

Appendix D

NPS and Applicant Correspondence Regarding Alternative 2b

APPENDIX D: NPS AND APPLICANT CORRESPONDENCE REGARDING ALTERNATIVE 2B

Gregory J. Smith Manager-Transmission Expansion

PPL Electric Utilities Two North Ninth Street, GENN5 Allentown, PA 18101-1179

P. 004/008

June 16, 2010 In regards to: SRLINE EIS 25147

Amanda Stein Delaware Water Gap National Recreation Area HQ River Road, Off Route 209 Bushkill, PA 18324

Dear Ms. Stein:

The Applicants have reviewed the NPS consultant's analysis of the Existing ROW Alternative, in particular using the existing 100' ROW for several spans in Pennsylvania. It appears that your consultant used a higher wind loading than is required to calculate the blow-out of the conductors. The wind loading used by the Utilities is a 6 psf load. For a detailed explanation of why a 6 psf wind load is appropriate, and the codes referenced to perform the blow-out calculations, see the attached report.

Furthermore, it should be clarified that the Existing ROW Alternative would use PPL EU's existing land rights. Such rights are only limited to 100 feet in five spans, not throughout the entire park in Pennsylvania Using the structure identifiers in your report, this would equate to the spans between structures 3-4, 5-6, 6-7, 7-8, and 9-10.

Sincerely,

Theyney L

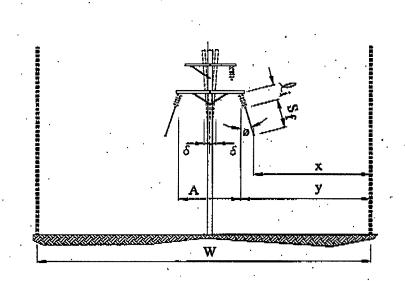
Gregory J. Smith Manager-Transmission Expansion Enclosure (1)

CC:

John Donahue, Delaware Water Gap National Recreation Area Pam Underhill, Appalachian National Scenic Trail

Sargent & Lundy LLC

Segment B17 100' ROW Feasibility Study


6/11/2010

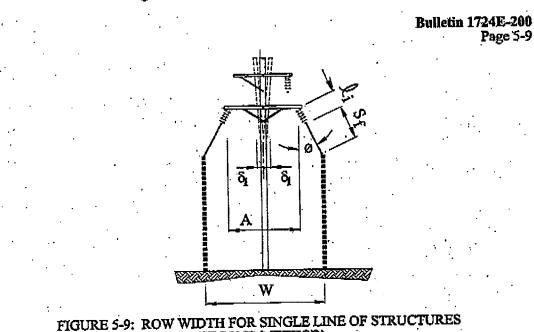
For verifying the feasibility of utilizing PPL EU's existing ROW through the Pennsylvania portion of the Susquehanna – Roseland Project within DEWA, NESC regulations and industry standard guidelines set forth in RUS Bulletin 1724E-200 were followed. This includes the section where the existing ROW is 100'. Included below is a summary of calculations performed and references cited by S&L to make the conclusion that the new 500kV circuit construction was feasible for the existing ROW.

Typical ROW widths are established based on required clearances to objects (usually buildings) that are or may in the future exist along the edge of the ROW. The ROW width is calculated using formulas that account for horizontal wire displacement, horizontal wire spacing, structure deflection and horizontal clearance requirements from the wire. The two figures below are taken from the RUS Bulletin as a recommendation for ROW width of a transmission line.

Bulletin 1724E-200 Page 5-8

5.4.1 <u>First Method</u>: This method provides sufficient width to meet clearance requirements to buildings of undetermined height located directly on the edge of the right-of-way. See Figure 5-7.

