Appendix D

NPS and Applicant Correspondence Regarding Alternative 2b

APPENDIX D: NPS AND APPLICANT CORRESPONDENCE REGARDING ALTERNATIVE 2B

June 16, 2010
In regards to: SRLINE EIS 25147

Amanda Stein

Delaware Water Gap National Recreation Area
HQ River Road, Off Route 209
Bushkill, PA 18324

Dear Ms. Stein:

The Applicants have reviewed the NPS consultant's analysis of the Existing ROW Alternative, in particular using the existing 100^{\prime} ROW for several spans in Pennsylvania. It appears that your consultant used a higher wind loading than is required to calculate the blow-out of the conductors. The wind loading used by the Utilities is a 6 psf load. For a detailed explanation of why a 6 psf wind load is appropriate, and the codes referenced to perform the blow-out calculations, see the attached report.

Furthermore, it should be clarified that the Existing ROW Alternative would use PPL EU's existing land rights. Such rights are only limited to 100 feet in five spans, not throughout the entire park in Pennsylvania Using the structure identifiers in your report, this would equate to the spans between structures 3-4, 5-6, 6-7, 7-8, and 9-10.

Sincerely;

Gregory J. Smith
Manager-Transmission Expansion
Enclosure (1)
CC.

John Donahue, Delaware Water Gap National Recreation Area
Pam Underhill, Appalachian National Scenic Trail

For verifying the feasibility of utilizing PPL EU's existing ROW through the Pennsylvania portion of the Susquehanna - Roseland Project within DEWA, NESC regulations and industry standard guidelines set forth in RUS Bulletin 1724E-200 were followed. This includes the section where the existing ROW is 100°. Included below is a summary of calculations performed and references cited by S\&L to make the conclusion that the new 500 kV circuit construction was feasible for the existing ROW.

Typical ROW widths are established based on required clearances to objcets (usually buildings) that are or may in the future exist along the cdge of the ROW. The ROW width is calculated using formulas that account for horizontal wire displacement, honizontal wire spacing, structure deflection and horizontal clearance requirements from the wirc. The two figures below are taken from the RUS Bulletin as a recommendation for ROW width of a transmission line.

Bulletin 1724E-200
Pagc 5-8.
5.4.1 First Method: This mothod provides sufficient width to mect clearance requirements to buildings of undetermined height located directly on the edge of the right-of-way. See Figure 5-7.

FIGURE 5-8: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (FIRST METHOD)

$$
W=A+2\left(f_{1}+S_{f}\right) \sin \phi+2 \delta+2 x
$$

Bulletin 1724E-200
Page '5-9
(SECOND METHOD)

From Figure 5-9 it can be scen that the formula for the width is:

$$
W=A+2\left(\ell_{1}+S_{f}\right) \sin \phi+2 \delta_{1} .
$$

As defined in the figures, A represents the horizontal spacing between the outer wires and x represents the required clcarance from the conductor to the cdge of the ROW. The remaining terms represent the deflection of the structure (δ) and the horizontal displacement of the wire $(\{\ell+S\} \sin (\Phi)$. The first figure represents the calculation for the ROW width using the wire displaccment and clearance values under 6 psf wind loading as defined in Rule 234 of the NESC. The second figure represents an alternative method for determining the ROW using higher wind values. The wind values used in this second method are dependant upon the region the line is located in and is established by the transmission line owner during the design phase of the line. Notice that there is no required clcarance beyond the conductor position under this method.

As set forth in the approved Design Basis Document dated March 6, 2009, the Horizontal clearance requirement from a wire/conductor displaced by a 6 psf wind to the edge of the ROW is 17 '. The basis for this value is established in Rule 234 of the NESC with an additional margin of safety voluntarily included by PPL Electric Utilities. Included below is a standard structure configuration.

Segment B17 100’ ROW Feasibility Study

Segment B17 100' ROW Fcasibility Study

During the analysis, structure locations were modified in order to shorten the spans and reduce the maximum horizontal displacement of the wire to allow the line to fit within the existing 100^{\prime} ROW. It was determined that the Method 1 calculation would be the controlling case for determining the required ROW width. To calculate the required ROW width using method 1 , the following parameters werc used:

$$
A-43^{\prime}
$$

$\delta-1^{\prime}$ (This value is established as the deflection limit for the structure)
$x-17^{\prime}$ (An additional 3^{\prime} was added to the required NESC value per PPL EU standard procedure)
$\{\ell+S\} \sin \Phi-10^{\prime}$ (The maximum conductor blowout of the line undcr 6 psf wind)
From this calculation, it is apparent that the required width of ROW for this line is 99^{\prime}. This is less than the 100^{\prime} existing ROW limitation and therefore represents a feasible option for the new line.

United States Department of the Interior

NATIONAL PARK SERVICE
Delaware Water Gap National Recreation Area
Bushkill．Pennsylvania＇ 18924

D5015

JUL 142010

Mr．Gregory Smith
Manager，Transmission Expansion
PPL Electric Utilities
Two．North Street，GENN5
Allentown，Pennsylvania 18101－1179
Dear Mr．Smith：

We are writing in response to your correspondence of June 16，2010，addressed to Ms．Amanda Stein．

Our consultant，EA Engineering，Science and Technology，Inc．and their sub－contractor，David Evans and Associates；Inc．have provided us with additional materials supporting the assertion that the 100 foot right－of－way in the Delaware Water Gap National Recreation Area is insufficient in maintaining compliance with National Electric Safety Code（NESC）for your proposed transmission line expansion and upgrades．

Once you have reviewed the materials provided with this letter，we suggest holding a meeting or conference call between our respective engineers and staff to resolve any differences in opinion．

Thank you for your attention to this matter．
Sincerely，

John J．Donahue
Superintentient
Delaware Water Gap National Recreation Area \＆ Middle Delaware National Scenic and Recreational River （570）426－2418

Pamela Underhill
Superintendent
Appalachian National Scenic Trail （304）535－6278

Cc：
Andrew Tittler
Patrick Lynch
Kara Deutsch
Sarah Bransom
Amanda Stein
Samuel Reynolds，Chief，Application Section II
U．S．Army Corps of Engineers
Philadelphia District，Regulatory Branch
Wanamaker Building， 100 Penn Square East
Philadelphia，Pennsylvania 19107－3390
Wayne Poppich
U．S．Army Corps of Enginecrs
Pocono Area Field Office
253 State Route 435 STE 4
Clifton Township，Pennsylvaria 18424
Denver Service Center－TIC
Attn：SRLINE EIS
12795 W．Alameda Parkway
Denver，CO 80225－0287
Enclosures：

June 24, 2010

Amanda Stein

Delaware Water Gap National Recreation Area
HQ River Rd off Route 209
Bushkill, PA 18324-9999

SUBJECT: SRLine EIS 25147

Dear Ms. Stein:
We recently sent a memo to Suzie Boltz in response to Gregory Smith's June $16^{\text {ti }}$ letter. The attached binder includes the reference materials and calculations DEA utilized to verify that a 100^{\prime} ROW within in the Delaware Water Gap Recreation Area is insufficient to meet the National Electric Safety Code (et al).

Please use for any reference needs you might have and do not hesitate to let us know if further questions arise.
Sincerely,

DAVID EVANS AND ASSOCIATES, INC.

Paul Capell
Vice President, Energy
Copies: file
Attachments/Enclosures; Reference Materials Binder
Initials: kaki, mdwi
File Name: C:\Documents and SettingskakilDesktop\EAEN Letter.doc
Project Number: EAEN-1

DELAWARE WATER GAP REFERENCE MATERIALS
 INDEX

Memorandum Tab 1
Calculations Tab 2
Design Basic Documents Tab 3
Blowout Reports Tab 4
Structure Models Tab 5
Plan \& Profiles (by Others) Tab 6
Southwire Sag 10 Tab 7
Conductor Cut Sheets Tab 8
Bulletin 1724E-200 Tab 9
NESC Minimum Clearance Practices (by Others) Tab 10
Conclusion Tab 11

MEMORANDUM

DATE: June 23, 2010
TO: Suzie Boltz, EA Engineering
FROM: Paul Capell
SUBJECT: SRLINE EIS 25147
PROJECT: DEWA Transmission Lines

We have the following responses to Gregory Smith's June $16^{\text {th }}$ letter. Please edit with your comments and forward to the other team members.

- The RUS Bulletin 1724E-200 provided by the Applicant as the guide for ROW calculations only references voltages up to $230 \mathrm{kV}(230,000$ volts $)$.
- Please reference the attached table, "Existing PPL ROW Alternative Blowout Report for Spans with 100' ROW". The column entitled "Max. blowout from centerline each side (ft)" fails to represent the required V-string clearance (21.5 feet from the structure's centerline). The actual remaining buffer is 21.5 feet plus blowout, as shown on the DEA edited version of the same table.
- Throughout the ROW width development, the applicant has made reference to ACSR and ACCC conductors. Our models represent the use of Falcon ACSR that was used in the applicant's table, and we have further information and calculations for ACCC, as well.
- NESC minimum clearance from blowout to ROW edge is 17 feet. PJM requires a further 3-foot buffer. Therefore, actual "required clearance to each side of ROW (ft)" should be 17 feet plus 3 feet, or 20 feet.

Ultimately, our findings indicate that constructing the proposed project according to the proposed Plan and Profiles provided by the Applicant for the 100 -foot ROW would violate the National Electric Safety Code. Further information is available upon request.

Copies: file
Attachments/Enclosures: Tables
Initials: kaki
 Project Number: EAEN-1

Using Existing PPL ROW Alternative

Blowout Report for spans with 100^{\prime} ROW

Start Str. \#	End Str. \#	Cable Type	Voltage (kV)	Weather Case	Cable Condition	Proposed ROW Width (ft)	Max. Blowout from centerline. each side (ft)	Required Clearance to each side of ROW (ft)	Structure Deflection, each side (ft)	Remaining Buffer from free fine, each side (ft)	Minimum Vegetation Management Cycle*
B17-2	B17-2A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	22.06	17	2	8.94 h	Every Three Years
B17-3	B17-3A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	23.09	17	2	7.91	Every Three Years
B17-3A	B17-4	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	29.06	17	1	2.94	Every Year
B17-4	B17-5	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	23.33	17	2	7.67	Every Three Years
B17-5	B17-5A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	22.87	17	2	8.13	Every Three Years
B17-5A	B17-6	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	24.84	17	2	6.16	Every Three Years

*Assumes a 2 ' growth per year

Using Existing PPL ROW Alternative

$\left\lvert\, \begin{array}{l\|} \text { Start } \\ \text { Str. } \end{array}\right.$	$\begin{aligned} & \text { End } \\ & \text { Str.\# } \end{aligned}$	Cable Type	Voltage (kV)	Weather Case	Cable Condition	Proposed ROW Width (ft)	Max. Blowout from centerline each side (ft)	Blowout from structure centerline + V -string to ROW edge	Required Clearance to each side of ROW (ft)	Stucture each side (ft)	(Applicant) Remaining Buffer from tree line, each side (f)	Actual Remaining Euffer from tree line, each side (1)	Minimum Vegetation Management Cycle
B17-2	B17-2A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.06	43.56	17	2	8.94	${ }^{10} 0.56$	Every three years
B17-3	B17-3A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.09	44.59	17	2	7.91	-11.59	Every three years
B17-3A	B17-4	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	29.06	50.56	17	1	2.94	. 17.56	Every year
817-4	B17-5	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.33	44.83	17	2	7.67	-11.83	Every three years
B17.5	B17-5A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.87	44.37	17	2	8.13	-1137	Every three years
B17-5A	B17-6	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	24.84	46.34	17	2	6.16	-13.34	Every three years

June 16, 2010
In regards to: SRLINE EIS 25147

Amanda Stein

Delaware Water Gap National Recreation Area
HQ River Road, Off Route 209
Bushkill, PA 18324

Dear Ms, Stein:
The A.pplicants have reviewed the NPS consultant's analysis of the Existing ROW Altemative, in particular using the existing 100^{\prime} ROW for several spans in Pennsylvania. It appears that your consultant used a higher wind loading than is required to calculate the blow-out of the conductors. The wind loading used by the Utilities is a 6 psf load. For a detailed explanation of why a 6 psf wind load is appropriate, and the codes referenced to perform the blow-out. calculations, see the attached report.

Furthermore, it should be clarified that the Existing ROW Alternative would use PPL EU's existing land rights. Such rights are only limited to 100 feet in five spans, not throughout the entire park in Pennsylvania Using the structure identifiers in your report, this would equate to the spans between structures 3-4, 5-6, 6-7, 7-8, and 9-10.

Sincerely,

Gregory J. Smith
Manager-Transmission Expansion

Enclosure (1)

CC:
John Donahue, Delaware Water Gap National Recreation Area
Pam Underhill, Appalachian National Scenic Trail

For verifying the feasibility of utilizing PPL EU's existing ROW through the Pennsylvania portion of the Susquehanna - Roseland Project within DEWA, NESC regulations and industry standard guidelines set forth in RUS Bulletin 1724E-200 were followed. This includes the section where the existing ROW is 100°. Included below is a summary of calculations performed and references cited by S\&L to make the conclusion that the new 500 kV circuit construction was fcasible for the existing ROW.

Typical ROW widths are established based on required clearances to objects (usually buildings) that are or may in the future exist along the edge of the ROW. The ROW width is calculated using formulas that account for horizontal wire displacement, horizontal wire spacing, structure deflection and horizontal clearance requirements from the wirc. The two figures below are taken from the RUS Bulletin as a recommendation for ROW width of a transmission line.

Bulletin 1724E-200
Page 5-8.
5.4.1 First Methad: This mothod provides sufficient width to mect elearance requirements to buildings of undetermined height located directly on the edge of the right-of-way. See Figure 5-7.

FIGURE 5-8: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (FIRSTMETHOD)

$$
W=A+2\left(\ell_{l}+S_{f}\right) \sin \phi+2 \delta+2 x
$$

FIGURE S-9: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (SECOND METHOD)

From Figure 5-9 it can be seen that the formula for the width is:

$$
W=A+2\left(\ell_{1}+S_{f}\right) \sin \phi+2 \delta_{1}
$$

As defined in the figures, A represents the horizontal spacing between the outer wires and x represents the required clcarance from the conductor to the edge of the ROW. The remaining terms represent the deflection of the structure (δ) and the horizontal displacement of the wire $(\{\ell+S\} \sin \Phi)$. The first figure represents the calculation for the ROW width using the wire displacement and clearance values under Gpsf wind loading as defined in Rule 234 of the NESC. The second figure represents an alternative method for determining the ROW using higher wind values. The wind values used in this second method are dependant upon the region the line is located in and is established by the transmission line owner during the design phase of the line. Notice that there is no required clearance beyond the conductor position under this method.

As set forth in the approved Design Basis Document dated March 6, 2009, the Horizontal clearance requirement from a wire/conductor displaced by a 6 psf wind to the edge of the ROW is 17^{\prime}. The basis for this value is cstablished in Rule 234 of the NESC with an additional margin of safety voluntarily included by PPL Electric Utilities. Included below is a standard structure configuration.

During the analysis, structure locations were modified in order to shorten the spans and reduce the maximum horizontal displacement of the wire to allow the line to fit within the existing 100^{\prime} ROW. It was determined that the Method 1 calculation would be the controlling case for determining the required ROW width. To calculate the required ROW width using method 1 , the following parameters were used;

A -43 '
$\delta-1^{\prime}$ (This value is established as the deflection limit for the structure)
$x-17$ ' (An additional 3' was added to the required NESC value per PPL EU standard procedure)
$\{\ell+\mathrm{S}\} \sin \Phi-10^{\prime}$ (The maximum conductor blowout of the line under 6 psf wind)
From this calculation, it is apparent that the required width of ROW for this line is 99^{\prime}. This is less than the 100 ' existing ROW limitation and therefore represents a feasible option for the new line.

CALCULATIONS

Table:

$$
\text { Wind }=6 \mathrm{psf}
$$

$\mathrm{S}_{\mathrm{f}}=13.5^{\prime}-34^{\prime}$ (conductor sag)
$\mathrm{Li}=23$ ' (length of insulator)
$\mathrm{D}_{\mathrm{c}}=1.545$ in (1590 kcmil ACSR "Falcon" 54/19)
$\mathrm{W}_{\mathrm{c}}=2.044 \mathrm{lb} / \mathrm{ft}(1590 \mathrm{kcmil}$ ACSR "Falcon" 54/19)
$\mathrm{D}_{\mathrm{c}}=1.361$ in (1594 kcmil ACCC "Falcon" 36/7)
$\mathrm{W}_{\mathrm{c}}=1.79 \mathrm{lb} / \mathrm{ft}(1594 \mathrm{kcmil}$ ACCC "Falcon" 36/7)
$\delta=2^{\prime}$ (1' for deadends)

JN. EAEN O BY Nades DATE $4 / 2 \times 2,0$
SHEET_ 1 OF \qquad SHEETS CALCULATIONFOR 100^{\prime} ROW

CHECKED BY \qquad DATE \qquad

$$
W_{\text {WND }}=6 \text { PBF } \quad \delta=2^{1}
$$

$S_{f}=S_{E E} S_{A G}$ Rerorts

$$
\begin{aligned}
& d_{i}=23^{\prime} \text { use: } \frac{5}{R} " \\
& d_{c}=1.545 \mathrm{in} \quad W_{c}=2.044 \mathrm{H} / \mathrm{ft} \text { ACSR } \\
& d_{c}=1.361 \mathrm{in} \quad W D_{c}=1.79 \mathrm{~m} / \mathrm{ft} \text { ACCC }
\end{aligned}
$$

ACSR

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\left(d_{c}\right)(F)}{12 w_{c}}\right) \\
& =\tan ^{-1}\left(\frac{(1.545)(6)}{12(2,04)}\right) \\
& =20.7^{\circ}
\end{aligned}
$$

ACCC

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\left(d_{2}\right)(F)}{12 \omega_{c}}\right) \\
& =\operatorname{tm}^{-1}\left(\frac{(1.361)(6)}{12(1.79)}\right) \\
& =20.8^{\circ}
\end{aligned}
$$

RUS Bulletin 1724E-200

$$
\begin{array}{rlrl}
W=A+2(7+5 p) \sin \theta+2 \delta+2 x & & w+1+2(7 i+5 p) \sin \theta+28+2 x \\
& =13+2\left(\frac{5}{12}+24.19\right) \sin 20.7+2(2)+2(20) & & =43+2\left(\frac{5}{12}+27.88\right) \sin 20.8+2(2)+2(20) \\
& =104.4^{\prime} \text { fails e } 1218^{\prime} \operatorname{span} & & \left.=107.1^{\prime} \text { failse } 1218^{\prime} \operatorname{sen}\right)
\end{array}
$$

ANO ASSOCIATESINC.

JN. EAFN O!
BY MAD DATE $4 / 2 \% \quad 2010$
SHEET_ 2 OF SHEETS
CHECKED BY \qquad DATE \qquad

$$
\begin{aligned}
& \Delta_{\text {PRN }}=839^{\prime} \\
& S_{f}=13.23^{\prime} \\
& S^{\prime}=20.7^{\circ}
\end{aligned}
$$

$$
w=43+2\left(\frac{5}{12}+13.23\right) \sin 20.7+4+40
$$

$$
=96.65^{1} \quad 0
$$

$$
\begin{aligned}
& \square Q_{N}=1058^{\prime} \\
& 3 n=21.02
\end{aligned}
$$

$$
w=43+2\left(\frac{5}{12}+21.02\right) \sin 20.7+4+10
$$

$$
=102.2^{\prime} \quad \text { frits }
$$

$A O C$

839
11.47^{\prime}
20.8°

$$
\begin{aligned}
W_{1} & =43+2\left(\frac{5}{12}+11.47\right) \sin 20.8+4+40 \\
& =95.1^{\prime} \quad a
\end{aligned}
$$

$$
\begin{aligned}
& 1058^{\prime} \\
& 18.21^{\prime} \\
& w=43+2\left(\frac{5}{12}+18.24\right) \sin 20.8+4+40 \\
&=100.25^{\prime} \quad f_{2} / 5
\end{aligned}
$$

5.3.1 Conductor Blowout

Tr^nsmission lines must be designed not only to provide a late vertical clearance for electrical and safety considerations, but also to allow for adequate horizontal clearance to tall objects and buildings at the edge of the right-of-way (ROW) under high wind conditions. Conductor displacement as a result of high winds is termed conductor blowout. The maximum displacement of the outermost conductors from the center of the ROW under high wind conditions can be one of the most important variables in determining ROW width. Conductor blowout is primarily a function of conductor weight and the wind force perpendicular to the conductor. However, the calculation of conductor blowout should also include the lateral movement of the suspension insulators. The horizontal wind force acting on a conductor may be estimated by the following equation:

$$
\begin{equation*}
F_{H}=0.00256\left(\frac{d}{12}\right)\left(\left.V_{w}\right|^{2}\right. \tag{5-9}
\end{equation*}
$$

where:

$$
\begin{aligned}
d & =\text { conductor diameter, in } \\
V_{W} & =\text { wind speed, } m p h \\
F_{H} & =\text { horizontal wind force, } 1 b s / f t
\end{aligned}
$$

Assuming equilibrium of the moments resulting from the conductor weight and wind force about the attachment point, the angle of conductor blowout, θ, can be determined by:

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{F_{H}}{W_{C}} \tag{5-10}
\end{equation*}
$$

where:
$w_{c}=$ conductor weight per unit length, lbs/ft
The blowout angle of the conductor catenary and any suspension insulator are assumed to be the same as those indicated in Figure 5-6[23]. This figure demonstrates how the clearance to the edge of ROW must include structure deflection.

FIGURE 5-6
CALCULATION OF CONDUCTOR BLOWOUT

The total horizontal blowout of the conductor at the midpoint of the span is:

$$
\begin{equation*}
X_{H}=\left(l_{i}+D\right)(\sin \theta)+\delta \tag{5-11}
\end{equation*}
$$

where:

$$
\begin{aligned}
X_{H}= & \text { horizontal deflection at midpoint of span, ft } \\
l_{i}= & \text { length of insulator string, } f t \\
D= & \text { midpoint sag of conductor at specified wind } \\
& \text { and conductor temperature, ft } \\
\delta= & \text { structure deflection, } f t
\end{aligned}
$$

At lower voltage levels, ROW width may be determined by the need to maintain adequate horizontal clearance. However, at higher voltage levels, the ROW width is typically determined by minimum requirements for environmental effects.

5.3.2 Aeolian Vibration

Aeolian vibration typically occurs in response to low velocity wind (2 mph to 15 mph) blowing steadily perpendicular to the line, as noted in Table 5-3. The resulting conductor vibration, generally less than a conductor diameter in amplitude, is difficult to detect with the bare eye. Vibration amplitudes of less than an inch however, can result in conductor strand fatigue near attachment points for steel, aluminum and copper conductors. To control aeolian vibration, the design everyday tension (EDS) of the conductor is kept as low as possible, and dampers are added when required. While the cost of dampers is typically small, the cost of using low tension levels as a control technique can be expensive in some design situations. Since aeolian vibration leads to conductor failure through the mechanism of strand fatigue, it can be a major factor in line reliability. Lines exhibiting high vibration levels can be very expensive to operate because of the need to inspect and replace conductors and the need to add reinforcing armor rods or other repair hardware. Factors affiliated with aeolian vibration are described in the following sub-sections.

String Mode Vibration of Conductor

An overhead span (catenary) is supported at each end by suspension or dead-end hardware. This hardware is attached to and supported by ceramic or composite insulator strings, which are supported by wood, metal, concrete or steel structures. The aeolian vibration phenomena of this very complex mechanical system is typically represented by ignoring the hardware, insulators and structures, and
assuming that the location of the suspension points are fixed. The vibration of the bare conductor may be represented by the vibrating string equation:

$$
\begin{equation*}
m\left(\frac{d^{2} y}{d t^{2}}\right)-T\left(\frac{d^{2} y}{d x^{2}}\right)=0 \tag{5-12}
\end{equation*}
$$

where:

$$
\begin{aligned}
m= & \text { mass per unit length of conductor, Ibs/ft } \\
T= & \text { conductor tension, lbs } \\
x, y= & \text { horizontal and vertical displacement, } \\
& \text { respectively, of cable along span, } f t \\
t= & \text { time, sec }
\end{aligned}
$$

Using standard mathematical methods, the solutions to this equation consist of traveling waves (transverse dis turbances) which propagate along the conductor with : velocity of:

$$
V=\sqrt{\frac{T(N)}{m(k g / m)}}=\sqrt{\frac{T(l b s)\left[32.2\left(f t / \mathrm{sec}^{2}\right)\right]}{w(l b s / f t)}}
$$

For a typical bare overhead transmission conducto. installed to typical tension levels, this mechanical wavt velocity is on the order of $400 \mathrm{ft} / \mathrm{sec}(120 \mathrm{~m} / \mathrm{sec})$. For exam ple, if a $795 \mathrm{kcmil}-26 / 7$ ACSR "Drake" conductor i: installed to $4725 \mathrm{lbs}(15 \%$ RBS), the wave velocity is:

$$
\sqrt{\frac{(4725)(32.2)}{1.094}}=373 \mathrm{ft} / \mathrm{sec}
$$

Combinations of traveling waves on the conductor cal lead to standing waves or string modes having certain dis crete frequencies. These natural frequencies are related t both the span length, L, and the wave velocity, V :

$$
f_{n}=\left(\frac{n}{2 L}\right) V
$$

where:
the modal number, n, is a positive whole number

DESIGN BASICS DOCUMENT

The information in this section was used to create the models for calculating the clearances within the 100^{\prime} proposed ROW and the PLS CADD models for the blowout reports herein.

| 600 KV STEEL POLE LINE CONSTRUCTION | |
| :---: | :---: | :---: |
| SHEET 1 | DOUBLE CIRCUIT - TWO POLE DEADEND STRUCTURE |

TRANSMISSION CONSTRUCTION SPECIFICATIONS	DATE: DRAFTER: ASH
PPL ELECITRIC UTILITIES	SPONSOR:
CORPORATION	APPROVED: - MGR TEDDEAEA

Design Basis Document
Mar. 06, 2009
Susquehanna - Roseland
Project No. 12937
500 kV Transmission Line Installation
Page 37

Design Basis Document
Susquehanna - Roseland
500 kV Transmission Line Installation

$\begin{array}{r}50^{\prime} \\ -17^{1} \\ -18^{\prime} \\ \hline 151\end{array}$

$$
\begin{aligned}
& 50^{\prime} \\
& \frac{72}{28^{\prime}} \\
& \frac{-18^{\prime}}{10^{\prime}} 17^{\prime} \text { ana. }
\end{aligned}
$$

$10^{\prime} \angle 17^{\prime}$ ant
R

SOOKV STEEL POLE LINE CONSTRUCTION

| $6-46-076$ |
| :---: | :---: |
| SHEET 1 |

Design Basis Document
Susquehanna - Roseland
500 kV Transmission Line Installation

Mar. 06, 2009
Project No. 12937
Page 29

Design Basis Document
Susquehanna - Roseland
500 kV Transmission Line Installation

Mar. 06, 2009
Project No. 12937
Page 33

Design Basis Document
Susquehanna - Roseland
500 kV Transmission Line Installation

Mar. 06, 2009
Project No. 12937
Page 31

BLOWOUT REPORTS

PLS-CADD Version 10.40 9:25:24 AM Thursday, June 24, 2010
David Evans \& Associates
Project Name: 'c:\documents and settings\gabl\desktopldewa elevations\dewa_alt bb.DON'

Blowout Report
Offset measured relative to alignment center line.

	2	1	4	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	2	4	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
2	3	4	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
	2	1	4	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	2	4	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
2	3	4	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
	3	1	4	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	2	4	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
3	3	4	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
3	1	4	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
3	3	4	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	
3	3	4	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	

Left	3012.68	29.78	2356.90	19.06	3012.68	29.78
Left	3012.68	31.30	2356.90	20.58	3012.68	31.30
Left	3012.68	30.54	2356.90	19.83	3012.68	30.54
Right	3669.96	19.06	3012.68	8.34	3669.96	19.06
Right	3669.96	20.58	3012.68	9.86	3669.96	20.58
Right	3669.96	19.83	3012.68	9.11	3669.96	19.83
Left	2356.90	-19.06	2356.90	-19.06	3012.68	-8.34
Left	2356.90	-20.58	2356.90	-20.58	3012.68	-9.86
Left	2356.90	-19.83	2356.90	-19.83	3012.68	-9.11
Right	3012.68	-29.78	3012.68	-29.78	3669.96	-19.06
Right	$3012.68-31.30$	3012.68	-31.30	3669.96	-20.58	
Right	$3012.68-30.54$	3012.68	-30.54	3669.96	-19.83	
Left						
Left	4226.41	26.80	4780.86	19.06	4226.41	26.80
Left	4226.41	27.56	4780.86	20.58	4226.41	28.32
Right	3669.96	19.06	4226.41	19.83	4226.41	27.56
Right	3669.96	20.58	4226.41	12.82	3669.96	19.06
Right	3669.96	19.83	4226.41	12.09	3669.96	20.58
Left	4780.86	-19.06	4780.86	-19.06	4226.41	-11.83
Left	$4780.86-20.58$	4780.86	-20.58	4226.41	-12.84	
Left	4780.86	-19.83	4780.86	-19.83	4226.41	-12.09
Right	4226.41	-26.80	4226.41	-26.80	3669.96	-19.06
Right	4226.41	-28.32	4226.41	-28.32	3669.96	-20.58
Right	4226.41	-27.56	4226.41	-27.56	3669.96	-19.83

2	1	6	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	2	6	2	2 falco__acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	3	6	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	1	6	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	2	6	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
2	3	6	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	1	6	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	2	6	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	3	6	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	1	6	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	2	6	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS
3	3	6	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS

| Left | 5265.65 | 24.91 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Left | 5232.68 | 25.66 | 5 |
| Left | 5249.17 | 25.28 | 478 |
| Right | 5697.99 | 19.70 | |
| Right | 4780.86 | 20.58 | |
| Right | 4780.86 | 19.83 | |
| Left | 5697.99 | -19.70 | |
| Left | 4780.86 | -20.58 | |
| Left | 4780.86 | -19.83 | |
| Right | 5265.65 | -24.91 | |
| Right | 5232.68 | -25.66 | |
| Right | 5249.17 | -25.28 | |

4780.86	19.06	5265.65	24.91
5697.99	20.29	5232.68	25.66
4780.86	19.83	5249.17	25.28
5225.18	14.15	5697.99	19.70
5258.16	14.92	4780.86	20.58
5241.67	14.54	4780.86	19.83
5697.99	-19.70	5225.18	-14.15
4780.86	-20.58	5258.16	-14.92
4780.86	-19.83	5241.67	-14.54
5265.65	-24.91	4780.86	-19.06
5232.68	-25.66	5697.99	-20.29
5249.17	-25.28	4780.86	-19.83

6	1	1	7	1	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	6630.4139 .48	5722.53	20.51	6630.41	39.48
6	1	2	7	1	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	6630.4139 .48	5722.53	20.51	6630.41	39.48
6	1	3	7	1	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	6630.4139 .48	5722.53	20.51	6630.41	39.48
6	1	1	7	1	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	5722.5319 .49	6630.41	0.52	5722.53	19.49
6	1	2	7	1	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	5722.5319 .49	6630.41	0.52	5722.53	19.49
6	1	3	7	1	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	5722.5319 .49	6630.41	0.52	5722.53	19.49
6	11	1	7	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	5722.53-19.49	5722.53	-19.49	6630.41	-0.52
6	11	2	7	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	5722.53-19.49	5722.53	-19.49	6630.41	-0.52
6	11	3	7	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	5722.53-19.49	5722.53	-19.49	6630.41	-0.52
6	11	1	7	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	6630.41-39.48	6630.41	-39.48	5722.53	-20.51
6	11	2	7	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	6630.41-39.48	6630.41	-39.48	5722.53	-20.51
6	11	3	7	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	6630.41-39.48	6630.41	-39.48	5722.53	-20.51
7	1	1	8	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8255.1031 .42	8982.42	19.06	8255.10	31.42
7	1	2	8	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8278.0832 .18	7567.75	20.42	8278.08	32.18
7	1	3	8	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8266.5931 .80	8982.42	19.83	8266.59	31.80
7	1	1	8	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	7567.7519 .58	8283.58	7.64	7567.75	19.58
7	1	2	8	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	8982.4220 .58	8260.60	8.40	8982.42	20.58
7	1	3	8	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	8982.4219 .83	8272.09	8.03	8982.42	19.83
7	11	1	8	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	7567.75-19.58	7567.75	-19.58	8283.58	-7.64
7	11	2	8	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8982.42-20.58	8982.42	-20.58	8260.60	-8.40
7	11	3	8	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8982.42-19.83	8982.42	-19.83	8272.09	-8.03
7	11	1	8	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	8255.10-31.42	8255.10	-31.42	8982.42	-19.06
7	11	2	8	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	8278.08-32.18	8278.08	-32.18	7567.75	-20.42
7	11	3	8	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	8266.59-31.80	8266.59	-31.80	8982.42	-19.83
8	2	1	9	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	9750.7532 .95	8982.42	19.06	9750.75	32.95
8	2	2	9	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	9750.7534 .47	8982.42	20.58	9750.75	34.47
8	2	3	9	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	9750.7533 .72	8982.42	19.83	9750.75	33.72
8	2	1	9	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0719 .06	9750.75	5.17	10515.07	19.06
8	2	2	9	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0720 .58	9750.75	6.69	10515.07	20.58
8	2	3	9	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0719 .83	9750.75	5.93	10515.07	19.83
8	3	1	9	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8982.42-19.06	8982.42	-19.06	9750.75	-5.17
8	3	2	9	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8982.42-20.58	8982.42	-20.58	9750.75	-6.69
8	3	3	9	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	8982.42-19.83	8982.42	-19.83	9750.75	-5.93
8	3		9	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	9750.75-32.95	9750.75	-32.95	10515.07	-19.06
8	3	2	9	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	9750.75-34.47	9750.75	-34.47	10515.07	-20.58
8	3	3	9	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	9750.75-33.72	9750.75	-33.72	10515.07	-19.83

