, filter material, geotextile	
	• Energy Dissipator for velocities greater than 18 fps (Caltran)	

Table 3 summarizes the culvert requirements per FLH's PDDM and Caltrans Highway Design Manual.

5.2 Storm Drains

Table 4 summarizes design criteria and standards for inlets and Table 5 summarizes criteria for storm drain and culvert sizing.

Table 4: Inlets (Pavement Drainage)		
Storm Event	On-grade: 25-year (Caltrans)	
	On-grade: 10-year (CFLHD)	
	Sumps: 50-year	
Spread	Shall not exceed the shoulder or parking lane or in depressed sections	
	shall not exceed that of adjacent roadway sections	
Depth	• On-grade: Depth not to exceed the curb height or allowable spread	
	• Sumps: Depth not to exceed 6-inches	
	• Parking areas: Inlets adjacent to curbs, the flow depth shall	
	not exceed the curb height; for sags the depth of flow at the	
	gutter flowline shall not exceed 6-inches	
Inlet Clogging Factor	On-grade: no clogging factor, unless it has previously been a problem If clogging is considered minimum is 70%	
	Sumps:	
	• Grate Inlets: 50%	
	• Curb Inlets: no clogging factor, unless it has previously been a problem	
	• Rehabilitation Projects: no clogging factor, unless it has previously	
	been a problem.	
	If clogging is considered minimum is 50%	
Inlet Types	• Catch Basin Type 1 (Standard 604-1)	
	• Metal Frame and Grate Type B (Standard 604-3)	

Table 5: Storm Drains		
Storm Event Capacity	On-grade: 25-year (Caltrans)	
Design	On-grade: 10-year (CFLHD)	
	Sumps: 50-year	
	No pressure flow	
Minimum size	Trunk Line: 18-inches	
	• Trunk Laterals: 15-inches (18-inches if wholly or partly under the	
	roadbed)	
	• Inlet Laterals: 15-inches (18-inches if wholly or partly under the	
	roadbed)	
Minimum Slope	3-feet per second to insure self cleansing	
	0.5% as a minimum for constructability	
Hydraulic Grade Line	• Needs to be calculated over the full length of storm drains with four	
(HGL)	or more inlets connected in a series	
	• If the design flood creates pressure flow, the HGL must remain	
	below ground elevation	
	• Energy gradient should not rise above the lip of the intake	
Spacing between structures	15 to 24-inches: 300-feet	
	27 to 36-inches: 400-feet	
	42 to 54-inches: 600-feet	
	60-inches and up: 1000-feet	
	If self cleansing velocity of 3 fps is unobtainable, spacing of 300-feet	
	should be used	

5.3 Ditches/Open Channels

Roadside ditches will be analyzed using Bentley's FlowMaster. Table 6 summarizes the ditch requirements.

Table 6: Ditches		
Storm Event	10-year flood	
Depth	• Existing Ditches: no greater than the shoulder hinge point	
	• New Ditches: no greater than the bottom of the aggregate sub-base	
	layer of the roadway pavement	
Slope	Desired Minimum: 1.0%	
	Allowable Minimum: 0.5%	
Cross Section Shape	Vee, trapezoidal	
Stability	• 10-year flood	
	• Permissible velocities are 4.0 fps for intermittent flow and 2.5 fps	
	for sustained flows in vegetated ditches	
	• Temporary lining should be stable for the 2-year storm event	
Erosion Protection	Lined with rock, stone, concrete	

5.4 End Treatment

Where possible, all proposed outlets will be designed to include some degree of scour protection. The proposed treatments include either flared end sections or headwalls for the entrances of culverts and pipe rundowns for the outlets. Table 3 includes criteria for end treatments and outlet protection. Typical outlet protection will use CFL Detail C-255-50. If additional protection is required the design methods in HEC14 will be applied.

Where practical, outlet protection is recommended for the existing culverts that are exhibiting erosion. Outlet protection will be provided when feasible for each new cross culvert and will be sized using the design storm event for the proposed culvert. Culvert outlet protection will consist of paved rundowns or placed riprap aprons per the FHWA standards.

5.5 Construction Site BMPs

Erosion control measures will be used to protect the existing system and outfalls from sediment transport during construction. An erosion control plan will be prepared for the project based on FHWA Best Management Practices for Erosion and Sediment Control as well as Caltrans Storm Water Quality Handbooks, Project Planning and Design Guide. These plans will be prepared in the final Roadway Submittal. The follow erosion control practices will be used, but not limited to:

- Inlet protection
- Silt fence
- Erosion control logs
- Vehicle tracking control

Permanent (post-construction) erosion control measures will include revegetation, riprap aprons and pipe rundowns.

6.0 Summary

The information contained in this memorandum is only a summary of the applicable criteria. All criteria will be reviewed and adhered to by the project engineer. The review will check adherence to this criteria during the QA/QC process. Any changes to the design criteria during the design process will be noted in future memorandums.

Drainage analysis and design work associated with the proposed improvements will be in accordance with the methods, guidelines, and criteria set forth in the FLH PDDM (March 2008), USDOT FHWA HEC and HDS Publications and Caltran Highway Design Manual (September 2006).

7.0 Drainage Criteria References

AASHTO, Model Drainage Manual, 2006.

California Department of Water Resources, <u>Rainfall Depth-Duration-Frequency Data for Marin City</u>, 2005.

Caltrans, Storm Water Quality Handbooks, March 2003.

Caltrans, Highway Design Manual, September 2006.

FEMA, Flood Insurance Rate Map, Marin County, California, May 4, 2009.

FLH, Project Development and Design Manual, March 2008.

NRCS Version 4, Web Soil Survey, Marin County, California, December 2009.

NOAA Atlas 2, Volume XI-California, Precipitation-Frequency Atlas of the Western United States, 1973.

USDOT FHWA, <u>HY-8</u>, 2009.

USDOT FHWA, Hydraulic Design Series No. 2, October 2002.

USDOT FHWA, <u>HEC No. 14</u>, <u>Hydraulic Design of Energy Dissipators for Culverts and Channels</u>, July 2006.

USDOT FHWA, HEC No. 15, Design of Roadside Channels with Flexible Linings, April 1988.

USDOT FHWA, HDS No. 5, Hydraulic Design of Highway Culverts, September 1985.