FIGURE 5-8: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (FIRST METHOD)


 $W = A + 2(\ell_1 + S_r)\sin\phi + 2\delta + 2x$

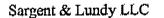
Eq. 5-3

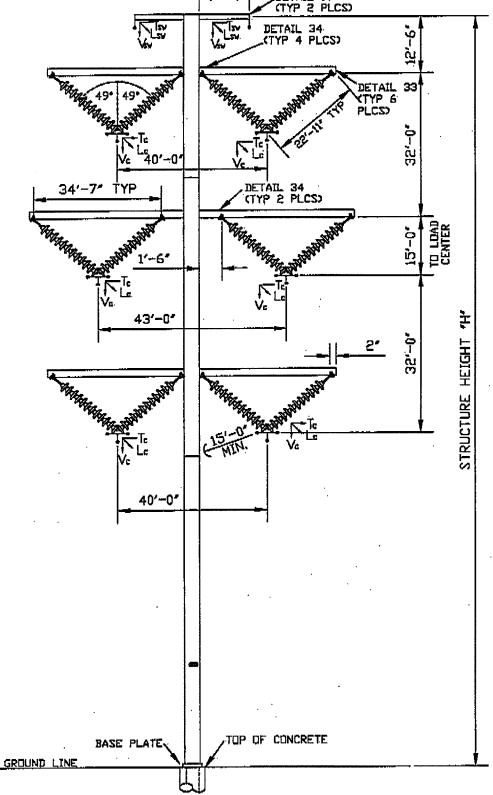
6/11/2010

Sargent & Lundy LLC

Segment B17 100' ROW Feasibility Study

(SECOND METHOD)


From Figure 5-9 it can be seen that the formula for the width is:


$$W = A + 2(\ell_1 + S_f)\sin\phi + 2\delta_1 \qquad \text{Eq. S-4}$$

As defined in the figures, A represents the horizontal spacing between the outer wires and x represents the required clearance from the conductor to the edge of the ROW. The remaining terms represent the deflection of the structure (δ) and the horizontal displacement of the wire ({ ℓ +S}sin Φ). The first figure represents the calculation for the ROW width using the wire displacement and clearance values under 6psf wind loading as defined in Rule 234 of the NESC. The second figure represents an alternative method for determining the ROW using higher wind values. The wind values used in this second method are dependent upon the region the line is located in and is established by the transmission line owner during the design phase of the line. Notice that there is no required clearance beyond the conductor position under this method.

As set forth in the approved Design Basis Document dated March 6, 2009, the Horizontal clearance requirement from a wire/conductor displaced by a 6 psf wind to the edge of the ROW is 17'. The basis for this value is established in Rule 234 of the NESC with an additional margin of safety voluntarily included by PPL Electric Utilities. Included below is a standard structure configuration.

6/11/2010 Segment B17 100' ROW Feasibility Study 10'-0" DETAIL 31 (TYP 2 PLCS) DETAIL 34 (TYP 4 PLCS) 12'-6' 33

6/11/2010

Sargent & Lundy LLC

Segment B17 100' ROW Fcasibility Study

During the analysis, structure locations were modified in order to shorten the spans and reduce the maximum horizontal displacement of the wire to allow the line to fit within the existing 100' ROW. It was determined that the Method 1 calculation would be the controlling case for determining the required ROW width. To calculate the required ROW width using method 1, the following parameters were used:

A-43'

 $\delta - 1$ ' (This value is established as the deflection limit for the structure)

x - 17 (An additional 3' was added to the required NESC value per PPL EU standard procedure)

 $\{\ell+S\}\sin\Phi - 10^{\circ}$ (The maximum conductor blowout of the line under 6 psf wind)

From this calculation, it is apparent that the required width of ROW for this line is 99'. This is less than the 100' existing ROW limitation and therefore represents a feasible option for the new line.

IN REPLY REPER TO

United States Department of the Interior

NATIONAL PARK SERVICE Delaware Water Gap National Recreation Area Bushkill, Pennsylvania 18324

D5015

JUL 14 2010

Mr. Gregory Smith Manager, Transmission Expansion PPL Electric Utilities Two North Street, GENN5 Allentown, Pennsylvania 18101-1179

Dear Mr. Smith:

We are writing in response to your correspondence of June 16, 2010, addressed to Ms. Amanda Stein.