9	2	1	10	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	11263.4532 .11	12011.34	19.06	11263.45	32.11
9	2	2	10	2	2 faicon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	11263.4533 .63	12011.34	20.58	11263.45	33.63
9	2	3	10	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	11263.4532 .87	12011.34	19.83	11263.45	32.87
9	2	1	10	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0719 .06	11263.45	6.01	10515.07	19.06
9	2	2	10	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0720 .58	11263.45	7.53	10515.07	20.58
9	2	3	10	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	10515.0719 .83	11263.45	6.78	10515.07	19.83
9	3	1	10	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12011.34-19.06	12011.34	-19.06	11263.45	-6.01
9	3	2	10	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12011.34-20.58	12011.34	-20.58	11263.45	-7.53
9	3	3	10	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12011.34-19.83	12011.34	-19.83	11263.45	-6.78
9	3	1	10	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	11263.45-32.11	11263.45	-32.11	10515.07	-19.06
9	3	2	10	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	11263.45-33.63	11263.45	-33.63	10515.07	-20.58
9	3	3	10	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	11263.45-32.87	11263.45	-32.87	10515.07	-19.83
10	2	1	11	2	1 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12758.1032 .15	13506.87	19.06	12758.10	32.15
10	2	2	11	2	2 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12758.1033 .67	13506.87	20.58	12758.10	33.67
10	2	3	11	2	3 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	12758.1032 .91	13506.87	19.83	12758.10	32.91
10	2	1	11	2	1 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12011.3419 .06	12758.10	5.98	12011.34	19.06
10	2	2	11	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12011.3420 .58	12758.10	7.49	12011.34	20.58
10	2	3	11	2	3 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12011.3419 .83	12758.10	6.74	12011.34	19.83
10	3	1	11	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-19.06	13506.87	-19.06	12758.10	-5.98
10	3	2	11	3	2 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-20.58	13506.87	-20.58	12758.10	-7.49
10	3	3	11	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-19.83	13506.87	-19.83	12758.10	-6.74
10	3	1	11	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12758.10-32.15	12758.10	-32.15	12011.34	-19.06
10	3	2	11	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12758.10-33.67	12758.10	-33.67	12011.34	-20.58
10	3	3	11	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	12758.10-32.91	12758.10	-32.91	12011.34	-19.83
11	2	1	12	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	14238.2831 .52	13506.87	19.06	14238.28	31.52
11	2	2	12	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	14238.2833 .04	13506.87	20.58	14238.28	33.04
11	2	3	12	2	3 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	14238.2832 .28	13506.87	19.83	14238.28	32.28
11	2	1	12	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1919 .06	14238.28	6.60	14968.19	19.06
11	2	2	12	2	2 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1920 .58	14238.28	8.12	14968.19	20.58
11	2	3	12	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1919 .83	14238.28	7.37	14968.19	19.83
11	3	1	12	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-19.06	13506.87	-19.06	14238.28	-6.60
11	3	2	12	3	2 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-20.58	13506.87	-20.58	14238.28	-8.12
11	3	3	12	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	13506.87-19.83	13506.87	-19.83	14238.28	-7.37
11	3	1	12	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14238.28-31.52	14238.28	-31.52	14968.19	-19.06
11	3	2	12	3	2 falcon_acss.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14238.28-33.04	14238.28	-33.04	14968.19	-20.58
11	3	3	12	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14238.28-32.28	14238.28	-32.28	14968.19	-19.83

12	2	1	13	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	15830.1236 .57	16686.56	19.06	15830.12	36.57
12	2	2	13	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	15830.1238 .09	16686.56	20.58	15830.12	38.09
12	2	3	13	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	15830.1237 .33	16686.56	19.83	15830.12	37.33
12	2	1	13	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1919 .06	15830.12	1.55	14968.19	19.06
12	2	2	13	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1920 .58	15830.12	3.07	14968.19	20.58
12	2	3	13	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	14968.1919 .83	15830.12	2.32	14968.19	19.83
12	3	1	13	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	16686.56-19.06	16686.56	-19.06	15830.12	-1.55
12	3	2	13	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	16686.56-20.58	16686.56	-20.58	15830.12	-3.07
12	3	3	13	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	16686.56-19.83	16686.56	-19.83	15830.12	-2.32
12	3	1	13	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	15830.12-36.57	15830.12	-36.57	14968.19	-19.06
12	3	2	13	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	15830.12-38.09	15830.12	-38.09	14968.19	-20.58
12	3	3	13	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	15830.12-37.33	15830.12	-37.33	14968.19	-19.83
13	2	1	14	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	17596.9238 .60	18500.78	19.06	17596.92	38.60
13	2	2	14	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	17596.9240 .12	18500.78	20.58	17596.92	40.12
13	2	3	14	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	17596.9239 .37	18500.78	19.83	17596.92	39.37
13	2	1	14	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	16686.5619 .06	17596.92	-0.48	16686.56	19.06
13	2	2	14	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	16686.5620 .58	17596.92	1.04	16686.56	20.58
13	2	3	14	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	16686.5619 .83	17596.92	0.28	16686.56	19.83
13	3	1	14	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-19.06	18500.78	-19.06	17596.92	0.48
13	3	2	14	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-20.58	18500.78	-20.58	17596.92	-1.04
13	3	3	14	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-19.83	18500.78	-19.83	17596.92	-0.28
13	3	1	14	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	17596.92-38.60	17596.92	-38.60	16686.56	-19.06
13	3	2	14	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	17596.92-40.12	17596.92	-40.12	16686.56	-20.58
13	3	3	14	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	17596.92-39.37	17596.92	-39.37	16686.56	-19.83
14	2	1	15	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	19185.7030 .07	18500.78	19.06	19185.70	30.07
14	2	2	15	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	19185.7031 .59	18500.78	20.58	19185.70	31.59
14	2	3	15	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	19185.7030 .84	18500.78	19.83	19185.70	30.84
14	2	1	15	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19868.1119 .06	19185.70	8.05	19868.11	19.06
14	2	2	15	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19868.1120 .58	19185.70	9.57	19868.11	20.58
14	2	3	15	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19868.1119 .83	19185.70	8.81	19868.11	19.83
14	3	1	15	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-19.06	18500.78	-19.06	19185.70	-8.05
14	3	2	15	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-20.58	18500.78	-20.58	19185.70	-9.57
14	3	3	15	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	18500.78-19.83	18500.78	-19.83	19185.70	-8.81
14	3	1	15	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19185.70-30.07	19185.70	-30.07	19868.11	-19.06
14	3	2	15	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19185.70-31.59	19185.70	-31.59	19868.11	-20.58
14	3	3	15	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	19185.70-30.84	19185.70	-30.84	19868.11	-19.83

15	2	1	16	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	20572.9231 .43	19868.11	19.06	20572.92	31.43
15	2	2	16	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	20572.9232 .95	19868.11	20.58	20572.92	32.95
15	2	3	16	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	20572.9232 .20	19868.11	19.83	20572.92	32.20
15	2	1	16	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	21284.2319 .06	20572.92	6.69	21284.23	19.06
15	2	2	16	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	21284.2320 .58	20572.92	8.21	21284.23	20.58
15	2	3	16	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	21284.2319 .83	20572.92	7.45	21284.23	19.83
15	3	1	16	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	19868.11-19.06	19868.11	-19.06	20572.92	-6.69
15	3	2	16	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	eft	19868.11-20.58	19868.11	-20.58	20572.92	-8.21
15	3	3	16	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	19868.11-19.83	19868.11	-19.83	20572.92	-7.45
15	3	1	16	3	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	20572.92-31.43	20572.92	-31.43	21284.23	-19.06
15	3	2	16	3	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	20572.92-32.95	20572.92	-32.95	21284.23	-20.58
15	3	3	16	3	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	20572.92-32.20	20572.92	-32.20	21284.23	-19.83
16	2	1	17	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	eft	22195.6338 .4	21284.23	19.06	. 6	8.43
16	2	2	17	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	22177.6539 .18	23072.07	20.52	22177.65	39.18
16	2	3	17	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	22186.6438 .80	21284.23	19.83	22186.64	38.80
16	2	1	17	2	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	23072.0719 .48	22173.66	0.64	23072.07	19.48
16	2	2	17	2	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	21284.2320 .58	22191.64	1.40	21284.23	20.58
16	2	3	17	2	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	21284.2319 .83	22182.65	1.02	21284.23	19.83
16	3	1	17	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	23072.07-19.48	23072.07	-19.48	22173.66	-0.64
16	3	2	17	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	21284.23-20.58	21284.23	-20.58	22191.64	-1.40
16	3	3	17	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Left	21284.23-19.83	21284.23	-19.83	22182.65	-1.02
16	3	1	17	11	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	22195.63-38.43	22195.63	-38.43	21284.23	-19.06
16	3	2	17	11	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	22177.65-39.18	22177.65	-39.18	23072.07	-20.52
16	3	3	17	11	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	Right	22186.64-38.80	22186.64	-38.80	21284.23	-19.83

For 500 kV wires between structures 1 and 17 , maximum offset is $40.12(\mathrm{ft})$, the leftmost offset is $-40.12(\mathrm{ft})$, rightmost offset is 40.12 (ft)

Using Existing PPL ROW Alternative

Using Existing PPL ROW Alternative Blowout Report for Spans with 100' ROW													
Start Str. \#	End Str. \#	Cable Type	Voltage (kV)	Weather Case	Cable Condition	Proposed ROW Width (ft)	Max. Blowout from centerline each side (ft)	Blowout from structure centerline + V-string to ROW edge	Required Clearance to each side of ROW (ft)	Structure Deflection each side (ft)	(Applicant) Remaining Buffer from tree line, each side (ft)	Actual Remaining Buffer from tree line, each side (ft)	Minimum Vegetation Management Cycle
B17-2	B17-2A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.06	43.56	17	2	8.94	-10.56	Every three years
B17-3	B17-3A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.09	44.59	17		7.91	-11.59	Every three years
B17-3A	B17-4	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	29.06	50.56	17	1	2.94	-17.56	Every year
B17-4	B17-5	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.33	44.83	17	2	7.67	-11.83	Every three years
B17-5	B17-5A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.87	44.37	17	2	8.13	-11.37	Every three years
B17-5A	B17-6	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	24.84	46.34	17	2	6.16	-13.34	Every three years

Notes:
The column above titled: "Max. Blowout from centerline each side (ft)" fails to represent the required V -strings clearance which is 21.5 ' from structure centerline. $21.5^{\prime}+$ blowout equals actual remaining buffer.

NESC minimum clearance from blowout to ROW edge is 17 ' and PJM requires a 3 ' buffer, therefore actual "Required Clearance to each side of ROW (ft)" is $17^{\prime}+3^{\prime}=20^{\prime}$

Throughout the ROW width development, the applicant has made reference to ACSR and ACCC conductor Our models represent what is provided here, and we have information and calculations for ACCC as well.

Applicant has provided two different Plan \& Profiles; one from Seargant \& Lundy and Burns \& McDonald. Each plan \& profile were prepared with different spans and structure types

RUS Bulletin 1724E-200 only references voltages upto 230 kV (230,000 volts).
No consideration for "Broken Insulators" per NESC 2007
Several Geometry errors in structure provided by applicant. May cause an error in ROW clearance calculation.

Using Existing PPL ROW Alternative 3'Buffer PJM!
Blowout Report for spans with 100' ROW

Start Str. \#	End Str. \#	Cable Type	Voltage (kV)	Weather Case	Cable Condition	Proposed ROW Width (ft)	Max. Blowout from centerline each side (ft)	Required Clearance to each side of ROW (ft)	Structure Deflection, each side (f)	Remaining Buffer frometree line, each side (ft)	Minimum Vegetation Management Cycle*
B17-2	B17-2A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	22.06	17	2	8.94 an	Every Three Years
B17-3	B17-3A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	23.09	17	2	7.91	Every Three Years
B17-3A	B17-4	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	29.06	17	1	2.94	Every Year
B17-4	B17-5	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	23.33	17	2	7.67	Every Three Years
B17-5	B17-5A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	22.87	17	2	8.13	Every Three Years
B17-5A	B17-6	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	24.84	(17)	2	6.16	Every Three Years
*Assumes a 2' growth per year $\mid 7^{\prime}+3^{\prime}$											

MIN NESC ψ To Rowedgo
min NESC \& To Rowedz.

STRUCTURE MODELS

Segment B17 100' ROW Feasibility Study

PLAN AND PROFILES
 By others

The plan \& profiles by $\mathrm{S} \& \mathrm{~L}$ and $\mathrm{B} \& \mathrm{M}$ attached in this section were used to verify span lengths, conductor sag and distance to edge of ROW.

PRINTED: 10/17/2008

PRINTED: 10/17/2008

SOUTHWIRE SAG 10

The Southwire Sag 10 reports provided alternate verification to the PLS CADD sag reports to assure accuracy in the blowout calculations.

David Evans and Associates

Susquehanna - Roseland 500 kV
B\&M P\&P

Conductor: 1594.0 Kemil 54/19 Stranding ACCR "FALCON"
Area $=1.4110$ Sq. in \quad Diameter $=1.547 \mathrm{in} \quad$ Weight $=1.745 \mathrm{lb} / \mathrm{ft} \quad$ RTS $=53600 \mathrm{lb}$ Data from Chart No. 4-1100
English Units
Limits and Outputs in Average Tensions.

Span $=152.4$ Feet
Creep IS a Factor

Design points			
Temp	Ice	Wind	K
${ }^{\circ} \mathrm{F}$	in	psf	$1 \mathrm{~b} / \mathrm{ft}$
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
Ib/ft	Ft	1 b	Ft	1 b
2.603	0.37	20230	0.34	22495
2.304	0.38	17655	0.32	21064
1.745	0.23	22348	0.21	23629
1.745	0.25	20091	0.23	22421
1.745	0.28	17843	0.24	21180
1.745	0.38	$13399 *$	0.27	18603
1.745	0.55	9142	0.32	15907
1.745	0.68	7491	0.39	13112
1.745	0.76	6648	0.59	8653
1.745	0.86	5871	0.83	6101

Span $=864.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
0 F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

| | Final | | Initial | |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Weight | Sag | Tension | Sag | Tension |
| lb/ft | Ft | 1 b | Ft | Ib |
| 2.603 | 12.09 | 20123 | 11.21 | 21697 |
| 2.304 | 12.19 | 17672 | 10.81 | 19924 |
| 1.745 | 8.81 | 18505 | 7.92 | 20588 |
| 1.745 | 9.58 | 17027 | 8.33 | 19573 |
| 1.745 | 10.40 | 15682 | 8.78 | 18572 |
| 1.745 | 12.18 | $13400 *$ | 9.80 | 16639 |
| 1.745 | 14.04 | 11622 | 10.99 | 14848 |
| 1.745 | 15.92 | 10256 | 12.32 | 13247 |
| 1.745 | 17.34 | 9414 | 14.61 | 11173 |
| 1.745 | 18.06 | 9040 | 16.91 | 9657 |

Span $=1100.5$ Feet
Creep IS a Factor

Design Point	
Temp	Ice
${ }^{\circ} \mathrm{F}$	in
15.0	0.25
32.0	0.25
0.0	0.00
15.0	0.00

Wind	K
psf	lb/ft
4.00	0.20
0.00	0.00
0.00	0.00
0.00	0.00

NESC Medium Load Zone Rolled Rod

	Einal		Initial	
Weight	Sag	Tension	Sag	Tension
$1 \mathrm{~b} / \mathrm{ft}$	Ft	1 b	Ft	1 b
2.603	19.63	20092	18.44	21392
2.304	19.76	17676	17.91	19497
1.745	15.40	17168	13.79	19167
1.745	16.46	16068	14.44	18308

30.0	0.00	0.00	0.00	1.745	17.54	15079	15.13	17478
60.0	0.00	0.00	0.00	1.745	19.74	$13400 *$	16.61	15920
90.0	0.00	0.00	0.00	1.745	21.94	12059	18.22	14518
120.0	0.00	0.00	0.00	1.745	24.10	10983	19.92	13282
167.0	0.00	0.00	0.00	1.745	26.28	10075	22.68	11669
212.0	0.00	0.00	0.00	1.745	27.14	9757	25.35	10445

* Design Condition

Span $=1457.7$ Feet
Creep Is a Factor

Design Points		
Temp \circ F	Ice	Wind
15.0	0.25	psf
32.0	0.25	4.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1218.1$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=821.8$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2022.0$ Feet
Creep IS a Factor

Design Points

NESC Medium Load Zone Rolled Rod

	Final	
Weight	Sag	Tension
lb/ft	Ft	lb
2.603	34.54	20059
2.304	34.69	17680
1.745	29.41	15786
1.745	30.74	15105
1.745	32.06	14485
1.745	34.67	$13400 *$
1.745	37.21	12489
1.745	39.68	11716
1.745	42.89	10843
1.745	43.93	10589

Initial

Sag	Tension
Ft	1 b
32.96	21018
32.29	18986
26.77	17340
27.73	16739
28.71	16167
30.73	15109
32.79	14162
34.88	13319
38.15	12183
41.24	11275

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	1b
2.603	24.08	20080	22.74	21257
2.304	24.21	17678	22.16	19310
1.745	19.48	16630	17.50	18505
1.745	20.65	15692	18.27	17733
1.745	21.83	14846	19.06	16993
1.745	24.19	$13400 *$	20.75	15615
1.745	26.52	12226	22.53	14383
1.745	28.80	11264	24.38	13296
1.745	31.34	10355	27.33	11865
1.745	32.26	10061	30.16	10759

NESC Medium Load Zone
Rolled Rod

	Einal		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	1 lb	Ft	1 b
2.603	10.92	20129	10.11	21755
2.304	11.01	17671	9.73	20007
1.745	7.85	18777	7.07	20845
1.745	8.55	17227	7.44	19807
1.745	9.32	15811	7.85	18778
1.745	11.00	$13400 *$	8.78	16781
1.745	12.79	11525	9.88	14916
1.745	14.61	10096	11.13	13240
1.745	15.90	9279	13.33	11066
1.745	16.59	8893	15.55	9487

NESC Medium Load Zone
Rolled Rod
Initial
Sag Tension

15.0	0.25	4.00	0.20	2.603	66.69	20030	64.72	20635
32.0	0.25	0.00	0.00	2.304	66.86	17684	63.95	18483
0.0	0.00	0.00	0.00	1.745	60.93	14690	57.35	15601
15.0	0.00	0.00	0.00	1.745	62.44	1.4338	58.57	15277
30.0	0.00	0.00	0.00	1.745	63.93	14006	59.79	14967
60.0	0.00	0.00	0.00	1.745	66.84	$13400 *$	62.24	14384
90.0	0.00	0.00	0.00	1.745	69.68	12859	64.67	13847
120.0	0.00	0.00	0.00	1.745	72.45	12372	67.09	13352
167.0	0.00	0.00	0.00	1.745	76.65	11702	70.84	12652
212.0	0.00	0.00	0.00	1.745	78.19	11473	74.37	12057

＊Design Condition

Span $=1129.4$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

＊Design Condition

Span $=1308.2$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

＊Design Condition

Span $=1089.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ	F	in
15.0	0.25	psf
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

＊Design Condition

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb／ft	lb／ft	Ft	lb	Ft	lb
0.20	2.603	20.68	20089	19.45	21358
0.00	2.304	20.81	17677	18.91	19450
0.00	1.745	16.35	17028	14.65	19000
0.00	1.745	17.44	15970	15.33	18163
0.00	1.745	18.55	15018	16.04	17355
0.00	1.745	20.79	$13400 *$	17.58	15842
0.00	1.745	23.03	12103	19.23	14483
0.00	1.745	25.21	11056	20.97	13286
0.00	1.745	27.49	10147	23.78	11720
0.00	1.745	28.36	9835	26.49	10527

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb／ft	Ft	lb	Ft	lb
2.603	27.79	20071	26.35	21161
2.304	27.93	17679	25.74	19179
1.745	22.96	16276	20.72	18035
1.745	24.20	15446	21.56	17330
1.745	25.44	14695	22.44	16656
1.745	27.91	$13400 *$	24.26	15407
1.745	30.33	12335	26.16	14292
1.745	32.68	11451	28.11	13306
1.745	35.48	10551	31.19	11996
1.745	36.45	10273	34.12	10970

NESC Medium Load Zone Rolled Rod

K
$\mathrm{lb} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Final

Tension	Sag	Tension
\quad lb	Ft	$1 b$
20093	18.06	21406
17676	17.53	19515
17223	13.47	19231
16107	14.11	18365
15103	14.78	17526
13400^{*}	16.25	15950
12042	17.84	14531
10954	19.52	13281
10047	22.26	11649
9727	24.92	10413

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1775.1$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1579.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1541.4$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
1670	$n 0 n$	$n 00$

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.603	51.32	20040	49.49	20776
0.00	2.304	51.48	17683	48.76	18665
0.00	1.745	45.76	15059	42.50	16210
0.00	1.745	47.22	14598	43.64	15789
0.00	1.745	48.65	14170	44.78	-15387
0.00	1.745	51.46	$13400 *$	47.09	14638
0.00	1.745	54.20	12728	49.40	13958
0.00	1.745	56.86	12138	51.70	13340
0.00	1.745	60.85	11348	55.27	12483
0.00	1.745	62.01	11138	58.64	11772

NESC Medium Load Zone
K
$l \mathrm{f} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Rolled Rod

Weight	Sag
lb/ft	Ft
2.603	40.58
2.304	40.74
1.745	35.26
1.745	36.65
1.745	38.02
1.745	40.72
1.745	43.34
1.745	45.89
1.745	49.42
1.745	50.51

Final
Tension
lb
20051
17681
15464
14881
14346
$13400 *$
12593
11898
11053
10818

Final
Weight
$1 \mathrm{~b} / \mathrm{ft}$
2.603
2.304
1.745
1.745
1.745
1.745
1.745
1.745
1.745
1.745

Initial

Sag	Tension
Ft	1 b
11.87	21664
11.45	19878
8.43	20442
8.86	19441
9.34	18456
10.41	16561
11.64	14811
13.01	13251
15.35	11231
17.69	9749

Initial

Sag	Tension
Ft	lb
38.90	20916
38.20	18850
32.34	16853
33.39	16329
34.44	15829
36.59	14905
38.76	14073
40.94	13328
44.34	12312
47.55	11487

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.603	38.64	20054	36.99	20947
2.304	38.79	17681	36.30	18890
1.745	33.37	15558	30.54	16998
1.745	34.74	14947	31.56	16450
1.745	36.10	14387	32.59	15929
1.745	38.77	$13400 *$	34.70	14965
1.745	41.37	12562	36.84	14100
1.745	43.90	11844	38.99	13325
1745	4722	$109 a n$	$4 才 25$	12074

$\begin{array}{lllllllll}212.0 & 0.00 & 0.00 & 0.00 & 1.745 & 48.40 & 10749 & 45.52 & 11424\end{array}$

* Design Condition

Span $=945.9$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

NESC Medium Load Zone Rolled Rod

	Final			Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.603	14.49	20111	13.49	21588
0.00	2.304	14.59	17673	13.04	19770
0.00	1.745	10.84	18008	9.72	20093
0.00	1.745	11.72	16666	10.21	19128
0.00	1.745	12.64	15452	10.74	18182
0.00	1.745	14.58	$13400 *$	11.92	16377
0.00	1.745	16.57	11791	13.26	14725
0.00	1.745	18.55	10535	14.73	13260
0.00	1.745	20.24	9658	17.20	11362
0.00	1.745	21.01	9305	19.64	9956

* Design Condition

Span $=1437.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=669.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2606.7$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
$2 n n$	$n n n$	$n 0 n$

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.603	33.58	20061	32.02	21036
2.304	33.73	17680	31.36	19010
1.745	28.49	15846	25.90	17427
1.745	29.81	15147	26.85	16813
1.745	31.12	14510	27.82	16228
1.745	33.71	$13400 *$	29.81	15146
1.745	36.24	12470	31.85	14178
1.745	38.69	11684	33.92	13317
1.745	41.85	10806	37.17	12160
1.745	42.88	10549	40.24	11237

NESC Medium Load Zone Rolled Rod

$$
\begin{gathered}
\mathrm{K} \\
\mathrm{lb} / \mathrm{ft} \\
0.20 \\
0.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00
\end{gathered}
$$

Weight
lb/ft
2.603
2.304
1.745
1.745
1.745
1.745
1.745
1.745
1.745
1.745
Sag
Ft
7.23
7.30
4.94
5.43
5.99
7.29
8.78
10.36
11.16
11.75

Final
Tension
lb
20153
17667
19785
17990
16315
$13400 *$
11122
9431
8754
8318

Initial	
Sag	Tension
Ft	1 b
6.63	21965
6.35	20306
4.49	21726
4.74	20618
5.01	19505
5.65	17298
6.44	15173
7.39	13211
9.19	10629
11.12	8792

NESC Medium Load Zone Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	1 b
0.20	2.603	111.26	20014	109.06	20411
0.00	2.304	111.44	17686	108.24	18201
0.00	1.745	105.22	14177	101.23	14730
0.00	1.745	106.80	13971	102.55	14543
00	7445	10925	12772	10285	14251

60.0	0.00	0.00	0.00	1.745	111.42	$13400 *$	106.48	14012
90.0	0.00	0.00	0.00	1.745	114.42	13054	109.09	13682
120.0	0.00	0.00	0.00	1.745	117.36	12731	111.68	13369
167.0	0.00	0.00	0.00	1.745	121.86	12269	115.70	12911
212.0	0.00	0.00	0.00	1.745	124.17	12044	119.50	12507

```
Span = 721.9 Feet
Creep IS a Factor
```

Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	lb/ft	lb/ft	Ft	1 b	Ft	1 b
15.0	0.25	4.00	0.20	2.603	8.42	20145	7.75	21892
32.0	0.25	0.00	0.00	2.304	8.50	17668	7.43	20202
0.0	0.00	0.00	0.00	1.745	5.85	19433	5.31	21430
15.0	0.00	0.00	0.00	1.745	6.42	17720	5.59	20343
30.0	0.00	0.00	0.00	1.745	7.05	16134	5.90	19258
60.0	0.00	0.00	0.00	1.745	8.49	13400*	6.64	17119
90.0	0.00	0.00	0.00	1.745	10.09	11272	7.54	15082
120.0	0.00	0.00	0.00	1.745	11.76	9679	8.60	13221
167.0	0.00	0.00	0.00	1.745	12.73	8943	10.54	10790
212.0	0.00	0.00	0.00	1.745	13.35	8526	12.58	9049

Certain information such as the data, opinions or recommendations set
forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

David Evans and Associates

Susquehanna - Roseland 500 kV
S\&L P\&P

Conductor: 1590.0 Kcmil $54 / 19$ Stranding ACSR "FALCON"
Area $=1.4070 \mathrm{sq}$. in \quad Diameter $=1.545 \mathrm{in} \quad$ Weight $=2.044 \mathrm{lb} / \mathrm{ft} \quad$ RTS $=54500 \mathrm{lb}$ Data from Chart No. 1-1009
English Units
Limits and Outputs in Average Tensions.

Span $=152.4$ Feet
Creep IS a Factor

Design points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

K	Weight
lb/ft	lb/ft
0.20	2.890
0.00	2.602
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044

Final	
Sag	Tension
Ft	1 b
0.44	18860
0.47	16232
0.28	21011
0.32	18699
0.36	16403
0.50	11905
0.76	7768
1.07	5561
1.31	4529
1.61	3697

Initial Sag Ft	
0.37	Tension
0.35	22902
0.35	21520
0.25	23991
0.26	22840
0.27	21639
0.31	$19074 *$
0.36	16279
0.45	13246
0.73	8171
1.39	4277

Span $=864.5$ Feet
Creep Is a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod
Weight
Ib/ft
2.890
2.602
2.044
2.044
2.044
2.044
2.044
2.044
2.044
2.044

Final	
Sag	Tension
Ft	1 b
13.54	19964
13.78	17653
10.37	18421
11.23	17022
12.13	15758
14.03	$13625 *$
15.99	11958
17.94	10663
20.88	9168
22.52	8504

Initial	
Sag	Tension
Ft	1 b
11.43	23628
11.04	22025
8.30	23018
8.68	22017
9.09	21006
10.07	18979
11.24	16998
12.62	15141
15.13	12636
17.75	10776

Span $=1105.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00

NESC Medium Load Zone Rolled Rod

		Final	
K	Weight	Sag	Tension
$\mathrm{lb} / \mathrm{ft}$	$1 \mathrm{~b} / \mathrm{ft}$	Ft	1 b
0.20	2.890	22.34	19790
0.00	2.602	22.66	17574
0.00	2.044	18.35	17032
0.00	2.044	19.49	16040

Initial

Initial	
Sag	Tension
Ft	1 b
19.35	22845
18.85	21.116
14.73	21214
15.37	20327

30.0	0.00	0.00	0.00	2.044	20.64	15147	16.07	19451
60.0	0.00	0.00	0.00	2.044	22.96	$13625 *$	17.60	17759
90.0	0.00	0.00	0.00	2.044	25.24	12395	19.32	16185
120.0	0.00	0.00	0.00	2.044	27.47	11394	21.18	14765
167.0	0.00	0.00	0.00	2.044	30.82	10163	24.29	12881
212.0	0.00	0.00	0.00	2.044	33.51	9352	27.34	11448

Span $=1455.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1218.1$ Feet
Creep IS a Factor

Design points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=821.8$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2022.0$ Feet
Creep IS a Factor
Design Points
Temp Ice Wind

NESC Medium Load Zone Rolled Rod

$\operatorname{Sag}_{\text {Ft }} \quad$| Final |
| :---: |
| Tension |

Final		Initial	
Sag	Tension	Sag	Tension
Ft	1 b	Ft	1 b
12.26	19914	10.32	23652
12.50	17590	9.96	22069
9.28	18605	7.44	23192
10.08	17136	7.78	22177
10.93	15805	8.16	21149
12.74	13557	9.05	$19075 *$
14.63	11808	10.14	17033
16.52	10462	11.43	15105
19.37	8928	13.83	12494
20.83	8306	16.36	10563

Initial

NESC Medium Load Zone Rolled Rod

Initial

Sag	Tension
Ft	1 b
35.03	21880
34.46	20029
28.76	18836
29.79	18186
30.86	17562
33.06	16393
35.35	15337
37.69	14391
41.37	13116
44.88	12099

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	1 f	Ft	1 b
2.890	27.23	19727	23.85	22506
2.602	27.56	17545	23.31	20730
2.044	22.96	16534	18.61	20389
2.044	24.19	15694	19.39	19573
2.044	25.43	14934	20.21	18776
2.044	27.88	$13625 *$	21.99	17259
2.044	30.29	12548	23.93	15869
2.044	32.62	11655	25.97	14624
2.044	36.13	10531	29.30	12970
2.044	39.29	9688	32.52	11693

NESC Medium Load Zone Rolled Rod

K
$1 \mathrm{~b} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Weight
$1 \mathrm{~b} / \mathrm{ft}$
2.890
2.602
2.044
2.044
2.044
2.044
2.044
2.044
2.044
2.044

$$
\begin{gathered}
\text { Sag } \\
\text { Ft } \\
39.09 \\
39.47 \\
34.42 \\
35.79 \\
37.15 \\
39.82 \\
42.41 \\
44.93 \\
48.72 \\
52.17
\end{gathered}
$$

Final
Tension
1 lb
19621
17499
15749
15149
14598
13625^{*}
12797
12085
11153
10421

19451 17759 16185 14765 2881 11448

15.0	0.25	4.00	0.20	2.890	76.28	19471	71.17	20854
32.0	0.25	0.00	0.00	2.602	76.72	17433	70.60	18929
0.0	0.00	0.00	0.00	2.044	71.16	14752	63.79	16441
15.0	0.00	0.00	0.00	2.044	72.68	14447	65.15	16100
30.0	0.00	0.00	0.00	2.044	74.18	14158	66.52	15772
60.0	0.00	0.00	0.00	2.044	77.11	$13625 *$	69.25	15155
90.0	0.00	0.00	0.00	2.044	79.98	13143	71.98	14587
120.0	0.00	0.00	0.00	2.044	82.78	12704	74.68	14063
167.0	0.00	0.00	0.00	2.044	87.02	12093	78.88	13324
212.0	0.00	0.00	0.00	2.044	90.95	11579	82.82	12698

Span $=1129.4$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1308.2$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

Span $=1089.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.890	23.34	19776	20.26	22771
2.602	23.66	17568	19.75	21032
2.044	19.28	16919	15.50	21036
2.044	20.45	15961	16.18	20163
2.044	21.62	15099	16.90	19304
2.044	23.96	$13625 *$	18.49	17649
2.044	26.28	12430	20.25	16115
2.044	28.53	11453	22.15	14733
2.044	31.91	10246	25.31	12901
2.044	34.71	9426	28.40	11504

NESC Medium Load Zone Rolled Rod

		Final		Tnitial	
K	Weight	Sag	Tension	Sag	Tension
$1 \mathrm{~b} / \mathrm{ft}$	lb/ft	Ft	1 b	Ft	1 b
0.20	2.890	31.48	19682	27.83	22253
0.00	2.602	31.84	17526	27.27	20445
0.00	2.044	27.04	16198	22.15	19763
0.00	2.044	28.34	15460	23.03	19009
0.00	2.044	29.62	14790	23.95	18279
0.00	2.044	32.17	$13625 *$	25.91	16900
0.00	2.044	34.65	12653	28.00	15647
0.00	2.044	37.06	11835	30.17	14526
0.00	2.044	40.69	10789	33.64	13031
0.00	2.044	43.98	9988	36.98	11862

Design Points			Final		Initial			
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
\circ	in	psf	$l b / f t$	$l b / f t$	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	14.32	19944	12.12	23549
32.0	0.25	0.00	0.00	2.602	14.57	17644	11.72	21931
0.0	0.00	0.00	0.00	2.044	11.05	18263	8.84	22842
15.0	0.00	0.00	0.00	2.044	11.94	16909	9.24	21850
30.0	0.00	0.00	0.00	2.044	12.87	15687	9.68	20850
60.0	0.00	0.00	0.00	2.044	14.82	$13625 *$	10.71	18851
90.0	0.00	0.00	0.00	2.044	16.82	12010	11.94	16910
120.0	0.00	0.00	0.00	2.044	18.80	10749	13.37	15099
167.0	0.00	0.00	0.00	2.044	21.79	9283	15.95	12665
212.0	0.00	0.00	0.00	2.044	23.53	8597	18.62	10854
$*$	Design Condition							

Span $=1775.1$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

Final

Weight	Sag
lb/ft	Ft
2.890	58.56
2.602	58.97
2.044	53.58
2.044	55.05
2.044	56.50
2.044	59.35
2.044	52.12
2.044	64.82
2.044	68.90
2.044	72.65

Initial

Sag	Tension
Ft	lb
53.82	21227
53.23	19322
46.74	17271
48.01	16819
49.28	16387
51.85	15579
54.44	14844
57.02	14176
61.04	13251
64.82	12486

Span $=1579.5$ Feet
Creep Is a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span = 1541.4 Feet
Creep IS a Factor

Design Points			
Temp	Ice	Wind	K
${ }^{\circ} \mathrm{F}$	in	psf	lb/ft
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
1670	$n n n$	$n n n$	$n 0$

NESC Medium Load Zone Rolled Rod

K
$\mathrm{lb} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

$212.0 \quad 0.00 \quad 0.00$
0.00
2.044
57.34

10645
49.89

12219

* Design Condition

Span $=945.9$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1437.5$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=669.0$ Feet Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2606.8$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
$2 n n$	$n n$	$n n n$

NESC Medium Load Zone Rolled Rod

Final
Tension
1 b
19899
17623
17903
16652
15526
13625^{*}
12125
10940
9541
8812

Initial

Sag	Tension
Ft	1 lb
13.85	23359
13.42	21710
10.20	22416
10.66	21447
11.17	20475
12.33	18551
13.70	16705
15.25	15002
17.99	12728
20.77	11030

K	Weight
$\mathrm{lb} / \mathrm{ft}$	$\mathrm{lb} / \mathrm{ft}$
0.20	2.890
0.00	2.602
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044

NESC Medium Load Zone Rolled Rod

Final
Sag
Ft
38.14
38.51
33.49
34.86
36.21
38.86
41.45
43.95
47.72
51.16

NESC Medium Load Zone Rolled Rod

	Final	
Weight	Sag	Tension
lb/ft	Ft	lb
2.890	8.28	19532
2.602	8.49	17166
2.044	6.00	19075
2.044	6.59	17367
2.044	7.24	15799
2.044	8.72	13128
2.044	10.33	11078
2.044	11.99	9553
2.044	14.35	7986
2.044	15.32	7478

Initial

Sag	Tension
Ft	lb
34.13	21921
33.55	20075
27.92	18939
28.93	18277
29.98	17641
32.16	16449
34.43	15370
36.75	14406
40.41	13106
43.89	12073

60.0	0.00	0.00	0.00	2.044	128.67	$13625 *$	120.33	14552
90.0	0.00	0.00	0.00	2.044	131.67	13320	123.22	14216
120.0	0.00	0.00	0.00	2.044	134.63	13034	126.09	13898
167.0	0.00	0.00	0.00	2.044	139.15	12619	130.54	13434
212.0	0.00	0.00	0.00	2.044	143.37	12256	134.73	13024

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

6/22/2010

David Evans and Associates

Susquehanna - Roseland 500 kV
$B \& M$ P\&P

Conductor: 1594.0 Kcmil 54/19 Stranding ACCR "FALCON"
Area $=1.4110 \mathrm{Sq}$. in \quad Diameter $=1.547 \mathrm{in} \quad$ Weight $=1.745 \mathrm{lb} / \mathrm{ft} \quad$ RTS $=53600 \mathrm{lb}$
Data from Chart No. 4-1100
English Units
Limits and Outputs in Average Tensions.

Span $=152.4$ Feet
Creep IS a Factor

NESC Medium Load Zone
Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.603	0.37	20230	0.34	22495
2.304	0.38	17655	0.32	21064
1.745	0.23	22348	0.21	23629
1.745	0.25	20091	0.23	22421
1.745	0.28	17843	0.24	21180
1.745	0.38	$13399 *$	0.27	18603
1.745	0.55	9142	0.32	15907
1.745	0.68	7491	0.39	13112
1.745	0.76	6648	0.59	8653
1.745	0.86	5871	0.83	6101

* Design Condition

Span $=839.0$ Feet
Creep IS a Factor

Design Points			
Temp	Ice	Wind	K
$\circ \mathrm{F}$	in	psf	$1 \mathrm{~b} / \mathrm{ft}$
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

| | Final | | Initial | |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Weight | Sag | Tension | Sag | Tension |
| lb/ft | Ft | 1 b | Ft | 1 b |
| 2.603 | 11.39 | 20126 | 10.54 | 21731 |
| 2.304 | 11.48 | 17671 | 10.15 | 19973 |
| 1.745 | 8.23 | 18666 | 7.40 | 20742 |
| 1.745 | 8.96 | 17145 | 7.79 | 19713 |
| 1.745 | 9.75 | 15758 | 8.22 | 18695 |
| 1.745 | 11.47 | $13400 *$ | 9.19 | 16723 |
| 1.745 | 13.29 | 11565 | 10.32 | 14888 |
| 1.745 | 15.13 | 10162 | 11.60 | 13243 |
| 1.745 | 16.47 | 9334 | 13.84 | 11109 |
| 1.745 | 17.18 | 8953 | 16.09 | 9556 |

Span $=418.0$ Feet
Creep IS a Factor

Design Points			
Temp	Ice	Wind	K
$\circ \mathrm{F}$	in	psf	$1 \mathrm{~b} / \mathrm{ft}$
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
$1 \mathrm{~b} / \mathrm{ft}$	Ft	1 b	Ft	1 b
2.603	2.82	20196	2.55	22280
2.304	2.85	17660	2.42	20757
1.745	1.79	21324	1.66	22913
1.745	1.98	19224	1.75	21734

30.0	0.00	0.00	0.00	1.745	2.22	17186	1.86	20534
60.0	0.00	0.00	0.00	1.745	2.84	$13400 *$	2.11	18080
90.0	0.00	0.00	0.00	1.745	3.72	10243	2.44	15596
120.0	0.00	0.00	0.00	1.745	4.56	8371	2.90	13157
167.0	0.00	0.00	0.00	1.745	4.92	7747	3.92	9722
212.0	0.00	0.00	0.00	1.745	5.30	7194	5.19	7353

* Design Condition

Span $=708.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
$l \mathrm{~b} / \mathrm{ft}$	lb/ft	Ft	Ib	Ft	1 b
0.20	2.603	8.10	20147	7.45	21912
0.00	2.304	8.17	17668	7.14	20230
0.00	1.745	5.60	19526	5.08	21509
0.00	1.745	6.15	17791	5.36	20416
0.00	1.745	6.76	16181	5.66	19323
0.00	1.745	8.16	$13400 *$	6.37	17166
0.00	1.745	9.74	11234	7.24	15106
0.00	1.745	11.38	9616	8.28	13218
0.00	1.745	12.31	8894	10.18	10749
0.00	1.745	12.92	8473	12.19	8983

NESC Medium Load Zone Rolled Rod

K	Weight
lb/ft	lb/ft
0.20	2.603
0.00	2.304
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745

Final	
Sag	Tension
Ft	lb
5.32	20169
5.37	17665
3.52	20404
3.89	18476
4.32	16649
5.37	$13400 *$
6.64	10823
8.05	8932
8.57	8392
9.08	7920

Initial	
Sag	Tension
Ft	lb
4.85	22092
4.63	20487
3.23	22222
3.41	21081
3.61	19929
4.08	17612
4.69	15337
5.45	13190
6.97	10314
8.69	8280

Span $=1058.0$ Feet
Creep is a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=588.0$ Feet
Creep IS a Factor

NESC Medium Load Zone Rolled Rod

K	Weight
lb/ft	lb/ft
0.20	2.603
0.00	2.304
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745
0.00	1.745

Final	
Sag	Tension
Ft	1 b
18.14	20097
18.26	17675
14.06	17384
15.06	16221
16.11	15174
18.24	$13400 *$
20.39	11991
22.50	10869
24.55	9966
25.39	9639

Initial

Sag Ft	
17.00	Tension
16.49	1.1444
12.58	19569
13.19	18528
13.83	17665
15.24	16040
16.77	14571
18.41	13276
21.10	11591
23.71	10320

NESC Medium Load Zone Rolled Rod

Design Points	
Temp	Ice
in	Wind
nef	

15.0	0.25	4.00	0.20	2.603	5.58	20167	5.10	22073
32.0	0.25	0.00	0.00	2.304	5.64	17665	4.87	20461
0.0	0.00	0.00	0.00	1.745	3.71	20314	3.40	22153
15.0	0.00	0.00	0.00	1.745	4.10	18405	3.59	21016
30.0	0.00	0.00	0.00	1.745	4.54	16600	3.80	19868
60.0	0.00	0.00	0.00	1.745	5.63	$13400 *$	4.29	17567
90.0	0.00	0.00	0.00	1.745	6.94	10869	4.93	15313
120.0	0.00	0.00	0.00	1.745	8.38	9011	5.72	13194
167.0	0.00	0.00	0.00	1.745	8.94	8447	7.28	10363
212.0	0.00	0.00	0.00	1.745	9.46	7980	9.03	8360

* Design Condition

Span $=528.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
0 F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.603	4.50	20177	4.10	22150
0.00	2.304	4.55	17663	3.90	20571
0.00	1.745	2.94	20691	2.71	22444
0.00	1.745	3.25	18707	2.86	21290
0.00	1.745	3.62	16812	3.02	20121
0.00	1.745	4.54	$13400 *$	3.42	17758
0.00	1.745	5.71	10663	3.95	15416
0.00	1.745	6.94	8766	4.61	13181
0.00	1.745	7.41	8208	6.00	10148
0.00	1.745	7.89	7715	7.60	8007

Span $=750.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2024.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
\circ F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	$1 b$
2.603	9.09	20140	8.38	21854
2.304	9.17	17669	8.04	20147
1.745	6.38	19247	5.77	21269
1.745	6.98	17579	6.08	20194
1.745	7.65	16040	6.42	19124
1.745	9.16	$13400 *$	7.21	17023
1.745	10.82	11347	8.16	15034
1.745	12.53	9802	9.28	13226
1.745	13.59	9041	11.30	10871
1.745	14.23	8633	13.39	9178

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.603	66.83	20030	64.85	20634
2.304	67.00	17684	64.08	18482
1.745	61.06	14687	57.48	15597
1.745	62.57	14336	58.70	15274
1.745	64.06	14005	59.92	14964
1.745	66.98	$13400 *$	62.37	14382
1.745	69.82	12859	64.80	13846
1.745	72.59	12374	67.22	13352
1.745	76.78	11705	70.97	12653
1.745	78.33	11476	74.50	12059

Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	lb/ft	1b/ft	Ft	1 b	Ft	1 b
15.0	0.25	4.00	0.20	2.603	20.67	20089	19.44	21358
32.0	0.25	0.00	0.00	2.304	20.79	17676	18.89	19450
0.0	0.00	0.00	0.00	1.745	16.34	17029	14.64	19002
15.0	0.00	0.00	0.00	1.745	17.42	15971	15.32	18165
30.0	0.00	0.00	0.00	1.745	18.53	15019	16.03	17356
60.0	0.00	0.00	0.00	1.745	20.78	13400 *	17.57	15843
90.0	0.00	0.00	0.00	1.745	23.01	12102	19.22	14483
120.0	0.00	0.00	0.00	1.745	25.20	11055	20.96	13286
167.0	0.00	0.00	0.00	1.745	27.47	10146	23.77	11719
212.0	0.00	0.00	0.00	1.745	28.34	9834	26.47	10525

* Design Condition

Span $=1308.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	lb	Ft	lb
2.603	27.78	20072	26.34	21161
2.304	27.92	17679	25.73	19179
1.745	22.96	16277	20.71	18036
1.745	24.19	15446	21.56	17331
1.745	25.43	14695	22.43	16657
1.745	27.90	13400^{\star}	24.25	15408
1.745	30.32	12335	26.15	14292
1.745	32.67	11451	28.10	13306
1.745	35.47	10551	31.18	11996
1.745	36.44	10273	34.11	10970

Span $=1089.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.603	19.22	20094	18.04	21407
0.00	2.304	19.34	17676	17.52	19517
0.00	1.745	15.03	17225	13.46	19234
0.00	1.745	16.07	16109	14.09	18368
0.00	1.745	17.14	15104	14.77	17529
0.00	1.745	19.33	$13400 *$	16.23	15952
0.00	1.745	21.52	12041	17.82	14532
0.00	1.745	23.66	10953	19.50	13281
0.00	1.745	25.81	10046	22.24	11649
0.00	1.745	26.66	9726	24.90	10412

Span $=869.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
1670	$n 00$	n

NESC Medium Load Zone Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
1b/ft	1b/ft	Ft	1 b	Ft	1 b
0.20	2.603	12.22	20122	11.33	21691
0.00	2.304	12.32	17672	10.93	19916
0.00	1.745	8.92	18476	8.01	20560
0.00	1.745	9.69	17006	8.43	19548
0.00	1.745	10.52	15668	8.88	18550
0.00	1.745	12.30	13400*	9.91	16624
0.00	1.745	14.18	11632	11.11	14841
0.00	1.745	16.06	10272	12.44	13248
$\bigcirc \mathrm{n}$	1745	1750	9478	1475	11184

$212.0 \quad 0.00 \quad 0.00$
0.00
1.745
18.22

9056
17.05

9674

* Design Condition

Span $=1795.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

NESC Medium Load Zone
Rolled Rod
K
$\mathrm{lb} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Weight
lb/ft
2.603
2.304
1.745
1.745
1.745
1.745
1.745
1.745
1.745
1.745

Final	
Sag	Tension
Ft	lb
52.49	20040
52.65	17683
46.91	15024
48.37	14573
49.81	14154
52.63	$13400 *$
55.37	12740
58.04	12159
62.07	11377
63.24	11168

Initial	
Sag	Tension
Ft	lb
50.64	20763
49.91	18649
43.61	16154
44.76	15741
45.91	15348
48.23	14614
50.55	13947
52.86	13341
56.45	12499
59.83	11798

NESC Medium Load Zone
Rolled Rod

	Final		Initial	
Weight	Sag	Tension	Sag	Tension
lb/ft	Ft	$1 b$	Ft	1 b
2.603	32.30	20063	30.77	21062
2.304	32.45	17680	30.12	19044
1.745	27.26	15930	24.74	17550
1.745	28.57	15206	25.67	16917
1.745	29.86	14547	26.62	16314
1.745	32.43	$13400 *$	28.58	15198
1.745	34.94	12443	30.60	14201
1.745	37.37	11637	32.64	13315
1.745	40.46	10754	35.85	12127
1.745	41.47	10493	38.89	11184

NESC Medium Load Zone
Rolled Rod
Creep IS a Factor

Design Points		
Temp \circ Ice of	Wind	
15.0	0.25	psf
32.0	0.25	4.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2606.7$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
$2 n n$	$n n n$	$n n$

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.603	111.26	20014	109.06	20411
0.00	2.304	111.44	17686	108.24	18201
0.00	1.745	105.22	14177	101.23	14730
0.00	1.745	106.80	13971	102.55	14543
$n 00$	1745	10925	12772	$7 n 296$	14267

60.0	0.00	0.00	0.00	1.745	111.42	$13400 *$	106.48	14012
90.0	0.00	0.00	0.00	1.745	114.42	13054	109.09	13682
120.0	0.00	0.00	0.00	1.745	117.36	12731	111.68	13369
167.0	0.00	0.00	0.00	1.745	121.86	12269	115.70	12911
212.0	0.00	0.00	0.00	1.745	124.17	12044	119.50	12507

Span $=721.9$ Feet Creep IS a Factor				NESC Medium Load Zone Rolled Rod				
Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	lb/ft	lb/ft	Ft	lb	Ft	1b
15.0	0.25	4.00	0.20	2.603	8.42	20145	7.75	21892
32.0	0.25	0.00	0.00	2.304	8.50	17668	7.43	20202
0.0	0.00	0.00	0.00	1.745	5.85	19433	5.31	21430
15.0	0.00	0.00	0.00	1.745	6.42	17720	5.59	20343
30.0	0.00	0.00	0.00	1.745	7.05	16134	5.90	19258
60.0	0.00	0.00	0.00	1.745	8.49	13400*	6.64	17119
90.0	0.00	0.00	0.00	1.745	10.09	11272	7.54	15082
120.0	0.00	0.00	0.00	1.745	11.76	9679	8.60	13221
167.0	0.00	0.00	0.00	1.745	12.73	8943	10.54	10790
212.0	0.00	0.00	0.00	1.745	13.35	8526	12.58	9049
Design Condition								

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

6/22/2010

David Evans and Associates

Susquehanna - Roseland 500 kV
B\&M P\&P

Conductor: 1590.0 Kcmil $54 / 19$ stranding ACSR "FALCON"
Area $=1.4070 \mathrm{Sq}$. in \quad Diameter $=1.545 \mathrm{in} \quad$ Weight $=2.044 \mathrm{lb} / \mathrm{ft} \quad$ RTS $=54500 \mathrm{lb}$ Data from Chart No. 1-1009
English Units
Limits and Outputs in Average Tensions.

Span $=152.4$ Feet Creep Is a Factor				NESC Medium Load Zone Rolled Rod				
Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	1b/ft	$1 \mathrm{~b} / \mathrm{ft}$	Ft	1 b	Ft	1b
15.0	0.25	4.00	0.20	2.890	0.44	18860	0.37	22902
32.0	0.25	0.00	0.00	2.602	0.47	16232	0.35	21520
0.0	0.00	0.00	0.00	2.044	0.28	21011	0.25	23991
15.0	0.00	0.00	0.00	2.044	0.32	18699	0.26	22840
30.0	0.00	0.00	0.00	2.044	0.36	16403	0.27	21639
60.0	0.00	0.00	0.00	2.044	0.50	11905	0.31	19074*
90.0	0.00	0.00	0.00	2.044	0.76	7768	0.36	16279
120.0	0.00	0.00	0.00	2.044	1.07	5561	0.45	13246
167.0	0.00	0.00	0.00	2.044	1.31	4529	0.73	8171
212.0	0.00	0.00	0.00	2.044	1.61	3697	1.39	4277
Design Condition								

Span $=839.0$ Feet
Creep IS a Factor

Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	1b/ft	lb/ft	Ft	1 b	Et	1 b
15.0	0.25	4.00	0.20	2.890	12.75	19960	10.75	23677
32.0	0.25	0.00	0.00	2. 602	12.99	17639	10.37	22087
0.0	0.00	0.00	0.00	2.044	9.70	18560	7.77	23162
15.0	0.00	0.00	0.00	2.044	10.51	17117	8.12	22153
30.0	0.00	0.00	0.00	2.044	11.38	15811	8.51	21131
60.0	0.00	0.00	0.00	2.044	13.23	13604	9.43	19075*
90.0	0.00	0.00	0.00	2.044	15.15	11885	10.55	17056
120.0	0.00	0.00	0.00	2.044	17.07	10556	11.88	15153
167.0	0.00	0.00	0.00	2.044	19.95	9034	14.32	12578
212.0	0.00	0.00	0.00	2.044	21.48	8394	16.88	10670

NESC Medium Load Zone
Rolled Rod

Span $=418.0$ Eeet
Creep IS a Factor

Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	1b/ft	1b/ft	Ft	1b	Ft	1 b
15.0	0.25	4.00	0.20	2.890	3.31	19056	2.73	23113
32.0	0.25	0.00	0.00	2.602	3.43	16571	2.62	21675
0.0	0.00	0.00	0.00	2.044	2.22	20076	1.88	23788
15,0	0.00	0.00	0.00	2.044	2.48	17996	1.97	22669

NESC Medium Load Zone
Rolled Rod
inal

Initial

30.0	0.00	0.00	0.00	2.044	2.79	16007	2.08	21509
60.0	0.00	0.00	0.00	2.044	3.59	12439	2.34	$19075 *$
90.0	0.00	0.00	0.00	2.044	4.63	9637	2.70	16511
120.0	0.00	0.00	0.00	2.044	5.82	7674	3.21	13893
167.0	0.00	0.00	0.00	2.044	6.91	6471	4.43	10091
212.0	0.00	0.00	0.00	2.044	7.60	5881	6.02	7426
* Design Condition								

Span $=708.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod
Final
Initial

Sag	Tension
Ft	1 b
7.71	23486
7.43	21948
5.48	23387
5.74	22336
6.02	21264
6.72	19075^{*}
7.59	16882
8.67	14776
10.77	11901
13.07	9812

Span $=574.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

		Einal		Initial	
K	Weight	Sag	Tension	Sag	Tension
$1 \mathrm{~b} / \mathrm{ft}$	lb/ft	Ft	1 b	Ft	1 b
0.20	2.890	6.16	19324	5.11	23302
0.00	2.602	6.34	16920	4.91	21814
0.00	2.044	4.33	19431	3.57	23592
0.00	2.044	4.79	17573	3.74	22505
0.00	2.044	5.32	15844	3.94	21388
0.00	2.044	6.55	12860	4.41	$19075 *$
0.00	2.044	7.97	10572	5.04	16704
0.00	2.044	9.46	8909	5.86	14370
0.00	2.044	11.32	7446	7.58	11120
0.00	2.044	12.20	6912	9.57	8807

Span $=1058.0$ Feet
Creep IS a Factor

Design Points		
Temp \circ	Ice in	Wind
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
$l \mathrm{~b} / \mathrm{ft}$	lb/ft	Ft	lb	Ft	Ib
0.20	2.890	20.43	19820	17.60	22995
0.00	2.602	20.73	17588	17.12	21288
0.00	2.044	16.58	17271	13.27	21571
0.00	2.044	17.67	16207	13.85	20657
0.00	2.044	18.78	15250	14.49	19750
0.00	2.044	21.02	$13625 *$	15.92	17986
0.00	2.044	23.26	12322	17.53	16332
0.00	2.044	25.44	11270	19.31	14831
0.00	2.044	28.71	9991	22.31	12839
0.00	2.044	31.20	9199	25.29	11334

Span $=588.0$ Feet Creep is a Factor

NESC Medium Load Zone Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lh/ft	Th/ft	Ft	1 h	Ft	7 h

15.0	0.25	4.00	0.20	2.890	6.46	19353	5.36	23321
32.0	0.25	0.00	0.00	2.602	6.64	16955	5.1 .5	21827
0.0	0.00	0.00	0.00	2.044	4.56	19376	3.75	23572
15.0	0.00	0.00	0.00	2.044	5.04	17540	3.93	22489
30.0	0.00	0.00	0.00	2.044	5.58	15835	4.1 .3	21376
60.0	0.00	0.00	0.00	2.044	6.85	12899	4.63	$19075 *$
90.0	0.00	0.00	0.00	2.044	8.30	10649	5.28	16723
120.0	0.00	0.00	0.00	2.044	9.82	9008	6.13	14413
167.0	0.00	0.00	0.00	2.044	11.75	7528	7.89	11206
212.0	0.00	0.00	0.00	2.044	12.65	6998	9.92	8919

Span $=528.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

NESC Medium Load Zone
Rolled Rod
K
$\mathrm{lb} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Final
Weight
lb/ft
2.890
2.602
2.044
2.044
2.044
2.044
2.044
2.044
2.044
2.044

Final	
Sag	Tension
Ft	1 b
5.24	19234
5.40	16808
3.63	19615
4.03	17688
4.49	15880
5.60	12732
6.91	10310
8.32	8570
9.95	7171
10.77	6623

NESC Medium Load Zone Rolled Rod

	Final				Initial	
K	Weight	Sag	Tension	Sag	Tension	
lb/ft	lb/ft	Ft	lb	Ft	1 b	
0.20	2.890	10.31	19730	8.63	23547	
0.00	2.602	10.53	17388	8.32	21992	
0.00	2.044	7.64	18810	6.17	23317	
0.00	2.044	8.35	17230	6.45	22279	
0.00	2.044	9.11	15791	6.77	21223	
0.00	2.044	10.77	13357	7.54	$19075 *$	
0.00	2.044	12.54	11477	8.49	16938	
0.00	2.044	14.32	10052	9.65	14900	
0.00	2.044	17.01	8465	11.86	12127	
0.00	2.044	18.17	7928	14.25	10100	

NESC Medium Load Zone Rolled Rod
K
$\mathrm{lb} / \mathrm{ft}$
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Span $=750.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=2024.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

Design Points					Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
${ }^{\circ} \mathrm{F}$	in	psf	1b/ft	1b/ft	Ft	1 b	Ft	1b
15.0	0.25	4.00	0.20	2.890	23.32	19776	20.25	22772
32.0	0.25	0.00	0.00	2.602	23.64	17567	19.74	21033
0.0	0.00	0.00	0.00	2.044	19.27	16921	15.49	21039
15.0	0.00	0.00	0.00	2.044	20.43	15962	16.16	20166
30.0	0.00	0.00	0.00	2.044	21.60	15099	16.88	19306
60.0	0.00	0.00	0.00	2.044	23.95	13625*	18.47	17650
90.0	0.00	0.00	0.00	2.044	26.26	12429	20.23	16116
120.0	0.00	0.00	0.00	2.044	28.51	11452	22.14	14733
167.0	0.00	0.00	0.00	2.044	31.89	10244	25.30	12901
212.0	0.00	0.00	0.00	2.044	34.69	9425	28.38	11503

* Design Condition

Span $=1308.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
0 F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=1089.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

* Design Condition

Span $=869.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167	n	0

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	lb	Ft	lb
0.20	2.890	31.47	19682	27.82	22254
0.00	2.602	31.83	17526	27.26	20445
0.00	2.044	27.03	16199	22.14	19764
0.00	2.044	28.33	15461	23.02	19011
0.00	2.044	29.61	14791	23.94	18280
0.00	2.044	32.16	$13625 *$	25.90	16901
0.00	2.044	34.64	12653	27.99	15647
0.00	2.044	37.05	11835	30.16	14527
0.00	2.044	40.67	10788	33.63	13031
0.00	2.044	43.97	9997	36.97	11862

NESC Medium Load Zone Rolled Rod

K	Weight
$\mathrm{lb} / \mathrm{ft}$	lb/ft
0.20	2.890
0.00	2.602
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044

Sag
Ft
21.67
21.98
17.72
18.85
19.98
22.28
24.54
26.76
30.08
32.70

Final
Tension
1 b
19801
17579
17113
16097
15182
$13625 *$
12370
11352
10105
9300

Initial

Sag	Tension
Ft	1 b
18.73	22897
18.24	21176
14.21	21338
14.83	20441
15.51	19554
17.00	17837
18.69	16235
20.52	14787
23.59	12867
26.62	11410

NESC Medium Load Zone
Rolled Rod

		Final		Initial	
K	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	1 b	Ft	1 b
0.20	2.890	13.68	19961	11.56	23614
0.00	2.602	13.93	17652	11.17	22008
0.00	2.044	10.50	18391	8.40	22985
0.00	2.044	11.36	17001	8.78	21986
0.00	2.044	12.26	15745	9.20	20978
0.00	2.044	14.18	13625*	10.18	18956
0.00	2.044	16.14	11968	11.37	16982
0.00	2.044	18.10	10679	12.76	15134
$\cap \cap \cap$) $\cap \triangle \Delta$	$21 \cap \Delta$	9190	1578	10ヶ4?

```
\(212.0 \quad 0.00\)
```

$0.00 \quad 0.00$
$0.00 \quad 2.044$
22.70

8521
17.91

10791

* Design Condition

Span $=1795.0$ Feet
Creep IS a Factor
NESC Medium Load Zone Rolled Rod

Design Points		
Temp	Ice	Wind
of	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

K	Weight
lb/ft	lb/ft
0.20	2.890
0.00	2.602
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044

Final	
Sag	Tension
Ft	1 b
59.90	19518
60.31	17454
54.91	15050
56.38	14658
57.84	14292
60.70	$13625 *$
63.48	13034
66.18	12507
70.27	11786
74.04	11195

Initial	
Sag	Tension
Ft	$1 b$
55.13	21193
54.54	19286
48.02	17193
49.29	16752
50.57	16329
53.16	15539
55.76	14820
58.36	14166
62.39	13258
66.19	12505

* Design Condition

Span $=1410.0$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
$\circ \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

\quad K	Weight
$l b / f t$	lb/ft
0.20	2.890
0.00	2.602
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044
0.00	2.044

NESC Medium Load Zone Rolled Rod
Creep IS a Factor

Design Points		
Temp	Ice	Wind
0 F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00
167.0	0.00	0.00
212.0	0.00	0.00

		Final	
K	Weight	Sag	Tension
lb/ft	lb/ft	Ft	1 b
0.20	2.890	8.28	19532
0.00	2.602	8.49	17166
0.00	2.044	6.00	19075
0.00	2.044	6.59	17367
0.00	2.044	7.24	15799
0.00	2.044	8.72	13128
0.00	2.044	10.33	11078
0.00	2.044	11.99	9553
0.00	2.044	14.35	7986
0.00	2.044	15.32	7478

Initial	
Sag	Tension
Ft	1 b
6.90	23431
6.65	21908
4.88	23450
5.11	22388
5.37	21301
6.00	$19075 *$
6.80	16830
7.80	14659
9.80	11683
12.01	9534

Span $=2606.7$ Feet
Creep IS a Factor

Design Points		
Temp	Ice	Wind
${ }^{\circ} \mathrm{F}$	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
$3 n n$	$n n n$	$n n n$

NESC Medium Load Zone Rolled Rod

K		Final		Initial	
	Weight	Sag	Tension	Sag	Tension
lb/ft	lb/ft	Ft	1 b	Ft	1b
0.20	2.890	127.78	19394	122.11	20277
0.00	2.602	128.24	17400	121.57	18338
0.00	2.044	122.48	14300	114.47	15284
0.00	2.044	124.05	14122	115.94	15093
ก n n	2 nas	12560	12057	71747	14907

60.0	0.00	0.00	0.00	2.044	128.66	$13625 *$	120.32	14552
90.0	0.00	0.00	0.00	2.044	131.67	13320	123.22	14216
120.0	0.00	0.00	0.00	2.044	134.62	13034	126.09	13898
167.0	0.00	0.00	0.00	2.044	139.14	12619	130.53	13434
212.0	0.00	0.00	0.00	2.044	143.36	12256	134.73	13024

```
Span = 721.9 Feet
Creep IS a Factor
```

Design Points					Final		Initial	
$\underset{\substack{\text { Temp }}}{ }$	Ice	Wind psf		Weight 1b/ft	Sag	Tension	Sag	Tension
15.0	0.25	4.00	0.20	2.890	9.58	19660	8.01	23507
32.0	0.25	0.00	0.00	2.602	9.80	17310	7.72	21963
0.0	0.00	0.00	0.00	2.044	7.05	18898	5.70	23364
15.0	0.00	0.00	0.00	2.044	7.71	17274	5.97	22318
30.0	0.00	0.00	0.00	2.044	8.44	15791	6.27	21250
60.0	0.00	0.00	0.00	2.044	10.04	13277	6.98	19075*
90.0	0.00	0.00	0.00	2.044	11.75	11342	7.88	16901
120.0	0.00	0.00	0.00	2.044	13.49	9884	8.99	14818
167.0	0.00	0.00	0.00	2.044	16.12	8275	11.13	11977
212.0	0.00	0.00	0.00	2.044	17.16	7775	13.46	9909

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

CONDUCTOR CUT SHEETS

The information in this section was used to determine the insulator swing angle Θ. See calculations tab for detailed information.