Our consultant, EA Engineering, Science and Technology, Inc. and their sub-contractor, David Evans and Associates, Inc. have provided us with additional materials supporting the assertion that the 100 foot right-of-way in the Delaware Water Gap National Recreation Area is insufficient in maintaining compliance with National Electric Safety Code (NESC) for your proposed transmission line expansion and upgrades.

Once you have reviewed the materials provided with this letter, we suggest holding a meeting or conference call between our respective engineers and staff to resolve any differences in opinion.

Thank you for your attention to this matter.

Sincerely,

Karoth

John J. Dohahue Superintentient Delaware Water Gap National Recreation Area & Middle Delaware National Scenic and Recreational River (570) 426-2418

Pamela Underhill Superintendent Appalachian National Scenic Trail (304) 535-6278

Cc:

Andrew Tittler Patrick Lynch Kara Deutsch Sarah Bransom Amanda Stein

Samuel Reynolds, Chief, Application Section II U.S. Army Corps of Engineers Philadelphia District, Regulatory Branch Wanamaker Building, 100 Penn Square East Philadelphia, Pennsylvania 19107-3390

Wayne Poppich U.S. Army Corps of Engineers Pocono Area Field Office 253 State Route 435 STE 4 Clifton Township, Pennsylvania 18424

Denver Service Center - TIC Attn: SRLINE EIS 12795 W. Alameda Parkway Denver, CO 80225-0287

Enclosures:

P. 0037003

(FAX)570 426 2402

NPS, Delaware Water Gap NRA

707-14-5010(MED) 12:15

June 24, 2010

Amanda Stein Delaware Water Gap National Recreation Area HQ River Rd off Route 209 Bushkill, PA 18324-9999

SUBJECT: SRLine EIS 25147

Dear Ms. Stein:

We recently sent a memo to Suzie Boltz in response to Gregory Smith's June 16th letter. The attached binder includes the reference materials and calculations DEA utilized to verify that a 100' ROW within in the Delaware Water Gap Recreation Area is insufficient to meet the National Electric Safety Code (et al).

Please use for any reference needs you might have and do not hesitate to let us know if further questions arise.

Sincerely,

DAVID EVANS AND ASSOCIATES, INC.

Paul Capell Vice President, Energy

Copies: file Attachments/Enclosures: Reference Materials Binder Initials: kaki, mdwi File Name: C:\Documents and Settings\kaki\Desktop\EAEN Letter.doc Project Number: EAEN-1

DELAWARE WATER GAP REFERENCE MATERIALS INDEX

Memorandum Tab 1
Calculations Tab 2
Design Basic Documents Tab 3
Blowout Reports Tab 4
Structure Models Tab 5
Plan & Profiles (by Others) Tab 6
Southwire Sag 10 Tab 7
Conductor Cut Sheets Tab 8
Bulletin 1724E-200 Tab 9
NESC Minimum Clearance Practices (by Others) Tab 10
Conclusion Tab 11

MEMORANDUM

DATE:	June 23, 2010
то:	Suzie Boltz, EA Engineering
FROM:	Paul Capell
SUBJECT:	SRLINE EIS 25147
PROJECT:	DEWA Transmission Lines

We have the following responses to Gregory Smith's June 16th letter. Please edit with your comments and forward to the other team members.

- The RUS Bulletin 1724E-200 provided by the Applicant as the guide for ROW calculations only references voltages up to 230kV (230,000 volts).
- Please reference the attached table, "Existing PPL ROW Alternative Blowout Report for Spans with 100' ROW". The column entitled "Max. blowout from centerline each side (ft)" fails to represent the required V-string clearance (21.5 feet from the structure's centerline). The actual remaining buffer is 21.5 feet plus blowout, as shown on the DEA edited version of the same table.
- Throughout the ROW width development, the applicant has made reference to ACSR and ACCC conductors. Our models represent the use of Falcon ACSR that was used in the applicant's table, and we have further information and calculations for ACCC, as well.
- NESC minimum clearance from blowout to ROW edge is 17 feet. PJM requires a further 3-foot buffer. Therefore, actual "required clearance to each side of ROW (ft)" should be 17 feet plus 3 feet, or 20 feet.