TransPowr＂＇ACCC／TW Bare Overhead Conductor
 Trapezoidal Aluminum Conductor Composite Core Concentric－Lay－Stranded

ACSR vs ACSS vs ACSS／TW vs ACCC／TW CONDUCTORS－COMPARISON OF PHYSICAL PROPERTIES OF EQUIVALENT SIZES

COOE WORO（1）	$\begin{array}{\|c\|} \hline \text { sl2E } \\ \text { Kcmill } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TYPE } \\ (3) \\ \hline \end{array}$	$\begin{aligned} & \text { No. of } \\ & \text { ALUM. } \\ & \text { WIRES } \end{aligned}$	CORE	$\begin{gathered} \text { CORE } \\ 0.0 \\ \text { RCGHES } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CROSS.SECTIONAL } \\ & \text { ABEA }(n) \end{aligned}$		$\begin{gathered} \text { NOMNAL } \\ 0 . D_{1} \\ \text { WCHES } \end{gathered}$	NOMINAL WECHI lblocoit			Ratee sirengihlo m）			$\begin{gathered} \text { AMPS } \\ 15^{\prime} \mathrm{C} \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { A14PS } \\ 200^{\circ} \mathrm{C} \\ 15 \end{gathered}$	PERCENI BY WEGHT		STANDAROPACKAGE（6）		
								$\begin{array}{\|c\|} \hline \text { CIC } \\ \text { CORE } \\ \hline \end{array}$				$\begin{aligned} & \text { GAMA } \\ & \text { SIEEL } \end{aligned}$	$\begin{aligned} & \text { HSMIS } \\ & \text { SIfEL } \end{aligned}$	$\begin{aligned} & \hline \text { Rett } \\ & \text { SIRE } \\ & \hline \end{aligned}$					$\begin{aligned} & \text { WGHI, } \\ & \text { Pounds } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { LNGGH } \\ \text { Foel } \\ \hline \end{array}$	
						TOTAL	ALUM．		IOTAL	AlUM．	CORE						ALUM．	CORE			
uwithacs LWM Ress IWRHACSST： IIWHI Lessivivi	$\begin{aligned} & 3354 \\ & 336.4 \\ & 336.4 \\ & 358.7 \\ & \hline 3 \end{aligned}$	15 16 16 16 16	20 24 18 18 18			$\begin{aligned} & 0.071 \\ & 0 \times 011 \\ & 0.001 \\ & 0.51 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.261 \\ & 0.241 \\ & 0.261 \\ & 0.312 \\ & 0.3127 \end{aligned}$	070 0.720 0．0．3 0.7%	$\begin{aligned} & 462 \\ & 462 \\ & 462 \\ & 462 \\ & 547 \\ & \hline \end{aligned}$	$\begin{aligned} & 317 \\ & 317 \\ & 316 \\ & 316 \\ & 316 \end{aligned}$	$\begin{aligned} & 165 \\ & 145 \\ & 145 \\ & 145 \\ & 112 \\ & \hline \end{aligned}$	：	$\begin{aligned} & 3100 \\ & 1180 \\ & 11200 \\ & 1300 \\ & 1300 \end{aligned}$	$\begin{aligned} & 1600 \\ & 18 \% \\ & 1200 \\ & 120 \% \\ & 1200 \\ & \hline \end{aligned}$	530 3 35 325 50	$\begin{aligned} & 9.5 \\ & 90 \\ & 900 \\ & 1030 \\ & \hline \end{aligned}$	$\begin{aligned} & 68 . \\ & 685 \\ & 68.5 \\ & 68.5 \\ & \hline 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 315 \\ & 31.5 \\ & 31.5 \\ & 3.1 .5 \\ & \hline \end{aligned}$	PMIX13 R0SI 84 18818185 1951813		$\begin{aligned} & 100_{3} \\ & 16010 \\ & 10710 \\ & 14310 \end{aligned}$
LINNET ACCCIIW	431	A	16	1x0．230	0.235	0.3819	0.1885	0.710	11	405	36	16.50	．	．	60	1065^{\prime}	42.1	1.9	8M78，18	5010	1140
HWW A A SP Lhava acs HAWKMCS5T2 CUOKCNACSS Ti	$\begin{array}{\|l\|l} \hline 47 \\ 101 \\ 471 \\ 5553 \\ \hline \end{array}$	16 16 16 16 16 16	18 28 28 18 20			045% 0435 0,033 Q 0.161	$\begin{aligned} & 0.344 \\ & 0374 \\ & 0745 \\ & 0745 \\ & 0.4138 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.868 \\ & 083 \\ & 0.789 \\ & 0.858 \end{aligned}$		$\begin{aligned} & 449 \\ & 44 \\ & 149 \\ & 141 \\ & 531 \\ & \hline \end{aligned}$				2000 1700 1700 2000		$\begin{aligned} & 40 \\ & 1160 \\ & 1205 \end{aligned}$	$\begin{aligned} & 685 \\ & 885 \\ & 685 \\ & 6.5 \\ & 845 \\ & \hline 8.5 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \\ & 315.5 \\ & 315 \\ & \hline \end{aligned}$	2 2118136 99．15 81.36 		11550 11550 11250 1350 130
HAWK ACCCIW	611	A	16	1x0．2800	0.280	0.5415	0.199	0.858	624	514	5	2330	．	．	745	$133{ }^{\prime}$	22.1	1.9	RM 78.18	3420	5500
DOEACSS DOVECSS DOF NCSSTV osvinen acssiw	$\begin{array}{\|l\|l\|} \hline 4.5 \\ 546.5 \\ 566.5 \\ 56.9 .8 \\ \hline \end{array}$	15 16 16 16 16	20 20 20 20		$\begin{array}{\|l\|} \hline 0.314 \\ 03414 \\ 10.414 \\ 0.392 \\ 0.392 \end{array}$	0.593 ？ 0． 8085 0\％03 0683	$\begin{aligned} & 01371 \\ & 0.331 \\ & 0.4721 \\ & 0.322 \\ & 0.222 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.927 \\ & 0.860 \\ & 0.927 \end{aligned}$	$\begin{aligned} & 765 \\ & 165 \\ & 164 \\ & 164 \\ & 911 \end{aligned}$	$\begin{aligned} & 196 \\ & 524 \\ & 513 \\ & 825 \\ & \hline \end{aligned}$	31 24 34 34 3		$\begin{aligned} & 7 \pi 00 \\ & 3200 \\ & 18000 \\ & 17000 \\ & \hline 2000 \end{aligned}$	$\begin{aligned} & 2400 \\ & 0.00 \\ & 1500 \\ & 2400 \\ & \hline 2000 \end{aligned}$	$\begin{aligned} & 7175 \\ & 138 \\ & 1200 \\ & 000 \end{aligned}$	$\begin{aligned} & 1315 \\ & 120 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 185 \\ & 685 \\ & 68.5 \\ & 69.1 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \\ & 31.6 \\ & 31.6 \\ & \hline \end{aligned}$			$\begin{aligned} & 9910 \\ & 910 \\ & 1140 \\ & 950 \\ & \hline \end{aligned}$
doveaccisiw	713	A	18	1x．3．350	0.3050	0.638	0.5997	0.927	28	669	59	21550	．	．	820	$1970{ }^{\circ}$	92.0	8.0	RM 18．48	3350	5350
çOCBEAKASP． GW0．6EKMCS GMSEAKNSS WI VMasH hastivi		16 16 16 16 18 18	20 20 20 20 20		$\begin{array}{\|l\|} \hline 1.364 \\ 0.848 \\ 0.368 \\ 0.3985 \\ \hline 0.9 \\ \hline \end{array}$	$\begin{aligned} & 0597 \\ & 0509 \\ & 0301 \\ & 0390 \\ & 0.559 \\ & \hline \end{aligned}$	0.499 0.494 $0 \mathrm{H} / \mathrm{S}_{3}$ 045	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.98 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \\ & 84 \\ & 1046 \\ & 1096 \end{aligned}$		235 215 215 3.0		$\begin{aligned} & 25200 \\ & 2500 \\ & 2009 \\ & 2450 \\ & \hline \end{aligned}$	$\begin{aligned} & 2400 \\ & 2400 \\ & 2400 \\ & 20000 \\ & 2000 \end{aligned}$	$\begin{aligned} & m \\ & 30 \\ & 10 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 145 \\ & 1400 \\ & 1500 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 88.5 \\ & 685 \\ & 685 \\ & 685 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \\ & 31.5 \\ & 31.5 \end{aligned}$	रिया 1012 C （20121328 1924835 $01 / 148.25$ \qquad	$\begin{aligned} & 750 \\ & 750 \\ & 8760 \\ & 830 \\ & 870 \\ & \hline \end{aligned}$	$\begin{aligned} & 8010 \\ & 8001 \\ & 10019 \\ & 3010 \end{aligned}$
Grosbeak acccitw	816	\wedge	19	180．300	0.3200	0.7215	0.6411	0.950	812	765	6	3000	．	．	80	1610°	92.3	1.1	RM 18.48	4730	5700
Dogh acs DDAK CSS DRNGC LCSSIW SHWWWVE HESSIW		16 16 16 16 16 18	$\begin{aligned} & 26 \\ & 26 \\ & 20 \\ & 20 \\ & \hline 2 \end{aligned}$		$\begin{aligned} & 01000 \\ & 0.4000 \\ & 0.4000 \\ & 0.41515 \end{aligned}$	ams 6．272： 0729 0864		$\begin{aligned} & 1.107 \\ & 1.07 \\ & 1.010 \\ & 1.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & 1093 \\ & 1091 \\ & 1091 \\ & 1317 \\ & \hline \end{aligned}$	$\begin{aligned} & 769 \\ & 746 \\ & 74 \\ & 90 \\ & 902 \end{aligned}$	$\begin{aligned} & 34 \\ & 31 \\ & 34 \\ & 34 \\ & 413 \\ & \hline \end{aligned}$			$\begin{aligned} & 3150 \\ & 300 \\ & 300 \\ & 3100 \\ & 3100 \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & 915 \\ & 606 \\ & 606 \\ & 1006 \end{aligned}$	$\begin{aligned} & 160 \\ & \begin{array}{l} 160 \\ 1615 \\ 18 \% \end{array} \end{aligned}$	$\begin{aligned} & 85 \\ & 8.5 \\ & 685 \\ & 685 \\ & 685 \\ & \hline \end{aligned}$	$\begin{aligned} & 315 \\ & 315 \\ & 345 \\ & 31.5 \\ & \hline \end{aligned}$		150 i59） 8／6） 5919	8912 （6） 0 1320
DraKE Accoitw	1020	A	12	100．3350	0.3750	0.9112	0.814	1.03	1046	951	89	4100	－	，	1025	1865°	11.6	8.4	R 81818.18	3350	5700
CMEDNA NES． T4CRAN icss AOCDL ACS5 TW luspon mess ive	$\begin{array}{\|c} 954 \\ 49 \\ 454 \\ 54 \\ 11539 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \\ & \hline \end{aligned}$	31 34 21 36 3				$\begin{aligned} & 0.891 \\ & 0.491 \\ & 0792 \\ & 0.980 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,166 \\ & 1.164 \\ & 1.64 \\ & 1.145 \end{aligned}$					$\begin{aligned} & 3 \times 50 \\ & 1000 \\ & 1000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 3500 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 31500 \\ & \hline 200 \end{aligned}$	$\begin{aligned} & 38 \\ & 1001 \\ & 196 \\ & 936 \\ & 1200 \end{aligned}$		$\begin{aligned} & 11.2 \\ & 112 \\ & 13.1 \\ & 31 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 288 \\ & 2.89 \\ & 2.9 \\ & 699 \end{aligned}$	R 日 1524 （2）／ 15.4 .4 3 1818 ： लिभा 815		$\begin{aligned} & 3.90 \\ & 800 \\ & 7010 \\ & 7010 \\ & 710 \end{aligned}$
CAROINAL ACCCITW	1 m	B	36	1x．3．340	0.3450	1.0536	0.9601	1.195	128	1152	16	3160	，	．	116	2888°	81.0	6.0	PMM 7 ， 18	6980	5700
BITHEX KSR alliky hess Bl Hewacsyw Pormincess IV	$\begin{array}{\|l\|} 1272 \\ 1727 \\ 1272 \\ 12589 \\ 1259 \\ \hline \end{array}$	7	4 4 3 3			$\begin{aligned} & 10679 \\ & 1919 \\ & 1908 \\ & 10808 \\ & 1.008 \\ & \hline \end{aligned}$	$\begin{aligned} & 6588 \\ & 0 \% 9 \\ & 0291 \\ & 1231 \\ & \hline \end{aligned}$	1.35 1.345 1.214 1.34 1.215	$\begin{aligned} & 1432 \\ & 199 \\ & 1492 \\ & 1454 \end{aligned}$	$\begin{aligned} & 1148 \\ & 114 \\ & 118 \\ & 1469 \\ & \hline 189 \end{aligned}$	$\begin{array}{r} \ddot{4} \\ \ddot{3} \\ \ddot{3} \\ \ddot{3} \\ \hline \end{array}$		$\begin{aligned} & 3100 \\ & 20 \% 00 \\ & 3200 \\ & 2400 \\ & \hline 200 \end{aligned}$		$\begin{aligned} & 1165 \\ & 1195 \\ & 1165 \\ & 196 \\ & \hline \end{aligned}$	300 213 2450	$\begin{aligned} & 8,7 \\ & 4.7 \\ & 187 \\ & 8.1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 1.3 \\ & 1.3 \\ & 15.5 \\ & \hline \end{aligned}$		1024 1048 1028 1820 120	
BIIEEN ACCCTV	1572	B	39	1 $\times 1.3950$	0.350	1.288	1.2388	1.345	1554	1478	16	3830	，	．	1320	$240{ }^{\circ}$	95.3	4.7	RMI 90， 5 S	8850	5700
WWOWG asse LAWNOACSS WWNW ACSSTW APMBASYA ACSSTW	$\begin{array}{\|l\|} 1500 \\ 1300 \\ 1590 \\ 1900.6 \\ \hline \end{array}$		5 5 8 8 8 8		$\left\|\begin{array}{l} 077 \% \\ 2126 \\ 0370 \\ 0.1166 \end{array}\right\|$	$\begin{aligned} & 1331 \\ & 1530 \\ & 1531 \\ & 1642 \\ & \hline \end{aligned}$	$\begin{aligned} & 1240 \\ & 1248 \\ & 12483 \\ & 1.239 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.504 \\ & \begin{array}{l} 1301 \\ 1.301 \\ 1.502 \end{array} \end{aligned}$	$\begin{array}{r} 190 \\ \frac{190}{190} \\ 109 \\ 206 \end{array}$	$\begin{array}{r} 149 \\ \hline 149 \\ \hline 189 \\ \hline 180 \\ \hline \end{array}$		：			$\begin{array}{r} 155 \\ \begin{array}{l} 135 \\ \hline 130 \\ \hline 1095 \end{array} \\ \hline 109 \end{array}$	$\frac{25}{\frac{45}{8 i 5}}$	$\begin{aligned} & 617 \\ & 817 \\ & 31, \\ & 6!8 \end{aligned}$		Sulf 80.45 \qquad		$\begin{aligned} & 600 \\ & 0010 \\ & 2010 \\ & 910 \\ & 90 \end{aligned}$
LAPWIMG ACCCIW	1966	B	56	1x．3385	0.3850	1.6088	1.514	1.504	1980	1864	$\%$	40×0	．	．	1500	${ }^{2065}$	95.3	4.1	RMT 90.45	11150	5780
CHMRAMCs CHNDR hess CHTHR hCSSTV POMDERASSTIT	$\begin{array}{\|l\|} 1730 \\ 7720 \\ 1720 \\ 21528 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 24 \\ & 3 \\ & 6 \end{aligned}$			$\begin{aligned} & 1.5112 \\ & 1512 \\ & 15122 \\ & 1929 \\ & \hline \end{aligned}$	$\begin{array}{r} 1394 \\ 1994 \\ 1394 \\ 1396 \\ \hline 1395 \\ \hline \end{array}$	1.501 1,001 1.47 10.21	$\begin{aligned} & 321 \\ & 2001 \\ & 2010 \\ & 2.30 \\ & \hline 20 \end{aligned}$		$\begin{aligned} & \text { 啇 } \\ & \text { in } \\ & \text { in } \\ & \text { it } \end{aligned}$	；		$\begin{aligned} & 33101 \\ & 320 \\ & 3600 \\ & 1501 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 206 \\ & 2030 \\ & n i n \end{aligned}$	813 613 $11 /$ 81	$\begin{aligned} & 18.2 \\ & 13.7 \\ & 388 \\ & 168 \end{aligned}$		$\begin{aligned} & 1091 \\ & 1020 \\ & 10291 \\ & 10391 \\ & 23991 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & 9.010 \\ & 890 \\ & \hline 906 \end{aligned}$
CHUKAR ACCCJTV	2242	B	56	10．3990	0.3580	1.835	1.761	1.022	$2 m 5$	2126	48	5780	．	．	1610	3055^{\prime}	45.7	4.3	RMT 90．65	12670	5100
 B．UENKD NSSTMW 		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	8 24 64 64 6			1830 180 183 nes				$\begin{aligned} & 2041 \\ & 2041 \\ & 204 \\ & 248 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 6 \\ & 6 \\ & 61 \\ & 611 \end{aligned}$		（6） 30 2100 47100 5140	$\begin{aligned} & 500 \\ & 500 \\ & 560 \\ & 3500 \end{aligned}$	$\begin{aligned} & 1627 \\ & 1600 \\ & 1600 \\ & 1185 \\ & 1805 \end{aligned}$	$\begin{aligned} & 319 \\ & 316 \\ & 0,105 \end{aligned}$		$\begin{aligned} & 186 \\ & 186 \\ & 186 \\ & 180 \\ & 13.5 \\ & \hline \end{aligned}$			
BLUEBIRD ACCCIW	217	B	64	1×0.150	0.4150	2.217	21024	1.762	2696	2586	110	5300	－	，	179	अ18＇	96.1	3.9	RMT 95．50	13550	5700

rootiotes

BULLETIN 1724E-200 SECTION 5

This section was used to determine and calculate the ROW width required based on the conductor swing angle (blowout) calculations using the formulas tabbed herein.

5. HORIZONTAL CLEARANCES FROM LINE CONDUCTORS TO OBJECTS AND RIGHT-OF-WAY WIDTH

5.1 General: The preliminary comments and assumptions in Chapter 4 of this bulletin also apply to this chapter.
5.2 Minimum Horizontal Clearance of Conductor to Objects: Recommended design horizontal clearances of conductors to various objects are provided in Table 5-1 and minimum radial operating clearances of conductors to vegetation in Table 5-2. The clearances apply only for lines that are capable of automatically clearing line-to-ground faults.

Clearance values provided in Table 5-1are recommended design values. In order to provide an additional margin of safety, the recommended design values exceed the minimum clearances in the 2007 NESC. Clearance values provided in Table 5-2 are minimum operating clearances to be used by the designer to determine appropriate design clearances for vegetation maintenance management.

5.2.1 Conditions Under Which Horizontal Clearances to Other Supporting Structures, Buildings and Other Installations Apply:

Conductors at Rest (No Wind Displacement): When conductors are at rest the clearances apply for the following conditions: (a) $167^{\circ} \mathrm{F}$ but not less than $120^{\circ} \mathrm{F}$, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) $32^{\circ} \mathrm{F}$, final sag with radial thickness of ice for the loading district (0 in ., $1 / 4 \mathrm{in}$., or $1 / 2 \mathrm{in}$.).

Conductors Displaced by 6 psf Wind: The clearances apply when the conductor is displaced by 6 lbs . per sq. ft. at final sag at $60^{\circ} \mathrm{F}$. See Figure 5-1.

FIGURE 5-1: HORIZONTAL CLEARANCE REQUIREMENT TO BUILDINGS
where:
$\phi=$ conductor swing out angle in degrees under 6 psf . of wind
$\mathrm{S}_{\mathrm{f}}=$ conductor final sag at $60^{\circ} \mathrm{F}$ with 6 psf . of wind
$\mathrm{x}=$ horizontal clearance required per Tables $5-1$ for conductors displaced by 6 psf wind (include altitude correction if necessary)
$\ell_{\mathrm{i}}=$ insulator string length ($\ell_{\mathrm{i}}=0$ for post insulators or restrained suspension insulators).
$y=$ total horizontal distance from insulator suspension point (conductor attachment point for post insulators) to structure with conductors at rest
$\delta=$ structure deflection with a 6 psf . Wind

TABLE 5-1

RECOMMENDED DESIGN HORIZONTAL CLEARANCES (in feet) FROM CONDUCTORS AT REST AND DISPLACED BY 6 PSF WIND TO OTHER SUPPORTING STRUCTURES, BUILDINGS AND OTHER INSTALLATIONS
(NESC Rules 234B, 234C, 234D, 234E, 234F, 234I, Tables 234-1, 234-2, 234-3)
Conditions under which clearances apply:
No wind: When the conductor is at rest the clearances apply at the following conditions: (a) $120^{\circ} \mathrm{F}$, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) $32^{\circ} \mathrm{F}$, final sag with radial thickness of ice for the loading district ($1 / 4 \mathrm{in}$. for Medium or $1 / 2 \mathrm{in}$. Heavy)

Displaced by Wind: Horizontal clearances are to be applied with the conductor displaced from rest by a 6 psf wind at final sag at $60^{\circ} \mathrm{F}$. The displacement of the conductor is to include deflection of suspension insulators and deflection of flexible structures.

The clearances shown are for the displaced conductors and do not provide for the horizontal distance required to account for blowout of the conductor and the insulator string. This distance is to be added to the required clearance. See Equation 5-1.

Clearances are based on the Maximum Operating Voltage

Nominal voltage, Pluase to Plase, $\mathrm{K} \mathrm{V}_{\text {L-L }}$		$\begin{aligned} & 34.5 \\ & \& 46 \end{aligned}$	69	115	138	161	230
Max. Operating Voltage, Phase to Phase, $\mathrm{kV}_{\mathrm{L}-\mathrm{L}}$		----	72.5	120.8	144.9	169.1	241.5
Max. Operating Voltage, Phase to Ground, $\mathrm{kV}_{\mathrm{L}-\mathrm{G}}$		----	41.8	69.7	83.7	97.6	139.4
Horizontal Clearances - (Notes 1,2,3)	$\frac{\text { NESC }}{\text { Basic }}$			Clear	es in fe		

1.0 From a lighting support, traffic signal support or supporting structure of another line

At rest	(NESC Rule 234B1a)	5.0	6.5	6.5	7.2	7.6	8.1	9.5
Displaced by wind	(NESC Rule 234B1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9

2.0 From buildings, walls, projections, guarded windows, windows not designed to open, balconies, and areas accessible to pedestrians
At rest (NESC Rule 234C1a)

Displaced by wind (NESC Rule 234C1b)

7.5	9.2	9.7	10.6	11.1	11.5	12.9
4.5	6.2	6.7	7.6	8.1	8.5	9.9

3.0 From signs, chimneys, billboards, radio, \& TV antemas, tanks \& other installations not classified as buildings

At rest	(NESC Rule 234C1 a)	7.5	9.2	9.7	10.6	11.1	11.5	12.9
Displaced by wind	(NESC Rule 234C1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9

4.0 From portions of bridges which are readily accessible and supporting structures are not attached

At rest	(NESC Rule 234D1a)	7.5	9.2	9.7	10.6	11.1	11.5	12.9
Displaced by wind	(NESC Rule 234D1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9

5.0 From portions of bridges which are ordinarily inaccessible and supporting structures are not attached

At rest	(NESC Rule 234D1a)	6.5	8.2	8.7	9.6	10.1	10.5	11.9
Displaced by wind	(NESC Rule 234D1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9

TABLE 5-1 (continued)
RECOMMENDED DESIGN HORIZONTAL CLEARANCES (in feet) FROM CONDUCTORS AT REST AND DISPLACED BY 6 PSF WIND TO OTHER SUPPORTING STRUCTURES, BUILDINGS AND OTHER INSTALLATIONS
(NESC Rules 234B, 234C, 234D, 234E, 234F, 234I, Tables 234-1, 234-2, 234-3)

Conditions under which clearances apply:							
No wind: When the conductor is at rest the clearances apply at the following conditions: (a) $120^{\circ} \mathrm{F}$, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) $32^{\circ} \mathrm{F}$, final sag with radial thickness of ice for the loading district ($1 / 4 \mathrm{in}$. for Medium or $1 / 2 \mathrm{in}$. Heavy).							
Displaced by Wind: Horizontal clearances are to be applied with the conductor displaced from rest by a 6 psf wind at final sag at 60° Funder extreme wind conditions (such as the 50 or 100 -year mean wind) at final sag at $60^{\circ} \mathrm{F}$. The displacement of the conductor is to include deflection of suspension insulators and deflection of flexible structures.							
The clearances shown are for the displaced conductors and do not provide for the horizontal distance required to account for blowout of the conductor and the insulator string. This distance is to be added to the required clearance. See Equation 5-1. Clearances are based oit the Maximum Operating Voltage							
Nominal voltage, Phase to Phase, $\mathrm{k} \mathrm{V}_{\mathrm{L}-\mathrm{L}}$.		$\begin{array}{r} 34.5 \\ \& 46 \end{array}$	69	115	138	161	230
Max. Operating Voltage, Phase to Phase, $\mathrm{kV}_{\mathrm{L}-\mathrm{L}}$ Max. Operating Voltage, Phase to Ground, $k V_{\text {L-G }}$		-...-	72.5	120.8	144.9	169.1	241.5
		----	41.8	69.7	83.7	97.6	139.4
	NESC						
Horizontal Clearances - (Notes 1,2,3)	Basic			learan	in fee		
	Clear						
6.0 Swimming pools - see section 4.4 .3 of Chapter 4 and item 9 of Table 4-2. (NESC Rule 234E)							
Clearance in any direction from swimming pool edge (Clearance A, Figure 4-2 of this bulletin)	25.0	27.2	27.7	28.6	29.1	29.5	30.9
Clearance in any direction from diving structures (Clearance B, Figure 4-2 of this bulletin)	17.0	19.2	19.7	20.6	21.1	21.5	22.9
7.0 From grain bins loaded with permanently attached conveyor							
At rest (NESC Rule 234F1b)	15.0	17.2	17.7	18.6	19.1	19.5	20.9
Displaced by wind (NESC Rule 234C1b)	4.5	6.7	7.2	8.1	8.6	9.0	10.4
8.0 From grain bins loaded with a portable conveyor. Height ' V ' of highest filling or probing port on bin must be added to clearance shown. Clearances for 'at rest' and not displaced by the wind. See NESC Figure $234-4$ for other requirements. Horizontal clearance envelope (includes area of sloped clearance per NESC Figure 234-4b)) +	(Not		
9.0 From rail cars (Applies only to lines parallel to tracks) See Figure 234-5 and section 2341 (Eye) of the NESC							
		14.1	14.1	15.1	15.6	16.0	17.5
ALTITUDE CORRECTION TO BE ADDED TO VALUES ABOVE							
Additional feet of clearance per 1000 feet of altitude above 3300 feet					. 07	. 08	12
Notes:							
1. Clearances for categories $1-5$ in the table are approximately 1.5 feet greater than NESC clearances. 2. Clearances for categories 6 to 9 in the table are approximately 2.0 feet greater than NESC clearances. 3. " V " is the height of the highest filling or probing port on a grain bin. Clearance is for the highest voltage of 230 kV .							

Page 5-4

5.2.2 Considerations in Establishing Radial and Horizontal Clearances to Vegetation:

The designer should identify and document clearances between vegetation and any overhead, ungrounded supply conductors, taking into consideration transmission line voltage, the effects of ambient temperature on conductor sag under maximum design loading, and the effects of wind velocities on conductor sway. Specifically, the designer should establish clearances to be achieved at the time of vegetation management work and should also establish and maintain a set of clearances to prevent flashover between vegetation and overhead ungrounded supply conductors. As a mimimum, these clearances should apply to all transmission lines operated at 200 kV phase-to-phase and above and to any lower voltage lines designated as critical (refer to NERC FAC 003).

The designer should determine and document appropriate clearance distances to be achieved at the time of transmission vegetation management work based upon local conditions and the expected time frame in which the Transmission Owner plans to return for future vegetation management work. Local conditions may include, but are not limited to: operating voltage, appropriate vegetation management techniques, fire risk, reasonably anticipated tree and conductor movement, species types and growth rates, species failure characteristics, local climate and rainfall patterns, line terrain and elevation, location of the vegetation within the span, and worker approach distance requirements.

The designer should determine and document specific radial clearances to be maintained between vegetation and conductors under all rated electrical operating conditions. These minimum clearance distances are necessary to prevent flashover between vegetation and conductors and will vary due to such factors as altitude and operating voltage. These specific minimum clearance distances should be no less than those set forth in the Institute of Electrical and Electronics Engineers (IEEE) Standard 516-2003 (Guide for Maintenance Methods on Energized Power Lines) and as specified in its Section 4.2.2.3, Minimum Air Insulation Distances without Tools in the Air Gap. Where transmission system transient overvoltage factors are not known, clearances shall be derived from Table 5, IEEE 516-2003, phase-to-ground distances, with appropriate altitude correction factors applied. Where transmission system transient overvoltage factors are known, clearances shall be derived from Table 7, IEEE 5162003, phase-to-phase voltages, with appropriate altitude correction factors applied. Table 5-2 contains radial clearances determined from Table 5, IEEE 516-2003, where transmission system transient overvoltage factors are not known.

FIGURE 5-2: RADIAL CLEARANCE REQUIREMENT TO VEGETATION
where:

$$
\begin{aligned}
& \dot{\phi}=\text { conductor swing out angle in degrees under all rated operating } \\
& \text { conditions } \\
& \mathrm{S}_{\mathrm{f}}=\text { conductor final sag at all rated operating conditions } \\
& \mathrm{X}_{\mathrm{v}}=\text { radial clearance (include altitude correction if necessary) } \\
& \mathrm{C}_{\mathrm{i}}=\text { insulator string length }\left(\ell_{\mathrm{i}}=0\right. \text { for post insulators or restrained } \\
& \mathrm{y}_{\mathrm{v}}=\text { suspension insulators). } \\
& \delta=\text { horizontal clearance at the time of vegetation management work } \\
& \delta \text { structure deflection at all rated operating conditions }
\end{aligned}
$$

TABLE 5-2
RADIAL OPERATING CLEARANCES (in feet) FROM IEEE 516 FOR USE IN DETERMINING CLEARANCES TO VEGETATION FROM CONDUCTORS (NERC Standard FAC-003.1 Transmission Vegetation Management Program, IEEE 516, Guideline For Maintenance Methods Of Energized Power Lines)

Bulletin 1724E-200
Page 5-6
5.2.3 Clearances to Grain Bins: The NESC has defined clearances from grain bins based on grain bins that are loaded by permanent or by portable augers, conveyers, or elevator systems.

In NESC Figure 234-4(a), the horizontal clearance envelope for permanent loading equipment is graphically displayed and shown Figure 5-2.
$\mathrm{P}=$ probe clearance, item 7, Table 4-2
$\mathrm{H}=$ horizontal clearance, item 7, Table 5-I
$\mathrm{T}=$ transition clearance
$\mathrm{V}_{1}=$ vertical clearance, item 2\&3,
Table 4-2
$\mathrm{V}_{2}=$ vertical clearance, Table 4-I

FIGURE 5-3: CLEARANCE TO
GRAIN BINS

NESC FIGURE 234-4a
From IEEE/ANSI C2-2007, National Electrical Safety Code, Copyright 2006. All rights reserved.
Because the vertical distance from the probe in Table 4-2, item 7.0, is greater than the horizontal distance, (see Table 5-1, item 7.0), the user may want to simplify design and use this distance as the horizontal clearance distance as shown below:

FIGURE 5-4: HORIZONTAL
CLEARANCE TO GRAIN BINS, CONDUCTORS AT REST $\mathrm{P}=$ clearance from item 7, Table 4-2

FIGURE 5-5: HORIZONTAL CLEARANCE TO GRAIN BINS, CONDUCTORS DISPLACED BY 6 PSF WIND

The clearance envelope for portable loading equipment from NESC Figure 234(b), is shown in Figure 5-6.

$V=H e i g h t ~ o f ~ h i g h e s t ~ f i l l i n g ~ o r ~ p r o b i n g ~ p o r t ~ o n ~ g r a i n ~ b i n ~$
$H=V-18^{\prime}$

FIGURE 5-6: NESC CLEARANCE TO GRAIN BINS WITH PORTABLE LOADING EQUIPMENT
From IEEE/ANSI C2-2007, National Electrical Safety Code, Copyright 2006. All rights reserved.
In order to simplify the clearance envelope, the horizontal clearances in category 8 of Table 5-1 is shown as ' H ' in the drawing below:

FIGURE 5-7: SIMPLIFIED RECOMMENDATIONS FOR CLEARANCES TO GRAIN BINS WITH PORTABLE LOADING EQUIPMENT
5.2.4 Altitude Greater Than $\mathbf{3 3 0 0}$ Feet: If the altitude of the transmission line or portion thereof is greater than 3300 feet, an additional clearance as indicated in Table 5-1 and 5-2 has to be added to the base clearance given.
5.2.5 Total Horizontal Clearance to Point of Insulator Suspension to Object: As can be seen from Figure 5-1, the total horizontal clearance (y) is:

$$
y=\left(\ell_{i}+S_{f}\right) \sin \phi+x+\delta
$$

Symbols are defined in Section 5.2.1 and figure 5-1. The factor " δ " indicates that structure deflection should be taken into account.

For the sake of simplicity when determining horizontal clearances, the insulator string should be assumed to have the same swing angle as the conductor. This assumption should be made only in this chapter as its use in calculations elsewhere may not be appropriate.

The conductor swing angle (ϕ) under wind can be determined from the formula.

$$
\phi=\tan ^{-1}\left(\frac{\left(d_{c}\right)(F)}{12 w_{c}}\right)
$$

where:

$$
\begin{aligned}
d_{c} & =\text { conductor diameter in inches } \\
w_{c} & =\text { weight of conductor in lbs./ft. } \\
F & =\text { wind force; }
\end{aligned}
$$

The total horizontal distance (y) at a particular point in the span depends upon the conductor sag at that point. The value of (y) for a structure adjacent to the maximum sag point will be greater than the value of (v) for a structure placed elsewhere along the span. See Figure 5-7.

$x=$ clearance from wind-displaced conductor, $y=$ total horizontal clearance from conductor at rest
5.2.6 Examples of Horizontal Clearance Calculations: The following examples demonstrate the derivation of the horizontal clearance in Table 5-1 of this bulletin.