Ultimately, our findings indicate that constructing the proposed project according to the proposed Plan and Profiles provided by the Applicant for the 100-foot ROW would violate the National Electric Safety Code. Further information is available upon request.

Copies: file Attachments/Enclosures: Tables Initials: kaki File Name: C:\Documents and Settings\kaki\Desktop\EAEN InternalMemorandum.doc Project Number: EAEN-1

	ī
N	(
ttive RO\	-
Using Existing PPL ROW Alternative Blowout Report for spans with 100' ROW	
th Alt	:
Š.∑	
SO	
ц Ц Ц Ц	
с р С	_
g F	
tin ort	
kis ep	
Шα	-
ng	
Jsi W(
ы В	
-	

	Minimum Vegetation Management Cycle*	8.94 🔅 Every Three Years	Every Three Years	Every Year	Every Three Years	Every Three Years	Every Three Years
/		ل ا:94 الأ	7.91	2.94	7.67	8.13	6.16
	Structure Deflection, each side (ft)	2	2	۱,	2	7	2
N	Max. Blowout Required Structure Remaining from Clearance to Deflection, Buffer from centerline, each side of each side (fine-each sid each side (ft) ROW (ft) (ft)	17 -	17	17	17	17	Ð
Using Existing PPL ROW Alternative Blowout Report for spans with 100' ROW	Proposed from Clearance tr ROW centerline, each side of Width (ft) each side (ft) ROW (ft)	22.06	23.09	29.06	23.33	22.87	24.84
PL ROW spans wi	Proposed from ROW cente Width (ft) each	100	100	100	100	100	100
Existing PF Report for	Cable Condition	Max Sag FE	Max Sag FE	Max Sag FE	Max Sag FE	Max Sag FE	Max Sag FE
Using Blowout	Weather Case	500 NESC HORZ CLEAR-6psf Max Sag FE	500 NESC HORZ CLEAR-6psf Max Sag FE	500 NESC HORZ CLEAR-6psf Max Sag FE	500 NESC HORZ CLEAR-6psf Max Sag FE	500 NESC HORZ CLEAR-6psf Max Sag FE	500 NESC HORZ CLEAR-6psf Max Sag FE
	Voltage (kV)	500	500				500
	End Str. # Cable Type	B17-2A FALCON ACSR	B17-3 B17-3A FALCON ACSR	B17-3A B17-4 FALCON ACSR	B17-5 FALCON ACSR	B17-5A FALCON ACSR	B17-5A B17-6 FALCON ACSR
			B17-3A	B17-4	B17-5	B17-5A	NB17-6
	Start Str.#	B17-2	B17-3	B17-3A	B17-4	B17-5	B17-5A

*Assumes a 2' growth per year

Recreated: 6/23/2010 by: mdwi

<u>by: mdwi</u> DEA <u>cib DEA</u> For: National Park Service

Using Existing PPL ROW Alternative Blowout Report for Spans with 100' ROW

Ę	/egetation Aanagement		Every three years	Every three years	year	Every three years	Every three years	Every three years
Minimum	Vegetation Manageme	Cycle	Every 1	Every 1	Every year	Every 1	Every 1	Every 1
-	Buffer from tree line, each side	(#)	-10,56	-11.59	-17.56	-11.83	-11.37	-13.34
~	Buffer from tree line, each side	(11)	8.94	7.91	2.94	7.67	8.13	6.16
Structure	Deflection each side	(#)	2	2	Ţ	2	2	2
Required	Clearance to Deflection each side of each side	ROW (ft)	17	17	17	17	17	17
ହ	centerline + V-string to	ROW edge	43.56	44.59	50,56	44.83	44.37	46.34
Max. Blowout	from centerline	Width (ft) each side (ft)	22.06	23.09	29.06	23.33	22.87	24.84
	Proposed ROW	Width (ft)	100	100	100	100	100	100
	Cable	Condition	Max Sag FE	Max Sag FE				
	<u>e</u>	(kV) Weather Case	500 NESC HORIZ CLEAR-6 psf	500 NESC HORIZ CLEAR-6 psf				
	Voltage	(kV)						
		Str.# Str.# Cable Type	B17-2A FALCON ACSR	B17-3 B17-3A FALCON ACSR	B17-3A B17-4 FALCON ACSR	B17-4 B17-5 FALCON ACSR	B17-5 B17-5A FALCON ACSR	B17-5A B17-6 FALCON ACSR
	End	Str.#	B17-2A	B17-3A	B17-4	B17-5	B17-5A	B17-6
	Start	Str.#	B17-2	B17-3	B17-3A	B17-4	B17-5	B17-5A

See 1 but Manuak ver

St W. K. W. - L -

A com

P. 004/008

Gregory J. Smith Manager-Transmission Expansion

PPL Electric Utilities Two North Ninth Street, GENN5 Allentown, PA 18101-1179

BEREFASSY:

SiThere

6. 1.

(1: 13) Swill FIO

June 16, 2010 In regards to: SRLINE EIS 25147

Amanda Stein Delaware Water Gap National Recreation Area HQ River Road, Off Route 209 Bushkill, PA 18324

Dear Ms. Stein:

The Applicants have reviewed the NPS consultant's analysis of the Existing ROW Alternative, in particular using the existing 100' ROW for several spans in Pennsylvania. It appears that your consultant used a higher wind loading than is required to calculate the blow-out of the conductors. The wind loading used by the Utilities is a 6 psf load. For a detailed explanation of why a 6 psf wind load is appropriate, and the codes referenced to perform the blow-out calculations, see the attached report.

Furthermore, it should be clarified that the Existing ROW Alternative would use PPL EU's existing land rights. Such rights are only limited to 100 feet in five spans, not throughout the entire park in Pennsylvania Using the structure identifiers in your report, this would equate to the spans between structures 3-4, 5-6, 6-7, 7-8, and 9-10.

Sincerely,

Theyney

Gregory J. Smith Manager-Transmission Expansion Enclosure (1)

CC: John Donahue, Delaware Water Gap National Recreation Area Pam Underhill, Appalachian National Scenic Trail Sargent & Lundy LLC

Segment B17 100' ROW Feasibility Study

6/11/2010

For verifying the feasibility of utilizing PPL EU's existing ROW through the Pennsylvania portion of the Susquehanna -- Roseland Project within DEWA, NESC regulations and industry standard guidelines set forth in RUS Bulletin 1724E-200 were followed. This includes the section where the existing ROW is 100'. Included below is a summary of calculations performed and references cited by S&L to make the conclusion that the new 500kV circuit construction was feasible for the existing ROW.

Typical ROW widths are established based on required clearances to objects (usually buildings) that are or may in the future exist along the edge of the ROW. The ROW width is calculated using formulas that account for horizontal wire displacement, horizontal wire spacing, structure deflection and horizontal clearance requirements from the wire. The two figures below are taken from the RUS Bulletin as a recommendation for ROW width of a transmission line.

Bulletin 1724E-200 Page 5-8

5.4.1 First Method: This method provides sufficient width to meet clearance requirements to buildings of undetermined height located directly on the edge of the right-of-way. See Figure 5-7.