To determine the horizontal clearance of a 115 kV line to a building (category 2.0 of Table 5-1), the clearance is based on NESC Table 234-1 and NESC Rule 234.

```
At rest:
    NESC Horizontal Clear. = NESC Basic Clearance(Table 234-1)+.4(kV LeG - 22)/12
    = 7.5 feet +.4(69.7-22)/12 feet
    = 7.5 feet + 1.59 feet
    NESC Horizontal Clear. = 9.09 feet
    Recommended Clearance = NESC Horizontal Clearance + Adder
    =9.09 feet + 1.5 feet
    y = 10.59 feet (10.60 feet in Table 5-1)
Conductors displaced by 6 psf wind:
    NESC Horizontal Clear. = NESC Basic Clearance (Table 234-1)+.4(kV L-G - 22)/12
    =4.5 feet +.4(69.7-22)/12 feet
    = 4.5 feet +1.59 feet
    NESC Horizontal Clear. = 6.09 feet
    Recommended Clearance = NESC Horizontal Clearance + Adder
    = 6.09 feet + }1.5\mathrm{ feet
    x = 7.59 feet (7.6 feet in Table 5-1)
```

5.3 Right-of-Way (ROW) Width: For transmission lines, a right-of-way provides an environment allows the line to be operated and maintained safely and reliably. Determination of the right-of-way width is a task that requires the consideration of a variety of judgmental, technical, and economic factors.

Typical right-of-way widths (predominantly H -frames) that have been used by agency borrowers in the past are shown in Table 5-2. In many cases a range of widths is provided. The actual width used will depend upon the particulars of the line design.

TABLE 5-3
TYPICAL RIGHT-OF-WAY WIDTHS

ROW Width, ft.	Nominal Line-to-Line Voltage in kV				
	69	115	138	161	230
	$75-100$	100	$100-150$	$100-150$	$125-200$

5.4 Calculation of Right-of-Way Width for a Single Line of Structures on a Right-of-Way: Right-of-way widths can be calculated using the method described below. The calculated values for right-of-way widths are directly related to the particular parameters of the line design. This method provides sufficient width to meet clearance requirements to buildings of undetermined height or vegetation located directly on the edge of the right-of-way. See Figures 5-8 and 5-9.

FIGURE 5-9: ROW WIDTH FOR SINGLE LINE OF STRUCTURES

$$
W=A+2\left(\ell_{i}+S_{f}\right) \sin \phi+2 \delta+2 x
$$

where:
$W=$ total right-of-way width required
$A=$ separation between points of suspension of insulator strings for outer two phases
$x=$ clearance required per Table 5-I and appropriate clearance derived from Table 5-2 of this bulletin (include altitude correction if necessary)
$y=$ clearance required per Section 5.2.1 and Table 5-1 and appropriate clearance derived from Section 5.2.2. and Table 5-2 of this bulletin (include altitude correction if necessary)
Other symbols are as previously defined. In some instances, clearance "x" may control. In other instances, clearance " y " may control.

There are two ways of choosing the length (and thus the sag) on which the right-of-way width is based. One is to use a width based on the maximum span length in the line. The other way is to base the width on a relatively long span, (the ruling span, for instance), but not the longest span. For those spans that exceed this base span, additional width is added as appropriate.
5.5 Right-of-Way Width for a Line Directly Next to a Road: The right-of-way width for a line next to a road can be calculated based on the two previous sections with one exception. No ROW is needed on the road side of the line as long as the appropriate clearances to existing or possible future structures on the road side of the line are met.

If a line is to be placed next to a roadway, consideration should be given to the possibility that the road may be widened. If the line is on the road right-of-way, the borrower would generally be expected to pay for moving the line. If the right-of-way is on private land, the highway
department should pay. Considerations involved in placing a line on a road right-of-way should also include evaluation of local ordinances and requirements.

5.6 Right-of-Way Width for Two or More Lines of Structures on a Single Right-of-Way:

 To determine the right-of-way width when the right ROW contains two parallel lines, start by calculating the distance from the outside phases of the lines to the ROW edge (see Section 5.4). The distance between the two lines is governed by the two criteria provided in section 5.6.1. If one of the lines involved is an extra high voltage (EHV) line (345 kV and above), the NESC should be referred to for additional applicable clearance rules not covered in this bulletin.5.6.1 Separation Between Lines as Dictated by Minimum Clearance Between Conductors

Carried on Different Supports: The horizontal clearance between a phase conductor of one line to a phase conductor of another line shall meet the larger of C_{1}, or C_{2} below, under the following conditions: (a) both phase conductors displaced by a 6 psf wind at $60^{\circ} \mathrm{F}$, final sag; (b) if insulators are free to swing, one should be assumed to be displaced by a $6 \mathrm{lbs} / \mathrm{sq}$. ft. wind while the other should be assumed to be unaffected by the wind (see Figure 5-10). The assumed wind direction should be that which results in the greatest separation requirement. It should be noted that in the Equations $5-5$, and $5-6$, the ' $\delta_{1}-\delta_{2}$ ' term, (the differential structure deflection between the two lines of structures involved), is to be taken into account. An additional 1.5 feet have been added to the NESC clearance to obtain design clearances ' C_{1} 'and ' C_{2} '. Note Equation 5-6 has been revised from previous versions due to the voltage adder change in the 2007 NESC edition.

$$
\begin{align*}
& C_{1}=6.5+\left(\delta_{1}-\delta_{2}\right)(\text { NESC Rule } 233 \mathrm{~B} 1) \\
& C_{2}=6.5+\frac{.4}{12}\left[\left(k V_{L G 1}+k V_{L G 2}\right)-22\right]+\left(\delta_{1}-\delta_{2}\right) \quad \text { (NESC Rule 233B1) }
\end{align*}
$$

where:

$$
\begin{aligned}
C_{l} C_{2} & =\text { clearance requirements between conductors on } \\
k V_{L G_{1}} & =\text { different lines in feet (largest value governs) } \\
k V_{L G_{2}} & =\text { maximum line-to-ground voltage in } \mathrm{kV} \text { of line } 1 \\
\delta_{1} & =\text { deflection of the upwind voltage in } \mathrm{kV} \text { of line } 2 \\
\delta_{2} & =\text { deflection of the downwind structure in feet }
\end{aligned}
$$

FIGURE 5-10: CLEARANCE BETWEEN CONDUCTORS OF ONE LINE TO CONDUCTOR OF ANOTHER LINE

Bulletin 1724E-200
Page 5-12

5.6.2 Separation Between Lines as Dictated by Minimum Clearance of Conductors From

One Line to the Supporting Structure of Another: The horizontal clearance of a phase conductor of one line to the supporting structure of another when the conductor and insulator are displaced by a 6 psf wind at $60^{\circ} \mathrm{F}$ final sag should meet Equation 5-7.

$$
C_{3}=6^{\prime}+\frac{.4}{12}\left(k V_{L G}-22\right)+\left(\delta_{1}-\delta_{2}\right)
$$

where:

$$
k V_{L G}=\text { the maximum line-to-ground voltage in } \mathrm{kV}
$$

$C_{3}=$ the clearance of conductors of one line to structure of another in feet

Other symbols are defined in Figure 5-1.
Additional 1.5 feet have been added to the NESC clearance and included in equation 5-7 to obtain the design clearance ' C_{3} '.

FIGURE 5-11: CLEARANCE BETWEEN CONDUCTORS OF ONE LINE AND STRUCTURE OF ANOTHER

The separation between lines will depend upon the spans and sags of the lines as well as how structures of one line match up with structures of another. In order to avoid the unreasonable task of determining separation of structures span-by-span, a standard separation value should be used, based on a worst case analysis. Thus if structures of one line do not always line up with those of the other, the separation determined in section 5.6 .2 should be based on the assumption that the structure of one line is located next to the mid-span point of the line that has the most sag.
5.6.3 Other Factors: Galloping should be taken into account in determining line separation. In fact, it may be the determining factor in line separation. See Chapter 6 for a discussion of galloping.

Standard phase spacing should also be taken into account. For example, if two lines of the same voltage using the same type structures and phase conductors are on a single ROW, a logical separation of the two closest phases of the two lines should be at least the standard phase separation of the structure.
5.6.4 Altitude Greater than $\mathbf{3 3 0 0}$ Feet: If the altitude at which the lines included in the design are installed greater than 3300 feet, NESC Section 23 rules provide additional separation requirements.

NESC MINIMUM CLEARANCE PRACTICES BY OTHERS

The information in this section provides a summary of the standard practices used in the industry. If required other utility standards can be provided.

Clearances-from Buildings, Bridges, and Other Installations (NESC 234)

A. Scope

This Standard provides the minimum clearances of wires, conductors, cables and equipment from buildings, bridges, swimming pools, and other installations as required by the National Electric Safety Code (NESC) Rule 234. These clearances apply to all PacifiCorp transmission facilities, with the exception of facilities in the states of California and Washington.

B. General

The vertical and horizontal clearances specified in this standard apply under whichever conditions of conductor temperature and loading that produce the minimum clearance (refer also to TC 011, C2).

1. Horizontal Clearances (with Wind Displacement)

For horizontal clearances, conductors or cables shall be considered to be displaced from rest toward the installation by a 6 pound per square foot (psf) wind at a 60 degree F (15 degrees C) final sag. The displacement of a conductor or cable shall include the deflection of suspension insulators and structures.
2. Transition between Horizontal and Vertical Clearances.

The horizontal clearance governs above the level of the roof or top of an installation to the point where the diagonal equals the vertical clearance requirement. Similarly, the horizontal clearance governs above or below projections from installations to the point where the diagonal equals the vertical clearance requirement. From this point, the transitional clearance shall equal the vertical clearance, as shown in Figure 1.

TC 151

Figure 1 - Clearance Diagram for Buildings and Other Structures

C. Minimum Clearances of Conductors from Other Supporting Structures

Wires, conductors or cables passing near supporting structures of another line, lighting, or traffic signal circuits without being attached, shall have the minimum horizontal and vertical clearances summarized in Table 1.
The horizontal clearances shall be applied with the conductor having a wind displacement indicated in paragraph B.2.

PACIFICORP PACIFIC POWER UTAH POWER	
TC 151 Page 2 of 26	17 Oct 95

Clearances from Buildings, Bridges, and Other Installations (NESC 234)
Transmission Construction Standard

[^0]Table 1 - Minimum Clearances of Conductors from Other Supporting Structures

	Clearances (Feet)	
Conductor or Cable	Horizontal	Vertical
Guys, Messengers, Neutrals	3.0	2.0
Cables - 0 to 300 V	3.0	2.0
Cables - 301 to 750 V	3.5	4.5
Cables - Above 750 V	3.5	4.5
Open Supply Lines - 0 to 750 V	3.5	4.5
Open Supply Lines - 751 V to 22 kV	4.5	4.5

The wind displacement does not need to be considered for communication conductors.

D. Minimum Clearances of Conductors and Rigid Live Parts Adjacent But Not Attached to Buildings

The minimum vertical and horizontal clearances of conductors not attached to buildings are summarized in Clearance Tables 3a-3d. Clearances with six pounds per square foot wind are summarized in Clearance Tables 4a-4d.

[^1]
TC 151

E. Minimum Clearances of Conductors and Rigid Live Parts From Bridges

The minimum vertical and horizontal clearances of conductors or rigid live parts located adjacent to or within a bridge structure, are summarized in Clearance Tables 5a-5d and $6 a-6 \mathrm{~d}$. No wire, conductor, cable or live part shall be closer to a bridge structure.

F. Minimum Clearances from Swimming Areas

Where wires, conductors, or cables cross over a swimming pool or the surrounding area, the clearances in any direction shall not be less than Clearance Tables 7a-7d. These horizontal clearances shall also be met under wind conditions. The clearances are illustrated in Figure 3.
In general, avoid placing lines near swimming areas whenever possible.
Swimming areas where rescue poles are not used or waterways subject to water skiing, shall conform to TC 111 (NESC 232).

Figure 2 - Swimming Pool Clearances

Transmission Construction Standard

 and Other Installations (NESC 234)

TC 151

G. Clearances of Conductors and Rigid Live Parts from Grain Bins

Refer to NESC 234F for the special requirement which apply to grain bins.

H. Additional Clearances for Voltages Exceeding $\mathbf{2 2}$ kV for Conductors and Unguarded Rigid Live Parts

For voltages between 22 and 470 kV , the clearances specified in paragraphs C, D, F, G, H, and J shall be increased at the rate of 0.4 inch per kV in excess of 22 kV .
For voltages exceeding 50 kV , the additional clearance specified above shall be increased 3 percent for each 1000 feet in excess of 3300 feet above mean sea level.

I. Clearances of Conductors to Rail Cars

Where overhead wires, conductors, or cables run along railroad tracks, the clearance in any direction shall be not less than that shown in Figure 4. The Values of V and H are as defined below:
$V=$ Vertical clearance from the wire, conductor, or cable above the top of the rail as specified in TC 111 (Rule 232) minus 20 feet, the assumed height of the rail car
$H=$ Horizontal clearance from the wire, conductor, or cable to the nearest rail, which is equal to the required vertical clearance above the rail minus 15 feet.
Refer to NESC 234 I for rail cars smaller than standard freight cars.

Figure 3 - Rail Car Clearances

PACIFICORP
PACIFIC POWER UTAH POWER

Transmission Construction Standard

[^2]
Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts
 Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.

		mmunication			Supply				Open	Supply Cond	uctors			
		sengers, surge wires: grounded tural conductors ing Rule 230E1; cables meeting Rule 230C1 (feet)	Supply cables cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	Unguarded rigid live parts, 0 to 750 V noninsulated communication conductors (feet)	$\begin{gathered} 750 \mathrm{~V} \\ \text { meeting } \\ \text { Rulues } 230 \mathrm{C2} 2 \\ \text { or } 230 \mathrm{C3} \text { o } \\ \text { open supply } \\ \text { conductors } 0 \\ \text { to } 750 \mathrm{~V} \\ \text { (feet) } \end{gathered}$	over 750 V to 22 kV lo ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 KV to phase) (feel)	over 27 kV to 42 kV to ground (69 KV to phase) (feel)	$\begin{gathered} \text { over } \\ 42 \mathrm{kV} \text { to } \\ 70 \mathrm{kV} \text { to } \\ \text { ground } \\ \text { (115 kV } \\ \text { to phase) } \\ \text { (feet) } \end{gathered}$	over 70 kV to 84 kV to ground (138 kV to phase) (feel)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 KV to phase) (feet)	over 140 kV to 210 kV to ground (345 KV to phase) (feet)	Over 210 kV to 318 kV to ground (500 kV) to phase) (feel)
1. Build														
a. Hor	zontal													
	To walls, projection, and guarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (z .7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.6) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.0) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (11.4) \end{aligned}$	$\begin{gathered} 18.0 \\ (13.8) \end{gathered}$	$\begin{aligned} & 22.0 \\ & (77.4) \end{aligned}$
(2)	To unguarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.6) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.4) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.8) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.4) \end{gathered}$
	To balconies and areas readily accessible to pedestrians.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 9.0 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.6) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11,4) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.8) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.4) \end{gathered}$
b. Ver	cical													
	Over or under roofs or projections not readily accessible to pedestrians.	$\begin{gathered} 7,0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 14.0 \\ & (10.0) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (14.1) \end{aligned}$	$\begin{gathered} 19.0 \\ (14.6) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (15.0) \end{aligned}$	$\begin{gathered} 21.0 \\ (16.4) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.8) \end{gathered}$	$\begin{gathered} 27.0 \\ (22.4) \end{gathered}$
	Over or under balconies and roofs readily accessible to pedestrians.	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 18,0 \\ (13.5) \end{gathered}$	$\begin{array}{r} 18.0 \\ (13.7) \end{array}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (15.1) \end{aligned}$	$\begin{gathered} 20,0 \\ (15,6) \end{gathered}$	$\begin{aligned} & 21,0 \\ & (16,0) \end{aligned}$	$\begin{gathered} 22.0 \\ (17,4) \end{gathered}$	$\begin{gathered} 24.0 \\ (19,8) \end{gathered}$	$\begin{gathered} 23.0 \\ (23,4) \end{gathered}$
(3)	Over roofs accessible to vehicles but not subject to truck tratfic.	$\begin{aligned} & 15.0 \\ & (10.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.7) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (14.2) \end{aligned}$	$\begin{gathered} 20.0 \\ (15.1) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.6) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.0) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.4) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.8) \end{gathered}$	$\begin{gathered} 28.0 \\ (23.4) \end{gathered}$
(4)	Over roots accessible to truck traffic.	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 20.0 \\ (16.0) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (16.0) \end{aligned}$	$\begin{gathered} 21.0 \\ (16.5) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.5) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.7) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.2) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.1) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.6) \end{gathered}$	$\begin{aligned} & 26.0 \\ & (21.0) \end{aligned}$	$\begin{gathered} 27.0 \\ (22.4) \end{gathered}$	$\begin{aligned} & 29.0 \\ & (24.8) \end{aligned}$	$\begin{gathered} 33,0 \\ (28.4) \end{gathered}$

a. Horizonta!	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.6) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.4) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.8) \end{gathered}$	$\begin{array}{r} 22.0 \\ (17, A) \end{array}$
b. Vertical over or under	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{array}{r} 8.0 \\ (3,5) \end{array}$	$\begin{aligned} & 10.0 \\ & (5,5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (6.0) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (8.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.7) \end{aligned}$	$\begin{aligned} & 14,0 \\ & (9.6) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (11.9) \end{aligned}$	$\begin{gathered} 19.0 \\ (14.3) \end{gathered}$	$\begin{aligned} & 22.0 \\ & (17.9) \end{aligned}$
3. Other supporting structures, wires, conductors. or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second Ene, without being attached thereto.													
a. Horizontal	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9,0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (\overline{0}, 1) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & \langle 8.0\rangle \end{aligned}$	$\begin{gathered} 15,0 \\ (10.3) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.9) \end{gathered}$			
b. Vertical	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 11,0 \\ & (6.2) \end{aligned}$	$\begin{gathered} 11.0 \\ (6.6) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$			

Transmission Construction Standard

Stds Team Leader (C. L. Wright): $\{0.0$
Standards Services (M. Brimhall): $\quad=12-x_{1}, S_{2}$

Clearances

 from Buildings, Bridges and Other Installations (NESC 234)PACIFIC POWER UTAH POWER

17 Oct 95

Table 2 - PacifiCorp Standard Practice (NESC Table 234-1)

Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts
 Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.

Transmission Construction Standard

Stds Team Leader (C. L. Wright): Ditur

Clearances

from Buildings, Bridges and Other Instllations (NESC 234)

 Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.

		munication			Supply				Open	Supply Cond	uctors			
	earances of	sengers; surge wires; grounded tural conductors ting Rule 230E1; cables meeting Rule 230C1 (feet)	Supply cables cables of 0 to750 V meeting Rules 230 C 2 or 230 C 3 (feet)	Unguarded rigid live parts. 0 to 750 V ; noninsulated communication conductors (feet)	meeting Rules 230 C 2 or 230 C 3 open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 27 kV to 42 kV to ground (69 kV to phase) (feet)	42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to (230 kV to phase) (feet)	140 kV t 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Buildi														
a. Horiz	izontal													
	To walls, projection, and guarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.9) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (12.1) \end{aligned}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.1) \end{gathered}$
(2)	To unguarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & \text { (8.2) } \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.9) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.1) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.1) \end{gathered}$
(3)	To balconies and areas readily accessible to pedestrians.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.9) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.1) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.1) \end{gathered}$
b. Vertic														
(1)	Over or under roofs or projections not readily accessible to pedestrians.	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 14.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.1) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.9) \end{gathered}$	$\begin{gathered} 29.0 \\ (24.1) \end{gathered}$
(2)	Over or under balconies and roofs readily accessible to pedestrians.	$\begin{aligned} & 15.0 \\ & (10.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.7) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.4) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.9) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.5) \end{gathered}$	$\begin{aligned} & 23.0 \\ & (18.1) \end{aligned}$	$\begin{gathered} 25.0 \\ (20.9) \end{gathered}$	$\begin{gathered} 30.0 \\ (25.1) \end{gathered}$
(3)	Over roofs accessible to vehicles but not subject to truck traffic.	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (11.0) \end{aligned}$	$\begin{aligned} & 15.0 \\ & (11.0) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.7) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.4) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (15.9) \end{aligned}$	$\begin{gathered} 21.0 \\ (16.5) \end{gathered}$	$\begin{aligned} & 23.0 \\ & (18.1) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (20.9) \end{aligned}$	$\begin{gathered} 30.0 \\ (25.1) \end{gathered}$
(4)	Over roofs accessible to truck traffic.	$\begin{gathered} 20.0 \\ (15.5) \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ (16.0) \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ (16.0) \\ \hline \end{gathered}$	$\begin{gathered} 21.0 \\ (16.5) \\ \hline \end{gathered}$	$\begin{array}{r} 23.0 \\ (18.5) \\ \hline \end{array}$	$\begin{gathered} 23.0 \\ (18.7) \\ \hline \end{gathered}$	$\begin{gathered} 24.0 \\ (19.2) \\ \hline \end{gathered}$	$\begin{array}{r} 25.0 \\ (20.4) \\ \hline \end{array}$	$\begin{array}{r} 25.0 \\ (20.9) \\ \hline \end{array}$	$\begin{array}{r} 26.0 \\ (21.5) \\ \hline \end{array}$	$\begin{array}{r} 28.0 \\ (23.1) \\ \hline \end{array}$	$\begin{array}{r} 30.0 \\ (25.9) \\ \hline \end{array}$	$\begin{gathered} 35.0 \\ (30.1) \\ \hline \end{gathered}$

a. Horizontal	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{array}{r} 12.0 \\ (7.7) \end{array}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.9) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.1) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.1) \end{gathered}$
b. Vertical over or under	$\begin{gathered} 7.0 \\ (3.0) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \\ \hline \end{gathered}$	$\begin{array}{r} 10.0 \\ (5.5) \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & (6.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ (8.0) \\ \hline \end{array}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{array}{r} 13.0 \\ (8.7) \\ \hline \end{array}$	$\begin{aligned} & 14.0 \\ & (9.9) \\ & \hline \end{aligned}$	$\begin{gathered} 15.0 \\ (10.4) \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.6) \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ (15.4) \\ \hline \end{gathered}$	$\begin{gathered} 24.0 \\ (19.6) \\ \hline \end{gathered}$
3. Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.													
a. Horizontal	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.8) \end{aligned}$	$\begin{gathered} 11.0 \\ (6.3) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.6) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (15.5) \end{aligned}$						
b. Vertical	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.3) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.0) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.8) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.0) \end{gathered}$			

Transmission Construction Standard

Stds Team Leader (C. L. Wright): \{tic\}
Standards Services (M. Brimhall): $\boldsymbol{\$ 1 0 2 4}$

Clearances

from Buildings, Bridges and Other Installations
(NESC 234)
Table 4 - PacifiCorp Standard Practice (NESC Table 234-1)
Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.

Transmission Construction Standard

Clearances

 from Buildings, Bridges and Other Instllations17 Oct 95

Table 6 －PacifiCorp Standard Practice（NESC Table 234－1） Clearances of Wires，Conductors，and Cables，and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges Clearances are with $6 \mathrm{lb} / \mathrm{sf}$ WIND．See NESC Rules $233 C 1$ and 233C2a．

Elevation range for table：	3300
Construction tolerance：	

Insulated communication conductors and cables messengers；surge protection wires；grounded guys；natural conductors meeting Rule 230E1； supply cables meeting			Supply				Ope	upply Co	uctors			
	Supply cables	Unguarded rigid		over								
	cables of 0	live parts， 0 to	Rules 230C2	750 V to	22 kV to	27 kV to	42 kV to	70 kV to	84 kV to	98 kV to	140 kV to	210 kV to
	to 750 V	750 V ；	or 230C3；	22 kV to	27 kV to	42 kV to	70 kV to	84 kV to	98 kV to	140 kV to	210 kV to	318 kV to
	meeting Rules	noninsulated	open supply	ground								
	$230 \mathrm{C} 2 \text { or }$	communication	conductors 0 to 750 V	to phase）	phase）	phase）	to phase）	to phase）	to phase）	to phase）	phase）	to phase）
				（feet）		（feet）						

完俞

1.02	1.91	0.81	0.2 L	0.41	0.4	0.01	0.6

우웅

우웅웅웅

우우ㅇㅜㅜㅜㅜㅇ

砣需

우ㅇㅜㅜ우우웅

の莩品

の鬲 \circ 票

喓需品票

かe

の零 \circ 茓
 support，traffic signal support，or a supporting
structure of a second line，without being attached thereto
a．Horizontal
b．Vertical

Transmission Construction Standard

Clearances from Buildings，Bridges and Other Instllations
 （NESC 234）

		우웅우울 우우우울 우우우웅 우웅웅울 웅ㅇㅇㅇㅇㅇㅇ웅 우웅 웅 우우ㅇㅜㅜ웅 우추우웅 の哯 －© 우우웅 and television － ，	우욷 우훌 우우우우우울 웅후웋웅 우우우우웅 － の侖品菏 か． ゅi．
Transmission Construction Standard	Clearances from Buildings，Bridges and Other Installations （NESC 234）	／W／PACIFICORP PACIFIC POWER UTAH POWER	
Stds Team Leader（C．L．Wright）：（U．W） 		17 Oct 95	TC 151 Page 10 of 26

Table 8 - PacifiCorp Standard Practice (NESC Table 234-1) Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges Clearances are with $6 \mathrm{~b} / \mathrm{bsf}$ WIND. See NESC Rules 233 C 1 and 233 C 2 a .

Clearances of	communication	Supply cables cables of 0 to 750 V meeting Rules 230C2 or 230 C 3 (feet)	Unguarded rigic live parts, 0 to 750 V ; noninsulated communication conductors (feet)	Supply cables over 750 V meeting Rules 230C2 or 230C3; open supply conductors 0 to 750 V (feet)	Open Supply Conductors								
	sengers; surge wires; grounded wural conductors ing Rule 230E1; cables meeting Rule 230C1 (feet)				over 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to (46 kV to phase) (feet)	over 27 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	70 kV to 84 kV to ground (138 kV to phase) ((eet)	84 kV to 98 kV to ground (161 kV to phase) (feet)	98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Buildings													
a. Horizontal													
(1). To walls, projection, and guarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.5) \end{aligned}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (6.3) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.0) \end{gathered}$
(2) To unguarded windows.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (8.9) \end{aligned}$	$\begin{gathered} 14.0 \\ (10.7) \end{gathered}$	$\begin{gathered} 17.0 \\ (13.7) \end{gathered}$	$\underset{(17.0)}{22.0}$
(3) To balconies and areas readily accessible to pedestrians.	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.0) \end{gathered}$
b. Vertical													
(1) Over or under roofs or projections not readily accessible to pedestrians.	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 14.0 \\ & (10.0) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.5) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.1) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.7) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.5) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.5) \end{gathered}$	$\begin{gathered} 30.0 \\ (25.0) \end{gathered}$
(2) Over or under balconies and roofs readily accessible to pedestrians.	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.7) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.1) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.7) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.5) \end{gathered}$	$\begin{gathered} 26.0 \\ (21.5) \end{gathered}$	$\begin{gathered} 31.0 \\ (26.0) \end{gathered}$
(3) Over roots accessible to vehicles but not subject to truck traffic.	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (11.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{aligned} & 18.0 \\ & (13.5) \end{aligned}$	$\begin{gathered} 18.0 \\ (13.7) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.1) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.7) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.5) \end{gathered}$	$\begin{aligned} & 26.0 \\ & (21.5) \end{aligned}$	$\begin{gathered} 31.0 \\ (26.0) \end{gathered}$
(4) Over roofs accessible to truck traffic.	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 20.0 \\ (16.0) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (16.0) \end{aligned}$	$\begin{gathered} 21.0 \\ (16.5) \\ \hline \end{gathered}$	$\begin{aligned} & 23.0 \\ & (18.5) \end{aligned}$	$\begin{gathered} 23.0 \\ (18.5) \\ \hline \end{gathered}$	$\begin{array}{r} 24.0 \\ (19.2) \\ \hline \end{array}$	$\begin{gathered} 25.0 \\ (20.5) \end{gathered}$	$\begin{gathered} 26.0 \\ (21.1) \end{gathered}$	$\begin{gathered} 26.0 \\ (21.7) \end{gathered}$	$\begin{gathered} 28.0 \\ (23.5) \end{gathered}$	$\begin{gathered} 31.0 \\ (26.5) \end{gathered}$	$\begin{gathered} 36.0 \\ (31.0) \end{gathered}$
2. Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.													
a. Horizontal	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & \text { (5.2) } \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.0) \end{gathered}$
b. Vertical over or under	$\begin{gathered} 7.0 \\ (3.0) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \\ \hline \end{gathered}$	$\begin{array}{r} 10.0 \\ (5.5) \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ (6.0) \\ \hline \end{array}$	$\begin{aligned} & 12.0 \\ & (8.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.7) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.0) \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ (10.6) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.2) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (13.0) \end{gathered}$	$\begin{gathered} 20.0 \\ (16.0) \\ \hline \end{gathered}$	$\begin{gathered} 25.0 \\ (20.5) \\ \hline \end{gathered}$
3. Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.													
a. Horizontal	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.5) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 13.0 \\ & \text { (8.3) } \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.8) \end{gathered}$
b. Vertical	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{array}{r} 10.0 \\ (5.5) \end{array}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & \text { (5.5) } \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.3) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.3) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.8) \end{gathered}$			

Transmission Construction Standard

Stds Team Leader (C. L. Wright): ©T
Standards Services (M. Brimhall): qit+ur

Clearances
from Buildings, Bridges and Other Instllations (NESC 234)

Table 10 - PacifiCorp Standard Practice (NESC Table 234-2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with NO WIND. See NESC Rules 234D1a and 234H4. $\begin{array}{lll}\text { Elevation range for table: } & 3300 & 6300 \\ \text { Construction tolerance: } & & 4 \text { feet }\end{array}$

		Supply				Oper	upply Con	uctors			
	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	meeting Rules 230C2 or 230 C 3 ; open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Clearance over brid											
a Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.8) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.8) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.3) \end{gathered}$
b. Not attached	$\begin{gathered} 14.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.8) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.8) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.3) \end{gathered}$	$\begin{gathered} 28.0 \\ (23.3) \end{gathered}$
2. Clearance beside, structure.											
a. Readily accessible bridge, including w attachments.											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.8) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.8) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.3) \end{gathered}$
(2) Not Attached	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.8) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.3) \end{gathered}$	$\begin{gathered} 16.0 \\ (11.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.3) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.3) \end{gathered}$
b. Ordinarily inacces bridges (other tha masonry) and from											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.8) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.8) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.3) \end{gathered}$
(2) Not Attached	$\begin{gathered} 8.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.3) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.3) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.3) \end{gathered}$

Transmission

Construction Standard

Stds Team Leader (C. L. Wright): (itu
Standards Services (M. Brimhall): $4+7 / 2$

Clearances from Buildings, Bridges and Other Installations
(NESC 234)
Table 11 - PacifiCorp Standard Practice (NESC Table 234-2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with NO WIND. See NESC Rules 234D1a and 234H4.

	Unguarded rigid live	Supply				Open	upply Cond	uctors			
	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	meeting Rules 230C2 or 230C3; open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Clearance over brid											
a Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.4) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.9) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.1) \end{gathered}$
b. Not attached	$\begin{gathered} 14.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.1) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.9) \end{gathered}$	$\begin{gathered} 29.0 \\ (24.1) \end{gathered}$
2. Clearance beside, structure.											
a. Readily accessible bridge, including w attachments.											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.4) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.9) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.1) \end{gathered}$
(2) Not Attached	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.9) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.1) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.9) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.1) \end{gathered}$
b. Ordinarily inacces bridges (other than masonry) and from											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.4) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.9) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.1) \end{gathered}$
(2) Not Attached	$\begin{gathered} 8.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.4) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.1) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.9) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.1) \end{gathered}$

Transmission

Construction Standard

Table 12 - PacifiCorp Standard Practice (NESC Table 234-2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with NO WIND. See NESC Rules 234D1a and 234H4.
$\begin{array}{lll}\text { Elevation range for table: } & 9300 & 12300 \\ \text { Construction tolerance: } & & 4 \text { feet }\end{array}$

	Unguarded rigid live	Supply	Open Supply Conductors								
	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	meeting Rules 230C2 or 230C3; open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Clearance over bridges.											
a Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.7) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.0) \end{gathered}$
b. Not attached	$\begin{gathered} 14.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.5) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.1) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.7) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.5) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.5) \end{gathered}$	$\begin{gathered} 30.0 \\ (25.0) \end{gathered}$
2. Clearance beside, under or within bridge structure.											
a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.7) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.0) \end{gathered}$
(2) Not Attached	$\begin{aligned} & 9.0 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.7) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.0) \end{gathered}$
b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.5) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.7) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.5) \end{gathered}$	$\begin{gathered} 23.0 \\ (18.0) \end{gathered}$
(2) Not Attached	$\begin{gathered} 8.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.5) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.7) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.5) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.5) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.0) \end{gathered}$

Transmission Construction Standard

Sids Team Leader (C. L. Wright): Giz)

Clearances from Buildings, Bridges and Other Installations
(NESC 234)
Table 13 - PacifiCorp Standard Practice (NESC Table 234-2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with $6 \mathrm{lbs} / \mathrm{sf}$ WIND. See NESC Rules 234D1a and 234H4.