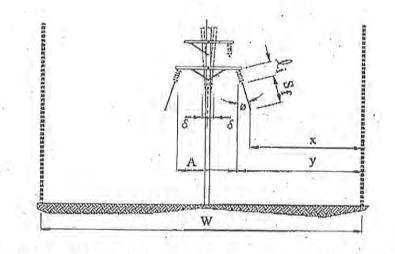
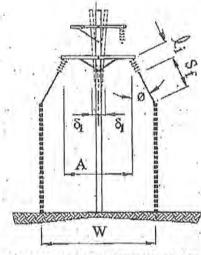


FIGURE 5-8: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (FIRST METHOD)


 $W = A + 2(\ell_1 + S_r)\sin\phi + 2\delta' + 2x$

Eq. 5+3

Sargent & Lundy LLC

Segment B17 100' ROW Feasibility Study

Bulletin 1724E-200 Page 5-9

FIGURE 5-9: ROW WIDTH FOR SINGLE LINE OF STRUCTURES (SECOND METHOD)

From Figure 5-9 it can be seen that the formula for the width is:

$$W = A + 2(\ell_1 + S_f)\sin\phi + 2\delta_1 \qquad \text{Eq. 5-4}$$

As defined in the figures, A represents the horizontal spacing between the outer wires and x represents the required clearance from the conductor to the edge of the ROW. The remaining terms represent the deflection of the structure (δ) and the horizontal displacement of the wire ({ ℓ +S}sin Φ). The first figure represents the calculation for the ROW width using the wire displacement and clearance values under 6psf wind loading as defined in Rule 234 of the NESC. The second figure represents an alternative method for determining the ROW using higher wind values. The wind values used in this second method are dependent upon the region the line is located in and is established by the transmission line owner during the design phase of the line. Notice that there is no required clearance beyond the conductor position under this method.

As set forth in the approved Design Basis Document dated March 6, 2009, the Horizontal clearance requirement from a wire/conductor displaced by a 6 psf wind to the edge of the ROW is 17'. The basis for this value is established in Rule 234 of the NESC with an additional margin of safety voluntarily included by PPL Electric Utilities. Included below is a standard structure configuration.

(FAX)570 426 2402

Sargent & Lundy LLC

Segment B17 100' ROW Fcasibility Study

During the analysis, structure locations were modified in order to shorten the spans and reduce the maximum horizontal displacement of the wire to allow the line to fit within the existing 100' ROW. It was determined that the Method 1 calculation would be the controlling case for determining the required ROW width. To calculate the required ROW width using method 1, the following parameters were used:

A-43'

 $\delta - 1$ ' (This value is established as the deflection limit for the structure)

x-17' (An additional 3' was added to the required NESC value per PPL EU standard procedure)

 $\{\ell+S\}\sin\Phi - 10'$ (The maximum conductor blowout of the line under 6 psf wind) BARRENCARTE

From this calculation, it is apparent that the required width of ROW for this line is 99'. This is less than the 100' existing ROW limitation and therefore represents a feasible option for the new line.

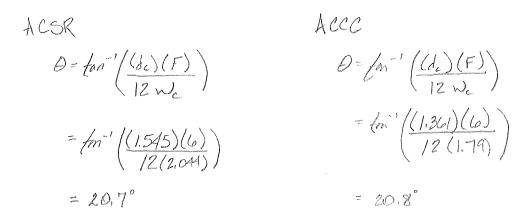
121 - 1 (7: +5;) 512 + ×1 25

W

CALCULATIONS

Table:

$$\label{eq:wind} \begin{split} & \textbf{Wind} = 6psf\\ & S_f = 13.5^\circ - 34^\circ \mbox{ (conductor sag)}\\ & L_i = 23^\circ \mbox{ (length of insulator)}\\ & D_c = 1.545 \mbox{ in (1590 kcmil ACSR "Falcon" 54/19)}\\ & W_c = 2.044 \mbox{ lb/ft (1590 kcmil ACSR "Falcon" 54/19)} \end{split}$$


Dc = 1.361 in (1594 kcmil ACCC "Falcon" 36/7) Wc = 1.79 lb/ft (1594 kcmil ACCC "Falcon" 36/7)

 $\boldsymbol{\delta}$ = 2' (1' for deadends)