Elevation range for table:	Sea Level to
Construction tolerance:	
feet	

						Open	upply Cond	uctors			
	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 or 230C3 (feet)	meeting Rules 230C2 or 230 C 3 ; open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Clearance over brid											
a Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.6) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.0) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.4) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.8) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.4) \end{gathered}$
b. Not attached	$\begin{gathered} 14.0 \\ (10.0) \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.1) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.6) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.0) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.4) \\ \hline \end{gathered}$	$\begin{gathered} 23.0 \\ (18.8) \\ \hline \end{gathered}$	$\begin{gathered} 27.0 \\ (22.4) \\ \hline \end{gathered}$
2. Clearance beside, structure.											
a. Readily accessible bridge, including w attachments.	ge										
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.4) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$
(2) Not Attached	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.4) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$
b. Ordinarily inacces bridges (other than masonry) and from											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.4) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$
(2) Not Attached	$\begin{gathered} 8.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.4) \end{aligned}$	$\begin{gathered} 15.0 \\ (10.8) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.4) \end{gathered}$

Transmission Construction Standard

Stds Team Leader (C. L. Wright): $n^{1 / 2} \mathrm{tc}$)
Standards Services (M. Brimhall): ©

Clearances from Buildings, Bridges and Other Installations (NESC 234)

17 Oct 95	TC 151 Page 17 of 26

Table 14 - PacifiCorp Standard Practice (NESC Table 234-2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with $6 \mathrm{lbs} / \mathrm{sf}$ WIND. See NESC Rules 234D1a and 234H4.
$\begin{array}{lll}\text { Elevation range for table: } & 3300 & 6300 \\ \text { Construction tolerance: } & & 4 \text { feet }\end{array}$

						Open	upply Cond	uctors			
	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	750 V meeting Rules 230C2 or 230C3; open supply conductors 0 to 750 V (feet)	over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 KV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
1. Clearance over brid											
a Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.8) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (9.8) \end{aligned}$	$\begin{gathered} 17.0 \\ (12.3) \end{gathered}$	$\begin{gathered} 21.0 \\ (16.3) \end{gathered}$
b. Not attached	$\begin{gathered} 14.0 \\ (10.0) \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ (10.5) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (12.5) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (12.7) \\ \hline \end{gathered}$	$\begin{gathered} 18.0 \\ (13.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.0 \\ (14.2) \end{gathered}$	$\begin{gathered} 19.0 \\ (14.8) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \\ \hline \end{gathered}$	$\begin{gathered} 21.0 \\ (16.8) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.3) \\ \hline \end{gathered}$	$\begin{gathered} 28.0 \\ (23.3) \end{gathered}$
2. Clearance beside, structure.											
a. Readily accessible bridge, including w attachments.											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.8) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \end{gathered}$
(2) Not Attached	$\begin{gathered} 9.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.8) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \end{gathered}$
b. Ordinarily inacces bridges (other than masonry) and from											
(1) Attached	$\begin{gathered} 7.0 \\ (3.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.8) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \end{gathered}$
(2) Not Attached	$\begin{gathered} 8.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.7) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 13.0 \\ & (8.8) \end{aligned}$	$\begin{gathered} 16.0 \\ (11.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (15.3) \end{gathered}$

Transmission
Construction Standard

Stds Team Leader (C. L. Wright): (IG)
Standards Services (M. Brimhall): $\pm 9+12$

Clearances from Buildings, Bridges and Other Installations
(NESC 234)

PACIFIC POWER UTAH POWER

Table 16 - PacifiCorp Standard Practice (NESC Table 234-2)
Clearances of Wires, Conductors, and Cables From Bridges Clearances with $6 \mathrm{lbs} / \mathrm{sf}$ WIND. See NESC Rules 234D1a and 234H4.
$\begin{array}{lll}\text { Elevation range for table: } 9300 & 12300 \\ \text { Construction tolerance: } & 4 \text { feet }\end{array}$

| | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a Attached | 7.0 | 8.0 | 10.0 | 10.0 | 11.0 | 12.0 | 13.0 | 13.0 | 15.0 | 18.0 | 23.0 |
| | (3.0) | (3.5) | (5.5) | (5.7) | (6.2) | (7.5) | (8.1) | (8.7) | (10.5) | (13.5) | (18.0) |
| b. Not attached | 14.0 | 15.0 | 17.0 | 17.0 | 18.0 | 19.0 | 20.0 | 20.0 | 22.0 | 25.0 | 30.0 |
| | (10.0) | (10.5) | (12.5) | (12.7) | (13.2) | (14.5) | (15.1) | (15.7) | (17.5) | (20.5) | (25.0) |

2. Clearance beside, under or within bridge
structure.
a. Readily accessible portions of any
bridge, including wing, walls, and bridge
attachments.
3. Clearance over bridges.
$\stackrel{O}{\circ}$
$\stackrel{O-0}{\circ} \underset{\sim}{\circ}$

OOO웅	NONㅓㅇ
$\stackrel{\sim}{\mathrm{N}} \underset{\mathrm{E}}{\mathrm{E}} \stackrel{0}{\mathrm{~N}} \hat{\mathrm{E}}$	엍
Oた OF	OTGOT
Oing oin	oin oin

0 - 0 - $0^{\text {n }}$	
∞	∞

(2) Not Attached (1) Attached
(2) Not Attached
b. Ordinarily inaccessible portions of bridges (other than brick, concret
masonry) and from abutments. (1) Attached

Clearances from Buildings, Bridges and Other Installations (NESC 234)

Stds Team Leader (C. L. Wright): Cf ${ }^{\text {Y }}$
Standards Services (M. Brimhall): ©nexf?

Transmission
 Construction Standard

Table 18 - PacifiCorp Standard Practice (NESC Table 234-3)
Clearances of Wires, Conductors, and Cables Passing Over or Near Swimming Pools

Transmission Construction Standard

Stds Team Leader (C. L. Wright): CET
Standards Services (M. Brimhall): $1+1 \times 2$,

Clearances from Buildings, Bridges and Other Installations (NESC 234)

Table 20 - PacifiCorp Standard Practice (NESC Table 234-3)
Clearances of Wires, Conductors, and Cables Passing Over or Near Swimming Pools Clearances with NO WIND. See NESC Rules 234E1, 234E2. and 234H4.
$\begin{array}{lll}\text { Elevation range for table: } & 9300 & \begin{array}{l}12300 \\ \text { Construction tolerance: }\end{array} \\ 4 \text { feet }\end{array}$

		Unguarded rigid live parts, 0 to 750 V ; noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230 C 2 or 230 C 3 (feet)	Supply cables over 750 V meeting Rules 230 C 2 or 230 c 3 ; open supply conductors 0 to 750 V (feet)	Open Supply Conductors								
	com cond cable 23			over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	over 22 kV to 27 kV to ground (46 kV to phase) (feet)	over 28 kV to 42 kV to ground (69 kV to phase) (feet)	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	over 98 kV to 140 kV to ground (230 kV to phase) (feet)	over 140 kV to 210 kV to ground (345 kV to phase) (feet)	over 210 kV to 318 kV to ground (500 kV to phase) (feet)
	Clearance in any direction from the water level, edge of pool, base of diving platform, or anchor raft.	$\begin{gathered} 27.0 \\ (22.5) \end{gathered}$	$\begin{gathered} 27.0 \\ (23.0) \end{gathered}$	$\begin{gathered} 29.0 \\ (25.0) \end{gathered}$	$\begin{gathered} 30.0 \\ (25.2) \end{gathered}$	$\begin{gathered} 30.0 \\ (25.7) \end{gathered}$	$\begin{gathered} 32.0 \\ (27.0) \end{gathered}$	$\begin{gathered} 32.0 \\ (27.6) \end{gathered}$	$\begin{gathered} 33.0 \\ (28.2) \end{gathered}$	$\begin{gathered} 34.0 \\ (30.0) \end{gathered}$	$\begin{gathered} 37.0 \\ (33.0) \end{gathered}$	$\begin{gathered} 42.0 \\ (37.5) \end{gathered}$
	Clearance in any direction to the diving platform or tower.	$\begin{gathered} 19.0 \\ (14.5) \end{gathered}$	$\begin{gathered} 19.0 \\ (15.0) \end{gathered}$	$\begin{gathered} 21.0 \\ (17.0) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.2) \end{gathered}$	$\begin{gathered} 22.0 \\ (17.7) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.0) \end{gathered}$	$\begin{gathered} 24.0 \\ (19.6) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.2) \end{gathered}$	$\begin{gathered} 26.0 \\ (22.0) \end{gathered}$	$\begin{gathered} 29.0 \\ (25.0) \end{gathered}$	$\begin{gathered} 34.0 \\ (29.5) \end{gathered}$
	Vertical clearance over adjacent land.				Clearanc	hall be	quired by	Rule 232.				

Transmission Construction Standard

Northeast Utilities Overhead Transmission Line Standards

1. Scope

This standard describes the vegetation clearing along rights-of-way (ROW) of the NU operating companies in Connecticut and Massachusetts where overhead transmission lines are to be constructed. The practices described here apply to the construction requirements for all 115 kV and $345 \mathrm{kV}{ }^{1}$ electric transmission lines, and are consistent with the North American Electric Reliability Council (NERC) Vegetation Management Standard FAC-003-1 dated 2/16/2006, The New England Independent System Operator's (ISO-NE) vegetation clearing standard OP-3 dated 2/1/2005, and the National Electrical Safety Code (NESC) Rule 218 as adopted by the Connecticut Department of Public Utility Control (Regulation Sec. 16-11-134).

This standard applies to new construction clearing requirements and practices and not to on-going future vegetation maintenance of the ROW's. The initial clearance requirements outlined in this standard are intended to provide adequate clearances for a period of four (4) years at which time scheduled maintenance will be performed to reestablish or preserve the initial clearances. The maintenance of the vegetation following construction is addressed under the Northeast Utilities Specification for Rights-of-Way Vegetation Management. Low-maturing trees, which are allowed to remain after completion of vegetation clearing, are still subject to future trimming and removals, depending upon their growth and health, as well as the future needs of NU to operate, maintain, and add or replace electric facilities on the ROW.

NU operating companies typically obtain permanent easement rights for the placement of overhead transmission lines, including the right to clear vegetation within the fully defined limits of a ROW. In most locations the right to remove any tree or portion of tree outside the easemented limits of the ROW ("danger tree") that by falling could endanger the transmission line facilities is also obtained. These rights are necessary to provide for the safe and reliable operation and maintenance of any overhead transmission line that is built on a ROW.

Notwithstanding these rights, the standard practice of the NU operation companies is to minimize tree and other vegetation removal that is required for new transmission line construction by:
A. Designing new lines to keep the positions of new conductors as much as possible within any existing cleared ROW corridor, thus minimizing additional clearing
B. Remove non-compatible vegetation (trees and tall growing shrub species) within the conductor clearance zone (area directly under the conductors extending 15 feet horizontally outward from the outermost line conductors)

[^3]| Right-of-Way Vegetation Initial Clearance Standard | | | |
| :--- | :---: | :---: | :---: |
| for 115- and 345-kV Transmission Lines | | | |
| Northeast Utilities
 Approved by: DEH, PJA | Design and Application | OTRM | Rev. 1 |

Northeast Utilities Overhead Transmission Line Standards

C. Allowing low-maturing tree species such as dogwoods to remain within the side zones (area outside of the conductor clearance zone extending to the edge of the ROW clearing limits) where these low-maturing species exist
D. Re-establishing pre-existing access roads for construction vehicles to minimize the clearing of low growth within the existing corridor for access
E. Locating new line structures close to old structures and overlapping the work areas of old structures to reduce to the amount of clearing for the new structure work areas
F. Where feasible, using existing conductors to pull in new conductors, thus reducing damage to low growth vegetation along the cleared corridor
G. Engaging an arborist to determine individual "danger trees" for removal considering

1) Species
2) Soil conditions
a) including wetland vs. upland
b) susceptibility to flooding
c) depth to rock (and adaptability of the species to those conditions)
3) Health of the tree
4) Inclination of trunk
5) shape of crown

Refer to figures V-1 through V-6 for diagrams of the conductor clearance zone and side zones associated with various line structure types.
2. Clearance between Conductors and Woody Vegetation

Transmission lines within the Northeast Utilities System present a variety of woody vegetation control situations. Regulatory authorities may require "buffers" or "screening" at visually sensitive highway and local road crossings or other locations, and such locations require special attention to achieve and maintain the necessary clearances. At all other locations, standard ROW vegetation clearing practices for new line construction are as follows:
A. Within the ROW limits, as depicted on Figures A, B, and C, cut all tall-maturing tree species of any height while retaining existing compatible woody shrub species (see Appendix 1).
B. Clear-cut construction areas at structure locations and access roads as depicted on Figure C.
C. At road crossings, within side zones and other sensitive areas, as specified by ROW development and management plans, retain existing low-maturing tree species such as Flowering Dogwood (see Appendix 2) to the extent that these trees will not conflict with operation of the transmission line prior to the next scheduled vegetation maintenance.
D. At ravines, river crossings, and similar locations: retain tree species on the ROW where the conductors will be significantly higher than normal and where the

Right-of-Way Vegetation Initial Clearance Standard				
for 115- and 345-kV Transmission Lines				
Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1	

Northeast Utilities Overhead Transmission Line Standards

vegetation at full mature height would not violate Figure A clearances and will not cause construction or access problems.

The minimum clearances established in Figures A, B, and C between conductors and woody vegetation includes allowances for re-growth over the periodic maintenance cycle of four (4) years for vegetation within the cleared limits of the ROW, and ten (10) years for vegetation beyond the cleared limits of the ROW. The defined clearances cover all vegetation including natural growth, screens or buffers, orchards, ornamental plantings, nursery stock, and danger trees.
The minimum clearances applicable to woody vegetation are shown in the included figures.

1) Figure A; Minimum Conductor Clearances
2) Figure B; Danger Tree Clearance
3) Figure C; Conductor Clearance Zone, Side Zones and Structure Clearing Areas for New Construction

Where Orchards, ornamental plantings, or nursery stock is permitted by easement or license to exist, the maximum tree heights allowed within the conductor and side zones are shown in Figure A. Agreements with individual property owners may define sitespecific maximum allowable tree heights and should be checked prior to scheduled maintenance activities.

Where rights exist beyond the edge of the ROW, any tree designated as a "danger tree," i.e. a tree that can fall within the dimensions noted in Figure B that is determined to be an imminent hazard will be removed at the discretion of the arborist. In sensitive areas adjacent to or within the ROW or where rights or other permission to remove danger trees cannot be obtained, arborists will direct the removal of those portions of the tree canopy projecting into the ROW, and those portions of a tree which, if they become detached, may fall within the minimum clearance distances as shown on Figure B. On side-hill ROW's, danger trees can be found significantly further from the conductors on the uphill side of the ROW.

3. Clearing for New Construction

This clearing consists of clear cutting four distinct areas of the ROW as defined by Figure C. These clearing areas are:
A. Basic clearing of the ROW width, which consists of a conductor clearance zone and side zones. Low-maturing woody shrub species are typically not removed from the side zones, and low maturing tree species such as Flowering Dogwood will be preserved where they do not conflict with construction needs.
B. Clearing at each structure location as required for construction equipment
C. Clearing the full length of all access road and spurs to structure sites for a cleared width of fifteen (15) feet
D. Removal of danger trees that pose an imminent risk to the new line along the new or existing clearing edge

Right-of-Way Vegetation Initial Clearance Standard			
for 115- and 345-kV Transmission Lines			
Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1

Northeast Utilities

 Overhead Transmission Line StandardsFor new line construction, in addition to the cleared area around each structure, a laydown and assembly area may be required that is considerably larger. The size of this area depends upon topography, the type of structure to be assembled, and the type of foundation required at the site. Also at selected locations spaced several miles apart, setup sites for conductor-pulling equipment are required within the conductor zone and may require some removal of shrub growth.

The process to accomplish the clearing for new construction involves:
A. Field survey and stake the edge of the clearing limits and conductor zone
B. The NU "Owner's Representative" further reviews the survey staking before clearing begins
C. Where specified in an existing agreement with individual landowners, the Owner's Representative or his designee marks acceptable low growing trees they will attempt to retain within a side zone
D. The Owner's Representative contacts landowners before the clearing begins if they wish to discuss the clearing as marked out, and to ask if the property owner wishes to take ownership of the cut wood
E. Where the landowner will take the cut wood, an agreement will specify the contractor's placement of cut wood outside the ROW, or the landowner's schedule for removal if at a location within the ROW
F. Carry out the clearing operation
G. Cut using chain saws within wetland areas, and minimize the use of mechanized equipment for removal (note: mechanized equipment may be used to remove the logs and tree tops from a wetland by positioning equipment outside wetlands to drag out logs and tops using cables)
H. During or shortly after the initial clearing operation, an arborist will evaluate trees beyond the edge of the clearing limits to identify and mark danger trees that pose an imminent risk to the new line
I. The landowner will then be given an opportunity to discuss the danger trees marked for removal with the Owner's Representative who will then give instructions to the contractor

Contracts for clearing will be structured to effectively implement the above process and this standard. Despite efforts to minimize tree and other vegetation removal, there may still be locations where the transmission facility requirements and/or the existing vegetation conditions are such that no substantial vegetation may remain within the ROW limits.
4. Clearing for Structure Maintenance or the Replacement of an Existing Line

Clearing for structure maintenance or replacement of an existing line is similar to that for new line construction with the following exceptions:

Right-of-Way Vegetation Initial Clearance Standard			
for 115- and 345-kV Transmission Lines			
Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1

Northeast Utilities Overhead Transmission Line Standards

A. Clearing needs depend on the relative location of the rebuilt line with respect to the existing maintained area of the ROW and the proposed construction method for installation of conductors and shield wires. These factors may reduce the needed clearing.
B. Structure site and access road clearing will still be required but may also be significantly reduced.
C. When structures from the old line are removed, the cleared area at these sites and the access spurs to them will be allowed to naturally re-vegetate with native plant species, which may include native grasses, forbs or shrubs.
5. Decision Responsibility for Retention of Non-standard Woody Vegetation

The transmission line Construction Manager and Contractor Arborist will be responsible for obtaining approval from the Transmission Supervisor, Vegetation Management before allowing vegetation to remain which conflicts with the clearances shown in Figures A, B, and C.
6. Approving Managers and SME

Dorian Hill
Manager Transmission Line and Civil Engineering
Northeast Utilities
Peter Avery
Manager Transmission Line Construction and MTCE
Northeast Utilities

SME
Anthony Johnson III
Supervisor Transmission Vegetation Management Northeast Utilities

7. Deviations

This standard sets forth the current NU 'best practices' for most applications of this subject matter. Therefore, deviation from this standard is generally not permitted. However, in unique instances a user may submit a written deviation request including justification to the listed Subject Matter Expert (SME). The SME must approve or deny the request in writing prior to the user commencing any non-standard activities. The SME may consult with his/her supervisor, co-SME if any and co-SME supervisor, and subsequently must copy any approval to them.

Revision History

Rev. 0 - original issue
Rev. 1 - Clarified conductor zone and side zone definitions, and clearing practices to address NERC reliability requirements through strict conformance to the ISO-NE OP-3.

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1
		030.005	$05 / 16 / 2008$

APPENDIX 1

SHRUB SPECIES ALLOWED TO REMAIN: (PARTIAL LIST)

COMMON NAME

Arrowwood Viburnum
Bayberry
Blueberry - Highbush
Blueberry - Lowbush
Brambles
Buttonbush
Dogwood - Gray
Dogwood - Redosier
Dogwood - Silky
Elderberry
Hazelnut
Honeysuckle - Bush
Honeysuckle - Fly
Honeysuckle - Tartarian
Huckleberry
Maple-leaf Viburnum
Meadowsweet - Broad-leaved
Meadowsweet - Narrow-leaved
Mountain Laurel
Oblong Fruited Juneberry
Oldfield Common Juniper
Pasture Juniper
Running Shadbush
Sheeplaurel
Spicebush
Steeplebush
Sumac - Smooth
Sweetfern
Sweetpepperbush
Winterberry
Witch Hobble
Witherod

GENUS/SPECIES
Viburnum dentatum
Myrica pennsylvanica
Vaccinium corymbosum
Vaccinium angustifolium \& V. vacillans
Rubus spp.
Cephalanthus occidentalis
Cornus racemosa
Cornus stolonifera
Cornus amomum
Sambucus spp.
Corylus americana \& C. cornuta
Diervilla lonicera
Lonicera canadensis
Lonicera tatarica
Gaylussacia spp.
Viburnum acerifolium
Spirea latifolia
Spirea alba
Kalmia spp.
Amelanchier bartramiana
Juniperus depressa
Juniperis communis
Amelanchier stolonifera
Kalamia augustifolia
Lindera benzoin
Spirea tomentosa
Rhus glabra
Comptonia peregrina
Clethra alnifolia
llex verticillata
Vburnum alnifolium
Viburnum cassinoides

Appendix 1				
Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines				
Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1	

Northeast Utilities Overhead Transmission Line Standards

APPENDIX 2

LOW-MATURING TREE AND SHRUB SPECIES ALLOWED TO REMAIN ALONG THE SIDE ZONES: (PARTIAL LIST)

All species listed above including:

Alder
Dogwood - Alternate-leaved
Dogwood - Flowering
Sumac - Shining
Sumac - Staghorn
Willows (except tree species)
Witch-Hazel

Almus spp.
Cornus alternifolia
Cornus florida
Rhus copillina
Rhus typhina
Salix spp.
Hamamelis virginiana

Appendix 2
Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines

Figure A

Minimum Conductor Clearances

* All Other Woody Species		
Line Voltage	A (ft.)	$\mathrm{B}(\mathrm{ft}$.)
69 \& 115 kV	12	11
230 \& 345 kV	16	15

* Orchards		
Line Voltage	A (ft.)	B (ft.)
69 \& 115 kV	14	11
$230 \& 345 \mathrm{kV}$	18	15

Figure A
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-k V$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1

Northeast Utilities Overhead Transmission Line Standards

Figure B

Danger Tree Clearances

Line Voltage	$A(\mathrm{ft})$.
69 \& 115 kV	6
230 \& 345 kV	10

Figure B
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1

Northeast Utilities Overhead Transmission Line Standards

Figure C

Conductor Clearance Zone, Side Zones
and Structure Clearing Areas for New Construction

Figure C
Right-of-Way Vegetation Initial Clearance Standard for 115 - and $345-k V$ Transmission Lines

Northeast Utilities Approved by: $\mathrm{DEH}, \mathrm{PJA}$	Design and Application	OTRM	Rev. 1

Northeast Utilities
 Overhead Transmission Line Standards

Figure V-1
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1

Northeast Utilities Overhead Transmission Line Standards

Figure V-2
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1
030.0012	$05 / 16 / 2008$		

Northeast Utilities Overhead Transmission Line Standards

Figure V-3
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1
		030.0013	$05 / 16 / 2008$

Northeast Utilities Overhead Transmission Line Standards

Figure V-4
Right-of-Way Vegetation Initial Clearance Standard for 115 - and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1
030.0014	$05 / 16 / 2008$		

Northeast Utilities Overhead Transmission Line Standards

Figure V-5
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

Northeast Utilities Approved by: DEH, PJA	Design and Application	OTRM	Rev. 1
		030.0015	$05 / 16 / 2008$

Figure V-6
Right-of-Way Vegetation Initial Clearance Standard for 115- and $345-\mathrm{kV}$ Transmission Lines

CONCLUSIONS

- While performing several iterations of these Right-of-Way (ROW) width calculations, it became evident that placing twice the number of structures required under normal transmission line design is the only way the applicant could get the proposed 100 -foot ROW to meet the National Electric Safety Code (NESC). The proposed 100 -foot ROW width would be acceptable with spans under 850 feet. Under any other transmission line scenario the engineer would use a ruling span length in access of 1500 feet, which would greatly reduce the number of structures.
- I made reference to other utilities' general ROW design practices in order to illustrate the minimum widths. Please note that not only do these utilities consider blowout, but they add a buffer and use the National Electric Safety Code to have an adder of 50 " for surges or lightning strokes.
- Should you have any questions, concerns or comments regarding the contents of this reference calculation please do not hesitate to contact me at MXWI@deainc.com, or 503.499.1350.

TELEPHONE REPORT

DATE OF CALL:	August 9, 2010	ROUTING: (Name \& Location)	
TIME OF CALL:	1330	1.	
CALL PLACED BY:	Patrick Lynch	2.	
CALL PLACED TO:	Steve Herling	3.	
TOPIC OF PHONE CALL:	PJM Interconnect plan to deal with PSEG not going on-line until 2015	4.	
FILE DESIGNATION:		5.	

DISCUSSION:

Today, I called Steve Herling of the PJM interconnect to gather his reaction to the statement of PSEG that because of the permits they need to have in hand, they will not be able to complete construction until 2015.
Mr Herling responded that PJM has two primary concerns in dealing with this issue. One, is the "delivery of energy" and two, "the distribution of that energy." To be able to meet those concerns, PJM, in concert with the power companies is developing a plan that will enable the companies to deliver and distribute energy from the period, 2012 to 2015. As of this date, that plan will "probably" include the stabilization and upgrade of several existing generators in the Roseland, NJ vicinity to meet the PJM needs. This plan must then be submitted to NERC for review and approval. If the plan is deemed "viable" by NERC, the companies should not be penalized.

I thanked Mr Herling for the info and he said "feel free to call my anytime on this project. The total time of the conversation was 5 minutes.

FOLLOW-UP ACTION REQUIRED?	YES___ NO___
FOLLOW UP ACTION TO BE TAKEN BY:	
FOLLOW-UP ACTION:	

DATE FOLLOW-UP ACTION COMPLETED:

FURTHER COMMENTS OR PENDING REQUIREMENTS:

Mr. John J. Donahue
Superintendent
National Park Service
Delaware Water Gap National Recreation Area
Bushkill, PA 18324
Ms. Pamela Underhill
Superintendent
Appalachian National Scenic Trail
PO Box 50
252 McDowell Street
Harper's Ferry, WV 25425

Re: Construction of 500kV Transmission Line Within PPL Electric Utility Corporation's Existing 100-Foot Right-of-Way

Dear Mr. Donahue and Ms. Underhill:
As you know, PPL Electric Utility Corporation ("PPL Electric") has submitted an application for both a right-of-way permit and a construction permit for the construction and operation of the proposed 500 kV Susquehanna to Roseland Project. As you are also aware, PPL Electric has existing easements rights in Pennsylvania that traverse the Delaware River Water Gap National Recreation Area ("DEWA"). Those easements grant PPL Electric the rights, among other things, to reconstruct its facilities.

There are some areas in the park where PPL Electric has rights that are of a width greater than 100 -feet. However, there is an approximate .8 mile stretch where the National Park Service has taken the position that PPL Electric's easement rights are limited to a width of 100 feet. ${ }^{1}$ This .8 mile stretch is the area where PPL Electric has requested a right-of-way permit for an additional 25 feet on each side of the existing right of way.

As part of the project, PPL Electric analyzed whether it could safely and reliably construct and operate a 500 kV transmission line pursuant to its existing

[^4]easement rights, because doing so would eliminate the need for a right-of-way permit. PPL Electric has concluded that it can safely and reliably construct and operate a transmission line pursuant to its existing easement rights (for purposes of this letter, the " 100 -foot ROW alternative"). That 100 -foot ROW alternative would have two more structures than the current proposal, primarily because of issues relating to the 100 -foot width in the .8 mile area reference. The structure heights would be approximately the same height as currently proposed.

PPL Electric provided the details of the 100 -foot alternative to your consultant, Dave Evans Associates ("DEA"). In initial discussions, DEA questioned whether the 100 -foot ROW alternative could meet National Electric Safety Code ("NESC") standards. However, after further discussions, and after PPL Electric provided additional documentation and analysis on that issue, it is our understanding that DEA is in agreement with PPL Electric's position that the 100 -foot ROW alternative would meet all NESC standards.

Subsequently, DEA raised additional issues relating to the construction and operation of the 100 -foot ROW alternative, which are as follows:

1.	Allowable conductor tension.
2.	Effect of wind on conductor temperature.
3.	PJM criteria.
4.	Electric fields.

PPL Electric notes that except for number 3, the above issues are not related to the width of the right-of-way. With regard to number 3, guidelines are provided by PJM in the document, PJM DESIGN AND APPLICATION OF OVERHEAD TRANSMSISSION LINES 69KV AND ABOVE, dated 5/20/2002 and found on the PJM website. This document lists target right-of-way widths of 300 feet for double circuit 500 kV and 150 feet for single or double circuit 230 kV . Clarification is provided by PJM on the TRANSMISSION OWNERS GUIDELINES webpage with the statement

Transmission Owner Technical Guidelines \& Recommendations below, formerly were referred to as the "PJM TSDS Technical Requirements", as published by the PJM Transmission \& Substation Design Committee (TSDS).
The documents included here are still subject to PJM's review and may thus potentially change before being formally published pursuant to Section 1.2c of the PJM Open Access Transmission Tariff (PDF).
These documents were originally developed for PJM by TSDS member companies when PJM's footprint matched the NERC MAAC Region (contributing companies included AE, BGC, DPL, JCPL, MetEd, PECO, PENELEC, PEPCO, PPL and PSEG.) Many of these companies often reference these documents for their Technical Requirements and Standards as defined in the PJM OATT. PJM now extends into multiple NERC regions. New members typically reference their own documents and therefore these documents no longer represent all of PJM. However, all PJM members are welcome to reference these documents.

And, additional clarification is provided by PJM on the TRANSMISSION OWNERS ENGINEERING AND CONSTRUCTION STANDARDS webpage with the statement

Applicable engineering and construction standards are specified by each PJM Transmission Owner.

Thus, although PJM has guidelines for transmission line design, it is the Transmission Owners who have the final say, and responsibility for safe and reliable design of transmission lines. It is worth nothing that the currently proposed Susquehanna-Roseland 500 kV Transmission Line will be constructed within rights-of-way that vary from 150 feet to over 300 feet.

PPL Electric has concluded that none of the above items present any issues with respect to the 100 -foot ROW alternative. In that regard, enclosed with this letter is a detailed analysis, including calculations, of each of the above items performed by Sargent \& Lundy, LLC, the design engineer retained by PPL Electric as part of this project. In summary, that analysis concludes that the design proposed by PPL Electric relating to the 100 -foot ROW alternative complies with any concerns raised by DEA.

In conclusion, PPL Electric maintains the design that has been provided for the 100 -foot ROW alternative complies with all applicable regulations, including NESC and PJM criteria. Accordingly, the safe and reliable construction and operation of a 500 kV transmission line within PPL. Electric's existing easements, as demonstrated by the 100 -foot ROW alternative, is feasible.

PPL Electric further notes that it, as the utility company providing electric transmission service in the area, has the obligation and responsibility to determine whether a transmission facility can be constructed and maintained in a safe and reliable manner. While PPL Electric appreciates comments and suggestions from DEA, ultimately it is PPL Electric that must determine whether such a facility can be constructed. As indicated above, in this case PPL Electric has determined that the 100 -foot ROW alternative can be built safely and reliably.

Accordingly, PPL Electric maintains that the 100-foot ROW alternative should be included as one of the alternatives studied in the Environmental Impact Statement. Quite simply, failure to do so ignores a viable option that can be constructed without the acquisition of any right-of-way permit from the National Park Service.

Thank you for your time and attention.
Sincerely,

Gregory J. Smith
Manager-Transmission Expansion

Enclosure

United States Department of the Interior

NATIONAL PARK SERVICE
Delaware Water Gap National Recreation Area Bushkill, Pennsylvania 18324

D5015

SEP 102010

Mr. Keith O' Neal, Director
Division of Electric Reliability Standards
Office of Electric Reliability
Federal Energy Regulatory Commission
88 First Street NE
Washington DC 20426
Dear Mr. O' Neal:
The National Park Service (NPS) has been asked by two regional electric utility companies (PPL in Pennsylvania and PSE\&G in New Jersey) to provide permits for access across NPS lands and for construction of an additional 500 kV line within their existing Right-of-Way (ROW). The structures would be built to hold a double circuit 500 kV line where in some areas the existing width of the ROW is only 100 feet. The ROW of concern runs for 4.2 miles through the Appalachian National Scenic Trail (APPA), Delaware Water Gap National Recreation Area (DEWA), and the Middle Delaware National Scenic and Recreational River (MDSR), all units of the NPS. To evaluate the permit request we are preparing an Environmental Impact Statement (EIS).

The regional electrical energy interconnect group, PJM, has issued a set of Technical Requirements (section V.A of PJM TSDS Technical Requirements dated May 20, 2002) that address the design and application of overhead transmission lines 69 kV and above. On Table 1 (page 12) of this document, PJM lists the requirements and the recommendations for transmission line design parameters. Our question is, are these requirements and recommendations the standard within which the utility companies are mandated to work when siting and planning new transmission lines? Is compliance with these standards optional?

We look forward to your timely reply as we are trying to maintain a tight EIS schedule and this information is vital to our analysis.

Please feel free to contact us or Patrick Lynch of our staff at (570) 426-2428.

Pamela Underhill
Superintendent
Appalachian National Scenic Trail
(304) 535-6278

Cc:
Andrew Tittler, DOI Office of the Solicitor
Patrick Lynch, National Park Service, DEWA
Kara Deutsch, National Park Service, DEWA
Sarah Bransom, National Park Service, APPA
Amanda Stein, National Park Service, DEWA
Patrick Malone, National Park Service, DSC
Jennifer McConaghie, National Park Service, NER
Clint Riley, U.S. Fish and Wildlife Service
Pamela Shellenberger, U.S. Fish and Wildlife Service
Mr. Gregory Smith
Manager, Transmission Expansion
PPL Electric Utilities
Two North Street, GENN5
Allentown, Pennsylvania 18101-1179
Denver Service Center - TIC
Attn: SRLINE EIS
12795 W. Alameda Parkway
Denver, CO 80225-0287

V.A PJM Design and Application of Overhead Transmission Lines 69 kV and Above

These design criteria have been established to assure acceptable reliability of the bulk transmission system facilities. These set forth the design and service conditions, and establish insulation levels for transmission lines. Some of these parameters were based on requirements for the Keystone, Conemaugh, Susquehanna Eastern, or LDV EHV projects, and others were developed by consensus of the PJM transmission line owners. Specific component requirements are listed in their own sections (in addition to NESC the proposed IEC 61936 could be a good reference). The criteria listed are requirements for lines rated 230 kV and above, and are guidelines for lines below 230 kV .