AND ASSOCIATES INC.	JN. EAEN OL
	BY Mans DATE 6/22 2010
DB DESCRIPTION	SHEET OF SHEETS
CALCULATION FOR	CHECKED BY DATE

WIND = GRSF
$$S = 2'$$

Sf = SEE SAG REPORTS
 $7_i = 23'$ USE: $\frac{5}{72}''$
 $d_c = 1.545$ in $W_c = 2.044'$ 16/41 ACSR
 $d_c = 1.361$ in $W_c = 1.79$ 16/44 ACCC

RUS Bulletin 1724E-200

$$\begin{aligned} x = A + 2(7i + S_{f}) \sin \theta + 28 + 2x \\ &= 43 + 2(\frac{5}{12} + 24.19) \sin 2\theta, 7 + 2(2) + 2(20) \\ &= 104.4' \quad falls \in 1218' \text{ span} \end{aligned}$$

ANDASSOCIATES	INC.

B DESCRIPTION <u>SR Live CALC</u> CALCULATION FOR <u>100' ROW additional spons</u>

$$S_{PAN} = 839'$$

$$S_{f} = 13.23'$$

$$\Theta = 20.7^{\circ}$$

$$W = 43 + 2(\frac{5}{12} + 13.23) \sin 20.7 + 4 + 40$$

$$= 96.65' \qquad \text{or}$$

	JN. ELEN OI
	BY_MdwDATE2010
_	SHEET2 OF SHEETS
_	CHECKED BY DATE

ACCC
739
11.47'
20.8°
WI =
$$43+2(\frac{5}{12}+11.47)\sin 20.8+4+40$$

= $95.4'$ or

5.3.1 Conductor Blowout

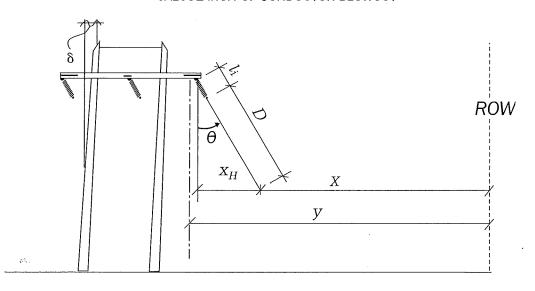
Transmission lines must be designed not only to provide late vertical clearance for electrical and safety conа siderations, but also to allow for adequate horizontal clearance to tall objects and buildings at the edge of the right-of-way (ROW) under high wind conditions. Conductor displacement as a result of high winds is termed conductor blowout. The maximum displacement of the outermost conductors from the center of the ROW under high wind conditions can be one of the most important variables in determining ROW width. Conductor blowout is primarily a function of conductor weight and the wind force perpendicular to the conductor. However, the calculation of conductor blowout should also include the lateral movement of the suspension insulators. The horizontal wind force acting on a conductor may be estimated by the following equation:

$$F_{H} = 0.00256 \left(\frac{d}{12}\right) (V_{w})^{2}$$
 (5-9)

where:

- d = conductor diameter, in
- $V_w = wind speed, mph$
- F_H = horizontal wind force, lbs/ft

Assuming equilibrium of the moments resulting from the conductor weight and wind force about the attachment point, the angle of conductor blowout, θ , can be determined by:


$$\theta = tan^{-1} \frac{F_H}{W_c} \tag{5-10}$$

where:

 $w_c = conductor weight per unit length, lbs/ft$

The blowout angle of the conductor catenary and any suspension insulator are assumed to be the same as those indicated in Figure 5-6[23]. This figure demonstrates how the clearance to the edge of ROW must include structure deflection.

FIGURE 5-6 CALCULATION OF CONDUCTOR BLOWOUT

y = total horizontal distance from insulator suspension point to edge of ROW (under still air)

x = required minimum horizontal clearance to edge of ROW under high wind conditions

The total horizontal blowout of the conductor at the midpoint of the span is:

$$X_{ii} = (l_i + D) (\sin\theta) + \delta \tag{5-11}$$

where:

 X_H = horizontal deflection at midpoint of span, ft

 $l_i = length of insulator string, ft$

- D = midpoint sag of conductor at specified wind and conductor temperature, ft
- δ = structure deflection, ft

At lower voltage levels, ROW width may be determined by the need to maintain adequate horizontal clearance. However, at higher voltage levels, the ROW width is typically determined by minimum requirements for environmental effects.