PJM DESIGN OF OVERHEAD TRANSMISSION LINES 69 kV AND ABOVE

1.0 SCOPE AND GENERAL REQUIREMENTS

1.1. This document sets forth the requirements and recommendations for the design of overhead electric transmission facilities.
1.1.1. Transmission lines, for the purpose of this document, are those with an operating voltage of 69 kV or greater.
1.1.2. The term "TO" in this document refers to the Transmission Owner, the party that will own and be responsible for the maintenance of the subject transmission facility.
1.2. The design and operation of all transmission lines shall meet the requirements of the National Electrical Safety Code (ANSI/IEEE C-2) [NESC]. The edition of the NESC in effect at the time of the design shall govern.
1.3. The electrical and strength requirements of this document shall apply to all new transmission lines; and extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is 1000 ft or more.
1.4. The design of modifications to existing transmission lines; or extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is less than 1000 ft ; shall meet the requirements used for the design of the existing line and shall meet the requirements of the latest edition of the NESC.
1.5. The designs of existing transmission lines may not in all cases meet these criteria. The existing lines themselves are excluded from the scope of this document. However, taps from or extensions to these existing lines are covered under the scope of this document.
1.6. Switch structures are not within the scope of this document. If a switch is to be mounted on a transmission structure, the structure design shall have adequate strength and rigidity to ensure the reliable operation of the line and switch.
1.7. Transmission structures supporting non-electric transmission facilities (telecommunications antennas, fiber-optic cables, etc.) shall be capable of resisting the structural loads resulting from these facilities within the strength requirements of this document. The locating of such non-electric facilities on transmission structures shall not jeopardize the operation, maintenance, and reliability of the transmission lines.
1.8. While this document provides detailed criteria for the design of transmission lines on the PJM system, these do not represent the only issues to consider in the design of such lines. Other issues must also be considered such as: maintenance, inspection, and repair on both the structures and the wires of these lines. This will ensure the reliability of the line at a minimal cost well into the future.
1.9. In some instances, the requirements or recommendations specified in this document may come into conflict with other issues such as permitting or local issues. These specifications may be adjusted and negotiated with the specific and written approval of the TO. The agreed negotiation of a relaxation of any specification for an individual project or circumstance does not automatically result in a subsequent revision in this guide. Subsequent instances must be addressed individually on a case-by-case basis.
1.10. The use of structure guys, and wood structures shall be approved by the TO.

2.0 CONDUCTORS

Conductors must be selected with sufficient thermal capability to meet continuous and emergency current ratings. Ratings of conductors applied to the PJM system should be determined using the PJM TSDS "Bare Overhead Transmission Conductor Ratings, November 2000".
The overhead line conductor and static wire should be chosen from those used by the TO. This provides the ability to quickly repair a section of line with utility stock material should an emergency arise. Standard transmission conductor types are ACSR, ACSR/AW, ACSS, and ACAR. Other conductor types will be reviewed by the TO.
The ambient temperature range listed in Table 1 covers the PJM system and is used for the electrical ratings of the conductors as well as the structural loads upon the towers or poles.

3.0 CONDUCTOR SAG \& TENSION CRITERIA

3.1 Alcoa-Sag \& Tension Common Point

The maximum tension case shall be allowed to default as the common point between the initial and final sag tables. No other common point shall be allowed. An example would be a common point based upon NESC Heavy conditions when calculated tensions for the $1-1 / 2^{\prime \prime}$ Heavy Ice case exceed those for the NESC case.

4.0 STRENGTH REQUIREMENTS

4.1. Structure Types - the following descriptions of structure types shall apply to the provisions for strength requirements
4.1.1. Suspension Structure - A structure where the phase conductors and static wires are attached through the use of suspension insulators and hardware or, in the case of the static wire, with a clamp not capable of resisting the full design tension of the wire.
4.1.2. Strain Structure - A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware but where the ability of the structure to resist a condition where all wires are broken on one side under full loading is not required or desired. Typically, strain structures would be used where the line deflection angle is 45 degrees or less. Structures subject to strain structure requirement shall be as identified by the Utility.
4.1.3. Dead-end Structure - A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware and where the ability of the structure to resist a condition where all wires are broken on one side under full loading is required or desired. Typically, dead-end structures would be used where the line deflection angle is greater than 45 degrees. Structures subject to dead-end structure requirement shall be as identified by the Utility.
4.1.4. Line Termination Structure - A structure where the phase conductors and static wires are to be installed on one side only for the purpose of terminating the line, usually at a substation or switchyard. This permanent dead-end condition is assumed in the application of all applicable loading conditions.

4.2. Loading Definitions

4.2.1. Wind Pressure - The pressure resulting from the exposure of a surface to wind. The pressure values provided are for wind acting upon objects with circular cross section. Pressure adjustments for other shapes shall be as set forth by the ASCE Guidelines for Electrical Transmission Line Structural Loading (ASCE Publication 74) [ASCE 74].
4.2.2. Radial Ice - Radial ice is an equal thickness of ice applied about the circumference of the conductors and static wires. Ice density is assumed to be 57 lbs per cubic foot. For the purpose of transmission line design, ice is not applied to the surface of the structure, insulators, or line hardware.
4.2.3. Temperature - Used for calculating conductor and static wire sag and tension.
4.2.4. Transverse load - Forces or pressures acting perpendicular to the direction of the line. For angle structures, the transverse direction is parallel to the bisector of the angle of the transmission centerline.
4.2.5. Longitudinal load-Forces or pressures acting parallel to the direction of the line. For angle structures, the longitudinal direction is perpendicular to the bisector of the angle of the transmission centerline.
4.2.6. All wires intact - A condition where all intended spans of conductors and static wires are assumed to be in place. In the case of a Line Termination Structure, conductor and static wire spans are only on one side of the structure.
4.2.7. Broken Conductor or Static Wire - A condition where one or more conductors or static wires are specified as broken. It is assumed that the broken conductor or static wire is in place on one side of the tower, and is removed from the other side. The span length for determination of loads from the conductor or static wire weight, wind pressure, and radial ice shall be not less than 60% of the design span length for the intact condition.
4.2.8. Load Factor - A value by which calculated loads are multiplied in order of provide increased structural reliability. For the purpose of structural design, Overload Capacity Factors as specified by NESC shall be considered Load Factors.

4.3. Design Loading Conditions

4.3.1. NESC - The provisions of the NESC Heavy Loading District, Class B Construction shall apply to all structure types. All wires intact. The latest NESC edition in effect at the time of line design shall apply. For informational purposes, the 1997 edition of NESC specifies the following requirements. Wind pressure -4 psf. Radial Ice -0.5 in. Temperature $-0^{\circ} \mathrm{F}$. For the purpose of calculating conductor or static wire tensions, a load constant of 0.3 lbs shall be added to the resultant of the per linear foot weight, wind, and ice loads on the conductor or static wire. For steel structures, the load factor for wind load is 2.50 ; the load factor for vertical loads (dead weight and ice) is 1.50 ; and the load factor for conductor and static wire tension is 1.65 . The associated factors for wooden transmission line structures shall be obtained from the TO.
4.3.2. Extreme Wind Loading Condition - Applies to all structure types. All wires intact.
4.3.2.1. Line voltage 230 kV and greater. Wind pressure applied to the wires shall be 25 psf . The ambient temperature is to be $60^{\circ} \mathrm{F}$. The wind pressure applied to the structure shall be 31.25 psf. Load factor is 1.00 .
4.3.2.2. Line voltage less than 230 kV . The provisions of the NESC Extreme Wind loading shall be applied, subject to a minimum wind pressure of 17 psf . The load factor is 1.00 . The provision in NESC permitting exclusion of structures less than 60 ft in height from extreme wind criteria shall not apply.
4.3.3. Heavy Ice Loading Condition - Applies to all structure types. All wires intact.
4.3.3.1. Line voltage 230 kV and greater. Radial ice thickness on the wires only is to be $1,50 \mathrm{in}$. No wind pressure. Temperature is $32^{\circ} \mathrm{F}$. Load factor is 1.00 .
4.3.3.2. Line voltage less than 230 kV . Heavy ice loading (if any) shall be as specified by the TO. Ice loading will not be more severe than that required for voltages 230 kV or greater.
4.3.4. Longitudinal Loading Conditions for Suspension Structures (line voltage 230 kV or greater) - The TO will specify one or more of the following loading conditions for design of Suspension Structures.
4.3.4.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. Tensions shall not be reduced by assumed insulator swing. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10 .
4.3.4.2. Differential Ice Loading. All wires intact. No Wind. Temperature $32^{\circ} \mathrm{F}$. All conductors and static wires on one side of the structure shall be assumed to have 1.0 in radial ice. All conductors and static wires on the other side of the tower shall be assumed to have no ice. The determination of differential tension may include calculated swing of suspension insulator or static wire assemblies. Load factor 1.10.
4.3.4.3. Bound stringing block - All wires intact. 2 psf wind. No ice. $30^{\circ} \mathrm{F}$. Any one static wire or phase conductor (or all subconductors of any one phase) are assumed to bind in a running block during installation. The block is assumed to swing 45° in-line. This swing will result in a longitudinal load equal to the calculated vertical load of the static wire or phase conductor(s) under this loading condition. Load factor is 2.00 .
4.3.5. Longitudinal Loading Conditions for Strain Structures - The TO will specify one or more of the following loading conditions for design of Strain Structures.
4.3.5.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10 .

OR
4.3.5.2. All conductors and static wires broken. Loading condition is NESC Heavy. Load factor is 1.00 .
4.3.6. Longitudinal Loading Condition for Dead End Structures - All conductors and static wires are to be intact on one side of the structure only. Loading condition is NESC Heavy. Load factors are those specified by NESC.
4.3.7. Longitudinal Loading Condition for Line Termination Structures - Conductors and static wires are to be intact on one side of the structure only. All loading conditions and load factors set forth by Section 4.3.1, 4.3.2, and 4.3 .3 shall apply.
4.3.8. Foundation Loading - The ultimate strength of overturning moment and uplift foundations shall be not less than 1.25 times the design factored load reactions of the structure. The ultimate strength of foundations subjected to primarily to compression load shall be not less than 1.10 times the design factored load reactions of the structure. Overturning moment foundations designed by rotation or pier deflection performance criteria shall use unfactored structure reactions for determination of the foundation performance, but shall use factored reactions for the 1.25 time ultimate strength check.
4.3.9. Personnel Support Loading - Structures shall be designed to support a point load of 350 lb at any point where a construction or maintenance person could stand or otherwise be supported.

5.0 ELECTRICAL DESIGN PARAMETERS

, 5.1 Right-Of-Way Width

The transmission line is to be designed with adequate right-of-way width to provide access for line maintenance, repair, and vegetation management as shown in Table 1. These widths are based upon the listed number of circuits on the right-of-way. For additional circuits, a wider right-of-way should be utilized.

Vehicle or other means of access to each structure site is required for both construction and maintenance activities.

5.2 Wire to Ground Clearance

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. (The safety envelope is required to allow for sag and clearance uncertainties due to: actual conductor operating temperature, conductor sagging error, ground topography accuracy, plotting accuracy and other sources of error. The inclusion of a safety envelope is considered to be prudent). The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature or maximum conductor loading. The minimum clearances should take into account the limitation of a 5 mA shock current as given in NESC Rule 232D3c. All areas beneath the line shall be assumed to allow vehicle access beneath the line. For agricultural areas that may utilize farming equipment, additional clearance will be provided to assure public safety and line reliability during the periods of farming and harvesting activities.
5.3 Wire to Signs, Structures, etc Under the Wires

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature.

5.4 Wire to Structure Clearances

 The minimum clearances between the phase conductors and the supporting tower or pole shall not be less than shown in Table 1. These clearances are to apply for all anticipated conductor positions from an every day condition to a displaced condition due to a 9 -psf wind or ice loading. These clearances do not have any adders provided for birds or other animals, but are based upon the switching surge values listed in Table \#1.
5.5 Wire-to-Wire Clearances

Clearance between the bottom transmission conductor and any lower wire shall meet the required clearance of NESC Rule 233 and 235as a minimum. When the lower wire is a non transmission wire, then the clearance should be at least 10 feet for voltages less than or equal to 230 kV , and 20 feet for voltages above 230 kV . This will allow safe personnel access to the non-transmission conductors. These clearances should be calculated with the transmission conductor at maximum operating temperatures or heavy ice, whichever provides greater conductor sag, and the non-transmission conductor at $0^{\circ} \mathrm{F}$.

Clearances between transmission conductors should be either the larger of clearances based upon switching surges, or clearances based on the NESC. The per unit switching surges to use for the calculation are shown in Table \#1.
Using switching surge values, the method used to determine the actual required clearance is given in section 5 of the EPRI Transmission Line Reference Book 115 kV - 138 kV Compact Line Design.

For transmission conductors of different circuits, the clearances should be increased so that any wind induced dynamic conductor movement does not result in any breaker operations and subsequent reduction in transmission circuit reliability.

5.6 Conductor Operating Temperature and Conductor Sag

 The conductor will be assumed to operate at or above the minimum temperature shown below, and at temperatures less than the maximum shown below. While the line conductor may be designed to operate at a lower temperature, the line must be sagged assuming the conductor temperature is at or above the minimum shown. For designed operating temperatures above the minimum shown, and still below the maximum, the line sag and clearances will be calculated for that operating temperature after rounding up to the nearest $10^{\circ} \mathrm{C}$. In no case will a conductor operating temperature be allowed above the maximum shown in the table. Refer to the PJM "Bare Overhead Transmission Conductor Ratings" for the ampacity and temperatures of conductors.| Conductor Type | Minimum Conductor Operating
 Temperature for Sagging and
 Clearance Purposes | Maximum
 Operating
 Temperature |
| :---: | :---: | :---: |
| ACAR | $100^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ |
| ACSR, ACSS | $125^{\circ} \mathrm{C}$ | $180^{\circ} \mathrm{C}$ |

Consult with the local transmission utility for the maximum operating temperature since some companies use slightly different values. Higher values for ACSS conductors may only be used with specific approval from the TO. Studies of the long-term high temperature operation of all conductor-connected hardware must be investigated prior to the request for approval from the local transmission utility.

5.7 Insulation Requirements

The insulation system for the transmission line shall have values in excess of the leakage distance, 60 Hz wet, and Critical Impulse flashover specified in Table 1. These values shown are minimum conditions and may need to be increased in specific locations such as coastal environments, industrial smokestack sites, or high altitudes. (BIL values are not included here as they are associated with substation insulation and not transmission line insulation,)

5.8 Lightning Performance and Grounding

All transmission structures will be individually grounded through a dedicated earth driven grounding system composed of ground rods and / or buried counterpoise. This system is to be measured on each individual structure prior to the installation of any overhead conductors or wires. The maximum acceptable resistance measurement of this grounding system for voltages up to and including 230 kV is 25 Ohms , and 15 ohms for voltages 345 kV and greater. The grounding system may include radial counterpoise wires, equipotential rings, or both. The TO must approve all grounding methods, and connections to the grounding system that are below grade. These resistance requirements are to assure acceptable lightning performance on the line as well as provide for the safe grounding of the line by construction and maintenance forces.

Individual tower grounding measurements will be allowed to exceed the 25 or 15 Ohms required only if the average value for the 5 adjacent structures along the line is less than the 25 or $15-\mathrm{Ohm}$ restriction.

To assure acceptable lightning performance, a shield wire is required above each transmission line. The number of shield wires and the maximum shielding angles between the shield wire and phase conductor are shown in Table 1. Each new structure design is to be analyzed using

- the EPRI MULTIFLASH or equivalent software to determine that the line design and actual grounding design provides the required lightning performance shown in Table 1.
In instances where it is very difficult to provide the required lightning performance, the TO may grant permission to utilize a limited application of transmission lines arresters. In no case will chemical ground treatments be allowed to improve structure grounding.

5.9 EMF, RFI, TVI, and Audible Noise

The transmission line system is to be designed so that radio and TV interference is just perceptible at the edge of the right-of-way. This is typically the case with radio signal to noise ratios above 20 db , and TV signal to noise ratios above 40 db . The achievement of this level of performance is more of a problem for lines above 230 kV , so a radio frequency survey and investigation should be performed to measure actual radio and TV signal strength and calculate the signal to noise ratio.

Audible noise at the edge of the right-of-way should be calculated for the designed transmission line using wet conductor as the design condition. The resultant noise level must not exceed the level limited by the state and local authorities. Typically the limitation is 55 dbA during the daylight hours, and 50 dbA at night.

Electric and Magnetic Field (EMF) levels are to be calculated using the EPRI ENVIRO or equivalent software and compared to any state or local limits. Modifications are to be made through phasing, structure height, ground clearance, etc. to assure these limitations are met. If no specific limitations exist, the line should be designed to the level of EMF on and adjacent to the right-of-way. A typical example of such an effort is the appropriate choice of phasing on the right-of-way.

5.10 Inductive Interference

A study should be done to determine the inductive impact upon other utilities due to the power flow in the new transmission line. The power flow may induce unusual currents and voltages in magnetic and electrical conductors that run parallel to the transmission line.

When it is determined that the currents or voltages are being induced in nearby utilities or other facilities, the engineer for the new or modified line being constructed must take the appropriate corrective actions to eliminate or lower the currents or voltages to an acceptable level.

5.11 Line Transpositions

The transmission line designer may be required to transpose the geometry of a new transmission line if the voltage imbalance exceeds the tolerance of the TO at the substations the line connect s to. If transpositions structures are required, they shall be designed to provide for easy routine maintenance of the structure.

5.12 Line Crossings

Line crossings should be avoided if possible, but when line crossings are unavoidable they should be configured such that the most important circuits to the transmission network are on top. Additionally, crossings must be configured such that a single component failure will not outage more than one other circuit (beyond the circuit with the failed component). This is in accordance with MAAC Criteria.

6.0 OTHER DESIGN PARAMETERS

6.1 Line Cascade Mitigation

Transmission line failures that cascade beyond the original structural failure must be avoided. To accomplish this, the design of a new or modified line shall incorporate dead-end strain structures routinely employed along the line. An alternative is to utilize suspension structures that are longitudinally guyed to resist full line tension if all wires on one side were broken. For wood construction, the strain structures shall also have in-line storm guys utilized to provide the structural strength. The line tensions assumed for this condition are the NESC Heavy loadings on one side of the structure as defined above, and no tension on the other. The structures shall be placed routinely along the line to resist a line cascade, but in no case shall these structures be placed farther than 5 miles apart.

6.2 Corrosion Protection

Corrosion protection will be evaluated for all buried structural steel on transmission structures. This covers buried grillage, driven caissons, etc. The line designer will submit a recommendation to the TO for the corrosion mitigation method to be used for buried structural steel. The proposed method must show at least a 50 year durability before any degradation of , structural strength is allowed. It is acceptable to include systems that require some routine maintenance such as cathodic protection using buried sacrificial anodes.

Above grade steel will be protected from corrosion using a coating acceptable to the TO. Typical alternatives that have been used include weathering steel, galvanized steel, or painted steel.

6.3 Climbing Devices

6.3.1 Steel pole structures shall utilize climbing ladders. The TO shall specify the requirements and placement of the climbing ladders.
6.3.2 All steel towers shall be designed with step bolts as the provision for climbing. The TO shall specify the requirements and placement of the step bolts.

7.0 MAINTENANCE

TABLE 1
Transmission Line Design Parameters

	Requirements			Recommendations		
Parameter	500 kV	345 kV	230 kV	138 kV	115 kV	69 kV

Ambient Temperature Range	$\begin{gathered} -30^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ \text { (from }-40^{\circ} \mathrm{C} \mathrm{~N} \mathrm{\&} \mathrm{~W} \mathrm{of} \mathrm{Blue} \mathrm{Mountain)} \end{gathered}$	$-30^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (from $-40^{\circ} \mathrm{C} \mathrm{N} \mathrm{\&} \mathrm{W} \mathrm{of} \mathrm{Blue} \mathrm{Mountain)}$
Minimum Extreme Wind Loading	25 PSF $\left\|\begin{array}{c}\text { New Line } \\ \text { NESC Figure 250-2 } \\ \text { or a minimum wind } \\ \text { pressure of } 17 \text { psf. }\end{array}\right\|$Existing Line Larger of: NESC Figure 250-2 OR the original line design parameters	New Line: NESC Figure 250-2 Existing Line: Larger of: NESC Figure 250-2 OR the original line design parameters
Heavy Ice Load (No Wind)	$13 / 2$ "	Consult the TO for applicable heavy ice loading requirements
Code Requirements	NESC Grade "B" Heavy	NESC Grade "B" Heavy
Flood Plain Sag and tension	The line shall meet the applicable Local, State and Federal regulations.	The line shall meet the applicable Local, State and Federal regulations.
Calculation Method	Alcoa Sag \& Tension Software or equivalent	Alcoa Sag \& Tension Software or equivalent
Damper Requirements	$<18 \%$ RBS (No dampers Required) 18\% - 20\% RBS (Dampers Required)	<18\% RBS (No dampers Required) $18 \%-20 \%$ RBS (Dampers Required)
Galloping Mitigation Spacers Prer	Provide adequate clearance so that 12 " of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloping history.	Provide adequate clearance so that $12^{\prime \prime}$ of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloping history.
Pracers	18" spacing - NO Preformed wire spacers allowed.	18" spacing - NO. Preformed wire spacers allowed.
Line Maintenance	As required by the TO.	As required by the TO.
Access Requirements	Construction and maintenance access is required to each structure.	Construction and maintenance access is required to each structure.
sizes for NEW Construction	Match approved conductor sizes and bundle configuration with local utility company	Match approved conductor sizes and bundle configuration with local utility company

TABLE 1

Requirements			Recommendations		
500 kV	345 kV	230 kV	138 kV	115 kV	69 kV

DMS \#84474 Page 12 of 12
Section V.A Overhead Transmission Lines

United States Department of the Interior

NATIONAL PARK SERVICE
Delaware Water Gap National Recreation Area
Bushkill, Pennsylvania 18324

D5015

SEP 132010

Mr. Steve Herling, Vice President
PJM Interconnection L.L.C.
955 Jefferson Avenue
Valley Forge Corporate Center
Norristown, Pennsylvania 19403-2497
Dear Mr. Heeling:
The National Park Service (NPS) has been asked by two regional electric utility companies (PPL in Pennsylvania and PSE\&G in New Jersey) to provide permits for access across NPS lands and for construction of an additional 500 kV line within their existing Right of Way (ROW). The structures would be built to hold a double circuit 500 kV line where in some areas the existing width of the ROW is only 100 feet. The ROW of concern runs for 4.2 miles through the Appalachian National Scenic Trail (APPA), Delaware Water Gap National Recreation Area (DEWA), and the Middle Delaware National Scenic and Recreational River (MDSR), all units of the NPS. To evaluate the permit request we are preparing an Environmental Impact Statement (EIS).

We have a question regarding PJM's Technical Requirements that address the design and application of overhead transmission lines 69 kV and above (section V.A of PJM TSDS Technical Requirements dated May 20, 2002). On Table 1 (page 12) of this document, PJM lists the requirements and the recommendations for transmission line design parameters. Our question is, are these requirements and recommendations the standard within which the utility companies are mandated to work when siting and planning new transmission lines?

We look forward to your timely reply as we are trying to maintain an efficient EIS schedule and this information is vital to our analysis.

Please feel free to contact us or Patrick Lynch of our staff at (570) 426-2428.

Delaware Water Gap National Recreation Area \& Middle Delaware National Scenic and
Recreational River
(570) 426-2418

Enclosure

Cc:
Andrew Tittler, DOI Office of the Solicitor
Patrick Lynch, National Park Service, DEWA
Kara Deutsch, National Park Service, DEWA
Sarah Bransom, National Park Service, APPA
Amanda Stein, National Park Service, DEWA
Patrick Malone, National Park Service, DSC
Jennifer McConaghie, National Park Service, NER
Clint Riley, U.S. Fish and Wildlife Service
Pamela Shellenberger, U.S. Fish and Wildlife Service
Mr. Gregory Smith
Manager, Transmission Expansion
PPL Electric Utilities
Two North Street, GENN5
Allentown, Pennsylvania 18101-1179

Denver Service Center - TIC
Attn: SRLINE EIS
12795 W. Alameda Parkway
Denver, CO 80225-0287

V.A PJM Design and Application of Overhead Transmission Lines 69 kV and Above

These design criteria have been established to assure acceptable reliability of the bulk transmission system facilities. These set forth the design and service conditions, and establish insulation levels for transmission lines. Some of these parameters were based on requirements for the Keystone, Conemaugh, Susquehanna Eastern, or LDV EHV projects, and others were developed by consensus of the PJM transmission line owners. Specific component requirements are listed in their own sections (in addition to NESC the proposed IEC 61936 could be a good reference). The criteria listed are requirements for lines rated 230 kV and above, and are guidelines for lines below 230 kV .

PJM DESIGN OF OVERHEAD TRANSMISSION LINES 69 kV AND ABOVE

1.0 SCOPE AND GENERAL REQUIREMENTS

1.1. This document sets forth the requirements and recommendations for the design of overhead electric transmission facilities.
1.1.1. Transmission lines, for the purpose of this document, are those with an operating voltage of 69 kV or greater.
1.1.2. The term "TO" in this document refers to the Transmission Owner, the party that will own and be responsible for the maintenance of the subject transmission facility.
1.2. The design and operation of all transmission lines shall meet the requirements of the National Electrical Safety Code (ANSI/IEEE C-2) [NESC]. The edition of the NESC in effect at the time of the design shall govern.
1.3. The electrical and strength requirements of this document shall apply to all new transmission lines; and extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is 1000 ft or more,
1.4. The design of modifications to existing transmission lines; or extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is less than 1000 ft ; shall meet the requirements used for the design of the existing line and shall meet the requirements of the latest edition of the NESC.
1.5. The designs of existing transmission lines may not in all cases meet these criteria. The existing lines themselves are excluded from the scope of this document. However, taps from or extensions to these existing lines are covered under the scope of this document.
1.6. Switch structures are not within the scope of this document. If a switch is to be mounted on a transmission structure, the structure design shall have adequate strength and rigidity to ensure the reliable operation of the line and switch.
1.7. Transmissioh structures supporting non-electric transmission facilities (telecommunications antennas, fiber-optic cables, etc.) shall be capable of resisting the structural loads resulting from these facilities within the strength requirements of this document. The locating of such non-electric facilities on transmission structures shall not jeopardize the operation, maintenance, and reliability of the transmission lines.
1.8. While this document provides detailed criteria for the design of transmission lines on the PJM system, these do not represent the only issues to consider in the design of such lines. Other issues must also be considered such as: maintenance, inspection, and repair on both the structures and the wires of these lines. This will ensure the reliability of the line at a minimal cost well into the future.
1.9. In some instances, the requirements or recommendations specified in this document may come into conflict with other issues such as permitting or local issues. These specifications may be adjusted and negotiated with the specific and written approval of the TO. The agreed negotiation of a relaxation of any specification for an individual project or circumstance does not automatically result in a subsequent revision in this guide. Subsequent instances must be addressed individually on a case-by-case basis.
1.10. The use of structure guys, and wood structures shall be approved by the TO.

2.0 CONDUCTORS

Conductors must be selected with sufficient thermal capability to meet continuous and emergency current ratings. Ratings of conductors applied to the PJM system should be determined using the PJM TSDS "Bare Overhead Transmission Conductor Ratings, November 2000".
The overhead line conductor and static wire should be chosen from those used by the TO. This provides the ability to quickly repair a section of line with utility stock material should an emergency arise. Standard transmission conductor types are ACSR, ACSR/AW, ACSS, and ACAR. Other conductor types will be reviewed by the TO.
The ambient temperature range listed in Table 1 covers the PJM system and is used for the electrical ratings of the conductors as well as the structural loads upon the towers or poles.

3.0 CONDUCTOR SAG \& TENSION CRITERIA

3.1 Alcoa-Sag \& Tension Common Point

The maximum tension case shall be allowed to default as the common point between the initial and final sag tables. No other common point shall be allowed. An example would be a common point based upon NESC Heavy conditions when calculated tensions for the 1-1/2" Heavy Ice case exceed those for the NESC case.

4.0 STRENGTH REQUIREMENTS

4.1. Structure Types - the following descriptions of structure types shall apply to the provisions for strength requirements
4.1.1. Suspension Structure - A structure where the phase conductors and static wires are attached through the use of suspension insulators and hardware or, in the case of the static wire, with a clamp not capable of resisting the full design tension of the wire.
4.1.2. Strain Structure - A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware but where the ability of the structure to resist a condition where all wires are broken on one side under full loading is not required or desired. Typically, strain structures would be used where the line deflection angle is 45 degrees or less. Structures subject to strain structure requirement shall be as identified by the Utility.
4.1.3. Dead-end Structure - A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware and where the ability of the structure to resist a condition where all wires are broken on one side under full loading is required or desired. Typically, dead-end structures would be used where the line deflection angle is greater than 45 degrees. Structures subject to dead-end structure requirement shall be as identified by the Utility.
4.1.4. Line Termination Structure - A structure where the phase conductors and static wires are to be installed on one side only for the purpose of terminating the line, usually at a substation or switchyard. This permanent dead-end condition is assumed in the application of all applicable loading conditions.

4.2. Loading Definitions

4.2.1. Wind Pressure - The pressure resulting from the exposure of a surface to wind. The pressure values provided are for wind acting upon objects with circular cross section. Pressure adjustments for other shapes shall be as set forth by the ASCE Guidelines for Electrical Transmission Line Structural Loading (ASCE Publication 74) [ASCE 74].
4.2.2. Radial Ice - Radial ice is an equal thickness of ice applied about the circumference of the conductors and static wires. Ice density is assumed to be 57 lbs per cubic foot. For the purpose of transmission line design, ice is not applied to the surface of the structure, insulators, or line hardware.
4.2.3. Temperature - Used for calculating conductor and static wire sag and tension.
4.2.4. Transverse load-Forces or pressures acting perpendicular to the direction of the line, For angle structures, the transverse direction is parallel to the bisector of the angle of the transmission centerline.
4.2.5. Longitudinal load-Forces or pressures acting parallel to the direction of the line. For angle structures, the longitudinal direction is perpendicular to the bisector of the angle of the transmission centerline.
4.2.6. All wires intact - A condition where all intended spans of conductors and static wires are assumed to be in place. In the case of a Line Termination Structure, conductor and static wire spans are only on one side of the structure.
4.2.7. Broken Conductor or Static Wire - A condition where one or more conductors or static wires are specified as broken. It is assumed that the broken conductor or static wire is in place on one side of the tower, and is removed from the other side. The span length for determination of loads from the conductor or static wire weight, wind pressure, and radial ice shall be not less than 60% of the design span length for the intact condition.
4.2.8. Load Factor - A value by which calculated loads are multiplied in order of provide increased structural reliability. For the purpose of structural design, Overload Capacity Factors as specified by NESC shall be considered Load Factors.

4.3. Design Loading Conditions

4.3.1. NESC - The provisions of the NESC Heavy Loading District, Class B Construction shall apply to all structure types. All wires intact. The latest NESC edition in effect at the time of line design shall apply. For informational purposes, the 1997 edition of NESC specifies the following requirements. Wind pressure -4 psf. Radial Ice -0.5 in. Temperature $-0^{\circ} \mathrm{F}$. For the purpose of calculating conductor or static wire tensions, a load constant of 0.3 lbs shall be added to the resultant of the per linear foot weight, wind, and ice loads on the conductor or static wire. For steel structures, the load factor for wind load is 2.50 ; the load factor for vertical loads (dead weight and ice) is 1.50 ; and the load factor for conductor and static wire tension is 1.65 . The associated factors for wooden transmission line structures shall be obtained from the TO.
4.3.2. Extreme Wind Loading Condition - Applies to all structure types. All wires intact.
4.3.2.1. Line voltage 230 kV and greater. Wind pressure applied to the wires shall be 25 psf . The ambient temperature is to be $60^{\circ} \mathrm{F}$. The wind pressure applied to the structure shall be 31.25 psf. Load factor is 1.00 .
4.3.2.2. Line voltage less than 230 kV . The provisions of the NESC Extreme Wind loading shall be applied, subject to a minimum wind pressure of 17 psf . The load factor is 1.00 . The provision in NESC permitting exclusion of structures less than 60 ft in height from extreme wind criteria shall not apply.
4.3.3. Heavy Ice Loading Condition - Applies to all structure types. All wires intact.
4.3.3.1. Line voltage 230 kV and greater. Radial ice thickness on the wires only is to be 1.50 in . No wind pressure. Temperature is $32^{\circ} \mathrm{F}$. Load factor is 1.00 .
4.3.3.2. Line voltage less than 230 kV . Heavy ice loading (if any) shall be as specified by the TO. Ice loading will not be more severe than that required for voltages 230 kV or greater.
4.3.4. Longitudinal Loading Conditions for Suspension Structures (line voltage 230 kV or greater) - The TO will specify one or more of the following loading conditions for design of Suspension Structures.
4.3.4.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. Tensions shall not be reduced by assumed insulator swing. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10 .
4.3.4.2. Differential Ice Loading. All wires intact. No Wind. Temperature $32^{\circ} \mathrm{F}$. All conductors and static wires on one side of the structure shall be assumed to have 1.0 in radial ice. All conductors and static wires on the other side of the tower shall be assumed to have no ice. The determination of differential tension may include calculated swing of suspension insulator or static wire assemblies. Load factor 1.10.
4.3.4.3. Bound stringing block-All wires intact. 2 psf wind. No ice. $30^{\circ} \mathrm{F}$. Any one static wire or phase conductor (or all subconductors of any one phase) are assumed to bind in a running block during installation. The block is assumed to swing 45° in-line. This swing will result in a longitudinal load equal to the calculated vertical load of the static wire or phase conductor(s) under this loading condition, Load factor is 2.00 .
4.3.5. Longitudinal Loading Conditions for Strain Structures - The TO will specify one or more of the following loading conditions for design of Strain Structures.
4.3.5.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10 .

OR
4.3.5.2. All conductors and static wires broken. Loading condition is NESC Heavy. Load factor is 1.00 .
4.3.6. Longitudinal Loading Condition for Dead End Structures - All conductors and static wires are to be intact on one side of the structure only. Loading condition is NESC Heavy. Load factors are those specified by NESC.
4.3.7. Longitudinal Loading Condition for Line Termination Structures - Conductors and static wires are to be intact on one side of the structure only. All loading conditions and load factors set forth by Section 4.3.1, 4.3.2, and 4.3 .3 shall apply.
4.3.8. Foundation Loading - The ultimate strength of overturning moment and uplift foundations shall be not less than 1.25 times the design factored load reactions of the structure. The ultimate strength of foundations subjected to primarily to compression load shall be not less than 1.10 times the design factored load reactions of the structure. Overturning moment foundations designed by rotation or pier deflection performance criteria shall use unfactored structure reactions for determination of the foundation performance, but shall use factored reactions for the 1.25 time ultimate strength check.
4.3.9. Personnel Support Loading - Structures shall be designed to support a point load of 350 lb at any point where a construction or maintenance person could stand or otherwise be supported.

5.0 ELECTRICAL DESIGN PARAMETERS

, 5.1 Right-Of-Way Width

The transmission line is to be designed with adequate right-of-way width to provide access for line maintenance, repair, and vegetation management as shown in Table 1. These widths are based upon the listed number of circuits on the right-of-way. For additional circuits, a wider right-of-way should be utilized.

Vehicle or other means of access to each structure site is required for both construction and maintenance activities.

5.2 Wire to Ground Clearance

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. (The safety envelope is required to allow for sag and clearance uncertainties due to: actual conductor operating temperature, conductor sagging error, ground topography accuracy, plotting accuracy and other sources of error. The inclusion of a safety envelope is considered to be prudent). The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature or maximum conductor loading. The minimum clearances should take into account the limitation of a 5 mA shock current as given in NESC Rule 232D3c. All areas beneath the line shall be assumed to allow vehicle access beneath the line. For agricultural areas that may utilize farming equipment, additional clearance will be provided to assure public safety and line reliability during the periods of farming and harvesting activities.
5.3 Wire to Signs, Structures, etc Under the Wires

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature.

5.4 Wire to Structure Clearances

The minimum clearances between the phase conductors and the supporting tower or pole șhall not be less than shown in Table 1. These clearances are to apply for all anticipated conductor positions from an every day condition to a displaced condition due to a $9-\mathrm{psf}$ wind or ice loading. These clearances do not have any adders provided for birds or other animals, but are based upon the switching surge values listed in Table \#1.

5.5 Wire-to-Wire Clearances

Clearance between the bottom transmission conductor and any lower wire shall meet the required clearance of NESC Rule 233 and 235as a minimum. When the lower wire is a non transmission wire, then the clearance should be at least 10 feet for voltages less than or equal to 230 kV , and 20 feet for voltages above 230 kV . This will allow safe personnel access to the non-transmission conductors. These clearances should be calculated with the transmission conductor at maximum operating temperatures or heavy ice, whichever provides greater conductor sag, and the non-transmission conductor at $0^{\circ} \mathrm{F}$.

Clearances between transmission conductors should be either the larger of clearances based upon switching surges, or clearances based on the NESC. The per unit switching surges to use for the calculation are shown in Table \#1.

Using switching surge values, the method used to determine the actual required clearance is given in section 5 of the EPRI Transmission Line Reference Book $115 \mathrm{kV}-138 \mathrm{kV}$ Compact Line Design.

For transmission conductors of different circuits, the clearances should be increased so that any wind induced dynamic conductor movement does not result in any breaker operations and subsequent reduction in transmission circuit reliability.

5.6 Conductor Operating Temperature and Conductor Sag

The conductor will be assumed to operate at or above the minimum temperature shown below, and at temperatures less than the maximum shown below. While the line conductor may be designed to operate at a lower temperature, the line must be sagged assuming the conductor temperature is at or above the minimum shown. For designed operating temperatures above the minimum shown, and still below the maximum, the line sag and clearances will be calculated for that operating temperature after rounding up to the nearest $10^{\circ} \mathrm{C}$. In no case will a conductor operating temperature be allowed above the maximum shown in the table. Refer to the PJM "Bare Overhead Transmission Conductor Ratings" for the ampacity and temperatures of conductors.

Conductor Type	Minimum Conductor Operating Temperature for Sagging and Clearance Purposes	Maximum Operating Temperature
ACAR	$100^{\circ} \mathrm{C}$	$140^{\circ} \mathrm{C}$
ACSR, ACSS	$125^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$

Consult with the local transmission utility for the maximum operating temperature since some companies use slightly different values. Higher values for ACSS conductors may only be used with specific approval from the TO. Studies of the long-term high temperature operation of all conductor-connected hardware must be investigated prior to the request for approval from the local transmission utility.

5.7 Insulation Requirements

The insulation system for the transmission line shall have values in excess of the leakage distance, 60 Hz wet, and Critical Impulse flashover specified in Table 1. These values shown are minimum conditions and may need to be increased in specific locations such as coastal environments, industrial smokestack sites, or high altitudes. (BIL values are not included here as they are associated with substation insulation and not transmission line insulation,)

5.8 Lightning Performance and Grounding

All transmission structures will be individually grounded through a dedicated earth driven grounding system composed of ground rods and / or buried counterpoise. This system is to be measured on each individual structure prior to the installation of any overhead conductors or wires. The maximum acceptable resistance measurement of this grounding system for voltages up to and including 230 kV is 25 Ohms , and 15 ohms for voltages 345 kV and greater. The grounding system may include radial counterpoise wires, equipotential rings, or both. The TO must approve all grounding methods, and connections to the grounding system that are below grade. These resistance requirements are to assure acceptable lightning performance on the line as well as provide for the safe grounding of the line by construction and maintenance forces.

Individual tower grounding measurements will be allowed to exceed the 25 or 15 Ohms required only if the average value for the 5 adjacent structures along the line is less than the 25 or $15-\mathrm{Ohm}$ restriction.

To assure acceptable lightning performance, a shield wire is required above each transmission line. The number of shield wires and the maximum shielding angles between the shield wire and phase conductor are shown in Table 1. Each new structure design is to be analyzed using , the EPRI MULTIFLASH or equivalent software to determine that the line design and actual grounding design provides the required lightning performance shown in Table 1.
In instances where it is very difficult to provide the required lightning performance, the TO may grant permission to utilize a limited application of transmission lines arresters. In no case will chemical ground treatments be allowed to improve structure grounding.
5.9 EMF, RFI, TVI, and Audible Noise

The transmission line system is to be designed so that radio and TV interference is just perceptible at the edge of the right-of-way. This is typically the case with radio signal to noise ratios above 20 db , and TV signal to noise ratios above 40 db . The achievement of this level of performance is more of a problem for lines above 230 kV , so a radio frequency survey and investigation should be performed to measure actual radio and TV signal strength and calculate the signal to noise ratio.

Audible noise at the edge of the right-of-way should be calculated for the designed transmission line using wet conductor as the design condition. The resultant noise level must not exceed the level limited by the state and local authorities. Typically the limitation is 55 dbA during the daylight hours, and 50 dbA at night.

Electric and Magnetic Field (EMF) levels are to be calculated using the EPRI ENVIRO or equivalent software and compared to any state or local limits. Modifications are to be made through phasing, structure height, ground clearance, etc. to assure these limitations are met. If no specific limitations exist, the line should be designed to the level of EMF on and adjacent to the right-of-way. A typical example of such an effort is the appropriate choice of phasing on the right-of-way.

5.10 Inductive Interference

A study should be done to determine the inductive impact upon other utilities due to the power flow in the new transmission line. The power flow may induce unusual currents and voltages in magnetic and electrical conductors that run parallel to the transmission line.

When it is determined that the currents or voltages are being induced in nearby utilities or other facilities, the engineer for the new or modified line being constructed must take the appropriate corrective actions to eliminate or lower the currents or voltages to an acceptable level.

5.11 Line Transpositions

The transmission line designer may be required to transpose the geometry of a new transmission line if the voltage imbalance exceeds the tolerance of the TO at the substations the line connect s to. If transpositions structures are required, they shall be designed to provide for easy routine maintenance of the structure.

5.12 Line Crossings

Line crossings should be avoided if possible, but when line crossings are unavoidable they should be configured such that the most important circuits to the transmission network are on top. Additionally, crossings must be configured such that a single component failure will not outage more than one other circuit (beyond the circuit with the failed component). This is in accordance with MAAC Criteria.

6.0 OTHER DESIGN PARAMETERS

6.1 Line Cascade Mitigation

Transmission line failures that cascade beyond the original structural failure must be avoided. To accomplish this, the design of a new or modified line shall incorporate dead-end strain structures routinely employed along the line. An alternative is to utilize suspension structures that are longitudinally guyed to resist full line tension if all wires on one side were broken. For wood construction, the strain structures shall also have in-line storm guys utilized to provide the structural strength. The line tensions assumed for this condition are the NESC Heavy loadings on one side of the structure as defined above, and no tension on the other. The structures shall be placed routinely along the line to resist a line cascade, but in no case shall these structures be placed farther than 5 miles apart.

6.2 Corrosion Protection

Corrosion protection will be evaluated for all buried structural steel on transmission structures. This covers buried grillage, driven caissons, etc. The line designer will submit a recommendation to the TO for the corrosion mitigation method to be used for buried structural steel. The proposed method must show at least a 50 year durability before any degradation of
, structural strength is allowed. It is acceptable to include systems that require some routine maintenance such as cathodic protection using buried sacrificial anodes.

Above grade steel will be protected from corrosion using a coating acceptable to the TO. Typical alternatives that have been used include weathering steel, galvanized steel, or painted steel.

6.3 Climbing Devices

6.3.1 Steel pole structures shall utilize climbing ladders. The TO shall specify the requirements and placement of the climbing ladders.
6.3.2 All steel towers shall be designed with step bolts as the provision for climbing. The TO shall specify the requirements and placement of the step bolts.

7.0 MAINTENANCE

For maintenance see section V.L.2.A

TABLE 1 Transmission Line Design Parameters						
	Requirements			Recommendations		
Parameter	500 kV	345 kV	230 kV	138 kV	115 kV	69 kV
Ambient Temperature Range	$\begin{gathered} -30^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ \text { (from }-40^{\circ} \mathrm{C} \mathrm{~N} \mathrm{\&} \mathrm{~W} \mathrm{of} \mathrm{Blue} \mathrm{Mountain)} \end{gathered}$			$-30^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$(from $-40^{\circ} \mathrm{C} \mathrm{N} \mathrm{\&} \mathrm{W} \mathrm{of} \mathrm{Blue} \mathrm{Mountain)}$		
Minimum Extreme Wind Loading			New Line NESC Figure 250-2 or a minimum wind pressure of 17 psf . Existing Line Larger of: NESC Figure 250-2 OR the original line design parameters	Existing Lin	New Lin C Figure NESC esign pa	R the original
Heavy Ice Load (No Wind)	$11 / 20$			Consult the TO for applicable heavy ice loading requirements		
Code Requirements	NESC Grade "B" Heavy			NESC Grade "B" Heavy		
Flood Plain	The line shall meet the applicable Local, State and Federal regulations.			The line shall meet the applicable Local, State and Federal regulations,		
Sag and tension Calculation Method	Alcoa Sag \& Tension Software or equivalent			Alcoa Sag \& Tension Software or equivalent		
Damper Requirements Galloping Mitigation	<18\% RBS (No dampers Required) 18\% - 20\% RBS (Dampers Required)			$<18 \%$ RBS (No dampers Required) $18 \%-20 \%$ RBS (Dampers Required)		
Galloping Mitigation Spacers Prer	Provide adequate clearance so that 12 " of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloping history.			Provide adequate clearance so that $12^{\prime \prime}$ of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloping history.		
Provisions for Live	18" spacing - NO Preformed wire spacers allowed.			18" spacing - NO Preformed wire spacers allowed.		
Line Maintenance	As required by the TO.			As required by the TO.		
Access Requirements	Construction and maintenance access is required to each structure.			Construction and maintenance access is required to each structure.		
sizes for NEW Construction	Match approved conductor sizes and bundle configuration with local utility company			Match approved conductor sizes and bundle configuration with local utility company		

Originally Issued:
Revised: $\quad 5 / 17 / 02$
DMS \#84474 Page 12 of 12
Section V.A Overhead Transmission Lines

Ms. Pamela Underhill Superintendant Appalachian National Scenic Trail PO Box 50252 McDowell Street Harper's Ferry, WV 25425

Mr. John J Donahue
Superintendant
National Park Service
Delaware Water Gap National Recreation Area Bushkill, PA 18324

RE: PJM TSDS TECHNICAL REQUIREMENTS

Dear Ms Underhill and Mr. Donahue:
I have reviewed the PJM TSDS Technical Requirements document, the subject of your September 13, 2010 letter, with our technical staff and with our Legal Department. That document was under development in the 2001-2002 timeframe among the transmission owners in the Mid-Atlantic portion of PJM, then the entirety of the PJM footprint. With the integration of a number of Western and Southern transmission owner systems into PJM the document was never finalized and approved for use. At this time, it serves only as a set of guidelines and the controlling document is the ANSIIIEEE National Electrical Safety Code.

If you have any further questions, please call me at 610-666-8834.

Steven R. Herling
Vice President - Planning

SRH/nbm: 611587

IN REPI Y REFER TO:

United States Department of the Interior

NATIONAL PARK SERVICE
Delaware Water Gap National Recreation Area
Bushkill, Pennsylvania 18324

D5015

NOV 182010

Mr. Gregory Smith
Manager - Transmission Expansion
PPL Electric Utilities
Two North Ninth Street, GENPL3
Allentown, PA 18101-1179
Dear Mr. Smith:
As we review the draft alternatives and associated comments, we need to clarify a point regarding the contention that the proposal can be constructed within the existing one hundred (100) foot right of way. All other discussions of safety and regulatory requirements aside, our understanding from previous discussion with you and your team is that you believe you can construct the proposed project within the existing ROW with one caveat. That caveat is that you also have the right to clear what you deem to be "danger trees" found outside of your deeded ROW and located on National Park Service Lands. Please verify or correct our understanding of your assertion in this matter at the earliest possible date. Thank you for your kind attention to this matter.

Sincerely,

Pam Underhill
Superintendent
Appalachian National Scenic Trail
(304) 535-6279

Recreational River

(570) 426-2418

Cc: Andrew Tittler, DOI Office of the Solicitor Patrick Lynch, National Park Service, DEWA Kara Deutsch, National Park Service, DEWA Sarah Bransom, National Park Service, APPA Amanda Stein, National Park Service, DEWA Patrick Malone, National Park Service, DSC Jennifer McConaghie, National Park Service, NER

Clint Riley, U.S. Fish and Wildlife Service
Pamela Shellenberger, U.S. Fish and Wildlife Service
Denver Service Center - TIC
Attn: SRLINE EIS
12795 W. Alameda Parkway
Denver, CO 80225-0287

Mr. John J. Donahue
Superintendent
National Park Service
Delaware Water Gap National Recreation Area
Bushkill, PA 18324
Ms. Pamela Underhill
Superintendent
Appalachian National Scenic Trail
National Park Service
P.O. Box 50

Harpers Ferry, WV 25425

Re: PPL Electric Utilities Corporation/Vegetation Management In the Delaware Water Gap National Recreation Area ("DEWA")

Dear Mr. Donahue and Ms. Underhill:
Thank you for the opportunity to respond to your letter of November 18, 2010, regarding the need and right of PPL Electric Utilities Corporation ("PPL Electric") to clear what PPL Electric identifies as "danger trees." The answer to your question is that PPL Electric does need to remove danger trees with respect to the 100 -foot alternative and, in fact, has the right to remove danger trees under its existing easements.

The relevant easement agreements include the following language:
And, further, in consideration of said payments, we do hereby release and quit claim the said Pennsylvania Power \& Light Company, its successors, assigns and lessees, of, and from any and all damages, loss or injury that maybe at any time caused by or result from the construction, reconstruction, operation and maintenance of the said lines, or the trimming or cutting down of any and all trees which, in the judgment of the said Company, its successors, assigns and lessees, may interfere with the construction, reconstruction, maintenance or operation of the said lines or menace the same.

Based on the above language, PPL Electric has the right to cut and remove danger trees. Further, as you are aware, PPL Electric has been removing danger trees as part of its vegetation management program for many years.

PPL Electric also has the right to remove danger trees consistent with the Stipulation and Order of Settlement that was entered into between PPL Electric and the National Park Service that was approved by the District Court for the Middle District of Pennsylvania on August 19, 2010. In that stipulation it was agreed that PPL Electric has the right to perform vegetation management consistent with its easement rights and its Transmission Vegetation Management Program ("TVMP"). That Stipulation also indicated that the work this past year would be done consistent with the Scope of Work provided to NPS on May 19, 2010. Both the TVMP and the Scope of Work includes the removal of danger trees and, consistent with its easement rights and historical practice, PPL Electric removed 11 danger trees when the work was performed this past year.

Finally, PPL Electric notes that it is required by federal regulation to protect all of its transmission lines from trees and other vegetation that could come in contact with or otherwise impair the reliability or safety of the lines. Failure to protect the lines would subject PPL to fines under federal regulation.

Again, thank you for the opportunity to respond to your question. If you are in disagreement with PPL Electric's position, please advise at your earliest convenience.

Very truly yours,

Gregory J. Smith
cc: Ronald J. Reybitz, Esq. John Lain, Esq.

Patrick J. McMackin

In regards to: SRLINE EIS 25147

Delaware Water Gap National Recreation Area
c/o Amanda Stein
HQ River Road, Off Route 209
Bushkill, PA 18324

Dear Ms. Stein:
Thank you again for taking the time to conference call with us on 18 January 2011. Hopefully, NPS and EA found this time well spent. As a follow-up to the discussion during that call and in an effort to further help the NPS and EA with the EIS process, we reviewed the information that was provided on File-Works over the last several years. We thought it might be helpful to consolidate all associated files in a new, single folder titled "Existing 100 foot ROW Alternative."

In regards to your specific information requests, we also reviewed each of the documents and identified the exact location of the information and provided a summary below. Lastly, we have updated some of the documents to remove outdated information.

The following summary should help provide some clarity and assist with locating the specific information requested on the existing 100^{\prime} ROW alternative. Attachment 1 contains detailed references to the documents and pages that contain the information we believe will help in your analysis.

Access Routes/Roads:

All associated access routes/roads for the existing 100° ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. Although there are additional transmission structures needed for this alternative, the same access routes/roads needed to access and remove existing structures will be utilized for access to these additional transmission structures. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

Transmission Structure Locations, Heights and Spans

The associated transmission structures B17-4, B17-5 and B17-6 for the existing 100^{\prime} ROW alternative are the same as those that would be utilized for the Applicants' original proposed route. There are two additional transmission structures needed on NPS property for this alternative: B17-3A and B17-5A. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

Transmission Structure Crane Pads:

The associated transmission structure crane pads for B17-3, B17-4, B17-5 and B17-6 for the existing 100 ' ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. However, there are two additional transmission structures (B173 A and $\mathrm{B} 17-5 \mathrm{~A}$) that will require crane pads that will be entirely on NPS property. Additionally, an additional transmission structure (B17-2A) located outside NPS property will require an extra crane pad that will be approximately one-half on NPS property. Lastly, no new crane pads will be required for the removal of the existing structure on NPS property. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

100' Right-of-Way Boundaries

These are the same ROW boundaries currently granted PPL for the operations of the existing 230 kV transmission line.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the boundaries for the current PPL ROW for the existing 100^{\prime} ROW alternative. The ROW boundaries are identified on both page 1 and 2 by solid black lines, as noted in the Legend.

Vegetation Management - Access Road Construction

All construction vegetation clearing associated with the construction of the access routes/roads for the existing 100^{\prime} ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. Although there are additional transmission structures needed for this alternative, the same access routes/roads needed to access and remove existing structures will be utilized for access to these additional transmission structures.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed access roads for the existing 100^{\prime} ROW alternative. This document provides an aerial view of the portion of the line that would be modified to accommodate construction of the new transmission line within the existing ROW. Reference the "Access Routes/Roads" section in Attachment 1 for more details.

Vegetation Management - Transmission Structure Construction and Removal

It is expected that additional clearing for the construction vegetation clearing associated with the construction and removal of transmission structures for the existing 100^{\prime} ROW alternative will be very minimal, depending on the time passed since the last wire zone/border zone routine vegetation management associated with the existing 230 kV transmission line ROW currently operating on NPS property. The primary difference between the existing 100' ROW alternative and the Applicants' original proposed route is that the width of the ROW and associated clearing will be reduced by twenty-five (25) feet on each side. Additionally, more clearing including grubbing, would be required in the additional crane pad areas (B17-2A, B17-3A and B17-5A). There will be no additional clearing beyond what is presently required from the last structure in Pennsylvania, B17-6, to the Delaware River and the New Jersey border.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structures and crane pads for the existing 100^{\prime} ROW alternative. Reference the "Transmission Structure Locations" and "Transmission Structure Crane Pads" sections in Attachment 1 for more details.

Vegetation Management - Transmission Line Operations

It is expected that additional vegetation management for the operations of the existing 100^{\prime} ROW alternative will be very minimal compared to the ongoing wire zone/border zone routine vegetation management associated with the existing 230 kV transmission line ROW currently operating on NPS property. The primary difference between operations of the existing 100' ROW alternative and the Applicants' original proposed route is that the width of the ROW and associated clearing will be reduced by twenty-five (25) feet on each side. Additionally, as a result of the reduced ROW and clearing, vegetation management activities will be more routine (likely annually), there will be a lower tolerance for danger trees outside the ROW, the option for aerial clearing and maintenance will be eliminated, and access roads will need to be maintained in a more functional state. There will be no additional clearing from the last structure in Pennsylvania, B17-6, to the Delaware River than would be required for the existing 230 kV transmission line ROW currently operating on NPS property.

Additionally, the document titled " 100 ' ROW Information.PDF" contains more information on the minimum vegetation management cycle. Assuming an annual two (2) foot growth rate, the minimum cycle for all spans is currently expected to be every three years. However, for the span between B173A and B17-4 it is expected to be every year. This is based on the remaining buffer from tree line. This span is primarily over the existing Arnott Fen which currently does not promote the growth of tall vegetation.

Transmission Structure Maintenance

The steel mono-pole structures proposed for use do not require routine painting. Therefore, the associated routine maintenance that has historically been performed on the existing transmission structures, specifically the lattice towers, will no longer be required. Painting will also not be required for the structures in the Applicants' original proposal.

Traffic and Visitor Impacts

Due to the additional structures required for the 100^{\prime} ROW alternative, construction duration is currently estimated to be an additional 2 weeks. Impacts to traffic and visitors should be relatively minor as work is anticipated to be scheduled during the winter months. Also reference the Follow-up to Data Request: \#108, included in the data request response package dated September 15, 2010 and posted in File Works. To access this document (Followup Data Request 09152010 Responses.pdf) in File Works, open the "DEWA" folder, then the "Data Gap Responses" folder and lastly, the "Followup 9-15-10 Responses" folder.

Updated Documents

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf," which provides an aerial view and identifies the proposed access roads for the existing 100^{\prime} ROW alternative, has been updated. A new document titled "B17_PA_DEWA_Access_01272011.pdf" has been prepared. Obsolete project information has been removed and additional data labels added. We hope this further helps support the NPS and EA in their efforts.

Lastly, the latest version of the PPL EU "Specification for Initial Clearing and Control Maintenance of Vegetation On or Adjacent To Electric Line Right-of-Way through Use Of Herbicides, Mechanical, and Hand-clearing Technique - LA-79827-8" has been uploaded to File-Works in the folder titled "Vegetation". Changes associated with this latest revision are noted on page 2 of the document.

The Applicants stand ready to continue to provide any additional support needed to ensure a timely, accurate and complete EIS process. Should NPS or EA require any additional information or wish to discuss this or any other information provided, please feel free to contact Jeff Luzenski, 610-774-4184, or myself.

These documents are also available electronically on the enclosed CD, and have been uploaded today to the project's File-Works site.

In addition, two hard copies and one CD have been sent to the Appalachian National Scenic Trail c/o Sarah Bransom, and a hard copy to the Denver Service Center for inclusion in the administrative record. Additionally, one CD has been sent to Andrew Tittler at the Office of the Solicitor and one CD to EA Engineering Science and Technology, Inc.

Please let me know if additional copies are needed.
Sincerely,

Patrick J. McMackin, P.E.
Project Director
Susquehanna-Roseland Project
PPL Electric Utilities
2 N. Ninth Street (Plaza)
Allentown, PA 18101
pjmcmackin@pplweb.com
Office: 610-774-3526
Cell: 610-577-6715

Attachment 1

100 Foot ROW Alternative Details

The following provides additional information from documents referenced above.

Access Routes/Roads:

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed access roads for the existing 100^{\prime} ROW alternative. This document provides an aerial view of the portion of the line that would be modified to accommodate construction of the new transmission line within the existing ROW. The document identifies the Delaware Water Gap NRA boundaries, the boundaries of the ROW (including the proposed 100^{\prime} ROW sections), existing transmission structures, proposed transmission structures, the proposed transmission line, surveyed wetlands, proposed crane pad locations and sizes, the proposed access routes/roads and associated, approximate clearing area needed for the access routes/roads.

Page 1 identifies the "Existing Alternate Route" as a dotted yellow line, as noted in the Legend. Specifically identified are the access routes/roads off of:

River Road to proposed new transmission structure B17-2. (Note: This proposed new transmission structure and its associated access route/road are not on NPS property. The access route/road and new transmission structure B17-2 are identical to those for the proposed route originally submitted by the applicants. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line.)

River Road to existing structure 37-2 and to proposed new transmission structure B17-2A (Note: This transmission structure, B17-2A, and a majority of its associated access route/road are not on NPS property). Only approximately 250' of the access route/road will be on NPS property and on the existing PPL ROW. Approximately only one-half of the crane pad for the new transmission structure B17-2A will be on the NPS property and within the existing PPL ROW. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line.)

River Road to existing structure 37-3 and to proposed new transmission structure B17-3 (Note: This proposed new transmission structure and its associated access route/road are not on NPS property. The access route/road, its crane pad and new transmission structure B17-3 are identical to those for the proposed route originally submitted by the applicants. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line. However, approximately only one-half of the crane pad for the new transmission structure B17-3 will be on the NPS property and within the existing PPL ROW.)

Community Drive to existing structure 38-1 and to proposed new transmission structure B173A. (Note: This new transmission structure, B17-3A, its crane pad and its associated access route/road are all on NPS property. The crane pad for the new transmission structure B17-3A
will be on the NPS property and within the existing PPL ROW. The associated access route/road to these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Page 1 also identifies the "New Preferred Route" as a dashed yellow line, as noted in the Legend. Specifically identified is the access route/road off of:

Community Drive to existing structure 38-1 and to proposed new transmission structure B17-4. (Note: Page 1 only shows the initial portion of a USFWS preferred access route/road that the applicants are currently planning to utilize. This new access route/road is on NPS property. The applicants are currently planning to utilize this access route/road as a result of an onsite investigation and consultation with the PA FBC and USFWS that occurred subsequent to the applicants' original submittal. This new preferred route will help further minimize any potential bog turtle issues as identified by the PA FBC and USFWS. Additionally, the removal of a stream crossing grate on the existing proposed access route/road by NPS personnel subsequent to the applicants' original submittal, further supports the use of this new preferred access route/road.)

Page 2 identifies an "Existing Alternate Route" as a dotted yellow line, as noted in the Legend (The same as page 1.). Specifically identified are the access routes/roads from:

Proposed new transmission structure B17-4 to proposed new transmission structure B17-5. (Note: This proposed new transmission structures and its associated access route/road are all on NPS property. The access route/road, new transmission structures B17-4 and B17-5, and associated crane pads are identical to those for the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Proposed new transmission structure B17-5 to existing transmission structure 38-3. (Note: This proposed new transmission structure and its associated access route/road are all on NPS property. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Existing transmission structure 38-3 to proposed new transmission structure B17-5A. (Note: This proposed new transmission structure and its associated access route/road are all on NPS property. The access route/road between the existing structure and the proposed new transmission structure B17-5A is identical to the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Proposed new transmission structure B17-5A to proposed new transmission structure B17-6 and existing transmission structure 38-4. (Note: This proposed new transmission structures and its associated access route/road are all on NPS property. The access route/road, the new transmission structure B17-6 and its associated crane pad are identical to those for the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Page 2 also identifies a "New Preferred Route" as a dashed yellow line, as noted in the Legend. Specifically identified is the remaining section of the access route/road off of:

Community Drive to existing structure 38-2 and to proposed new transmission structure B17-4. (Note: Page 2 only shows the final portion of a USFWS preferred access route/road that the applicants are currently planning to utilize. As stated above, this new access route/road is on NPS property. The applicants are currently planning to utilize this access route/road as a result of an onsite investigation and consultation with the USFWS that occurred subsequent to the applicants' original submittal. This new preferred route will help further minimize any potential Bog Turtle issues as identified by USFWS. Additionally, the removal of a stream crossing grate on the existing proposed access route/road by NPS personnel subsequent to the applicants' original submittal, further supports the use of this new preferred access route/road.)

Transmission Structure Locations

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structures for the existing 100' ROW alternative.

Page 1 identifies the approximate location of each "Existing Transmission Structure" as an orange box, as noted in the Legend. Specifically identified are two existing transmission structures currently on NPS property.

Page 1 also identifies the approximate location of each "Proposed Transmission Structure" as red box, as noted in the Legend. Specifically identified on page 1 are:

- B17-3A (Note: This is an additional structure on NPS property that would be needed to support the existing 100^{\prime} ROW design and operations. All other proposed transmission structures on page 1 are not on NPS property.)

Page 2 identifies the approximate location of each "Existing Transmission Structure" as an orange box, as noted in the Legend (same as page 1). Specifically identified are three existing transmission structures currently on NPS property.

Page 2 also identifies the approximate location of each "Proposed Transmission Structure" as red box, as noted in the Legend (same as page 1). Specifically identified on page 2 are:

- B17-4 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)
- B17-5 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)
- B17-5A (Note: This is an additional structure on NPS property that would be needed to support the existing 100^{\prime} ROW design and operations. All other proposed transmission structures on page 1 are not on NPS property.)
- B17-6 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)

Transmission Structure Heights

The document titled "Blowout Rev2.pdf" is the Finite Element Sag Tension Report. Page 11 of this report has a plan and profile of the existing 100^{\prime} ROW alternative. The respective height and elevation of each structure is noted on this page.

Summary of information in document "Blowout Rev2.pdf" follows:

- B17-3A: "ht $=184.01$ ele $=528.00$ "
- B17-4: "ht =184.01 ele $=533.00$ "
- B17-5: "ht =184.01 ele $=509.00$ "
- B17-5A: "ht $=184.01$ ele $=695.00$ "
- B17-6: "ht $=184.01$ ele $=532.00$ "

Transmission Line Spans:

The document titled "Blowout Rev2.pdf" is the Finite Element Sag Tension Report. Page 11 of this report has a plan and profile of the existing 100^{\prime} ROW alternative. The respective span between each structure is noted on this page.

Summary of information in document "Blowout Rev2.pdf" follows:

- B17-2 to B17-2A: "417.58"
- B17-3 to B17-3A: "573.51""
- B17-3A to B17-4: "1058.11"
- B17-4 to B17-5: "587.82" (Note: Same as Applicants' proposed route.)
- B17-5 to B17-5A: " 528.21 "
- B17-5A to B17-6: "749.86"

Transmission Structure Crane Pads:

The document titled "DEWA existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structure crane pads for the existing 100^{\prime} ROW alternative.

Summary of information in document "DEWA_existing_ROW_Alternative_12142009.pdf" follows:
Page 1 identifies the approximate location of each "Crane Pad" as a gray rectangle, as noted in the Legend. Specifically identified on page 1 are:

- B17-2A crane pad (Note: This additional crane pad, a portion (approximately one-half) of which is on NPS property and entirely located within PPL's existing ROW, would be needed to support the existing 100° ROW design and construction.)
- B17-3 crane pad (Note: This is crane pad, a portion (approximately one-half) of which is on NPS property and entirely located within PPL's existing ROW would the same as the same one that would be utilized for the Applicants' original proposed route.)
- B17-3A (Note: This additional crane pad, located entirely on NPS property and PPL's existing ROW, would be needed to support the existing 100^{\prime} ROW design and construction.)

Page 2 identifies the approximate location of each "Crane Pad" as gray rectangle, as noted in the Legend (same as page 1). Specifically identified on page 2 are:

- B17-4 crane pad (Note: This crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)
- B17-5 crane pad (Note: This crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)
- B17-5A crane pad (Note: This additional crane pad, located entirely on NPS property and within the existing PPL ROW, would be needed to support the existing 100' ROW design and construction.)
- B17-6 crane pad (Note: This is crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)

[^0]: Stds Team Leader (C. L. Wright): Cy?
 Standards Services (M. Brimhall): $-2+1+3$

[^1]: Transmission Construction Standard
 Clearances from Buildings, Bridges, and Other Installations (NESC 234)

[^2]: Stds Team Leader (C. L. Wright): Standards Services (M. Brimhall):
 cos. anater

[^3]: ${ }^{1}$ Except for possible modifications to existing 69 kV lines, it is unlikely that NU will construct any new 69 kV lines. Therefore, this standard covers 115 and 345 kV lines only, and 115 kV line clearances would apply to any new 69 kV lines.

[^4]: ${ }^{1}$ PPL Electric maintains that it is not limited to 100 feet for reconstruction for all but one of the easements. However, it has chosen not to challenge the NPS determination on that issue. Therefore, for purposes of this letter it is assuming that the easements in question do limit its construction to within a 100 -foot right-of-way.