5.3.2 Aeolian Vibration

Aeolian vibration typically occurs in response to low velocity wind (2 mph to 15 mph) blowing steadily perpendicular to the line, as noted in Table 5-3. The resulting conductor vibration, generally less than a conductor diameter in amplitude, is difficult to detect with the bare eye. Vibration amplitudes of less than an inch however, can result in conductor strand fatigue near attachment points for steel, aluminum and copper conductors. To control aeolian vibration, the design everyday tension (EDS) of the conductor is kept as low as possible, and dampers are added when required. While the cost of dampers is typically small, the cost of using low tension levels as a control technique can be expensive in some design situations. Since aeolian vibration leads to conductor failure through the mechanism of strand fatigue, it can be a major factor in line reliability. Lines exhibiting high vibration levels can be very expensive to operate because of the need to inspect and replace conductors and the need to add reinforcing armor rods or other repair hardware. Factors affiliated with aeolian vibration are described in the following sub-sections.

String Mode Vibration of Conductor

An overhead span (catenary) is supported at each end by suspension or dead-end hardware. This hardware is attached to and supported by ceramic or composite insulator strings, which are supported by wood, metal, concrete or steel structures. The aeolian vibration phenomena of this very complex mechanical system is typically represented by ignoring the hardware, insulators and structures, and assuming that the location of the suspension points are fixed. The vibration of the bare conductor may be represented by the vibrating string equation:

$$m\left(\frac{d^2 y}{dt^2}\right) - T\left(\frac{d^2 y}{dx^2}\right) = 0$$
(5-12)

where:

- m = mass per unit length of conductor, lbs/ft
- T = conductor tension, lbs
- x,y = horizontal and vertical displacement, respectively, of cable along span, ft
- t = time, sec

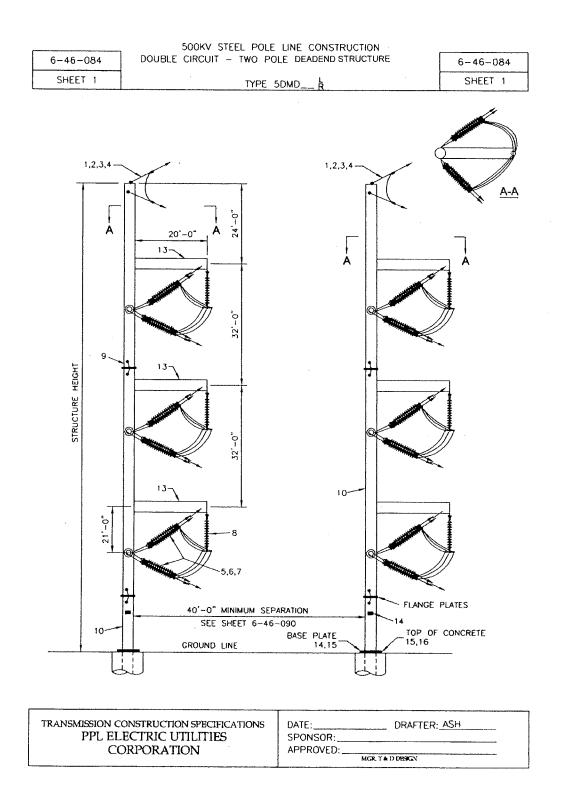
Using standard mathematical methods, the solutions to this equation consist of traveling waves (transverse disturbances) which propagate along the conductor with a velocity of:

$$V = \sqrt{\frac{T(N)}{m(kg/m)}} = \sqrt{\frac{T(lbs) [32.2 (ft/sec^2)]}{w(lbs/ft)}}$$
(5-13)

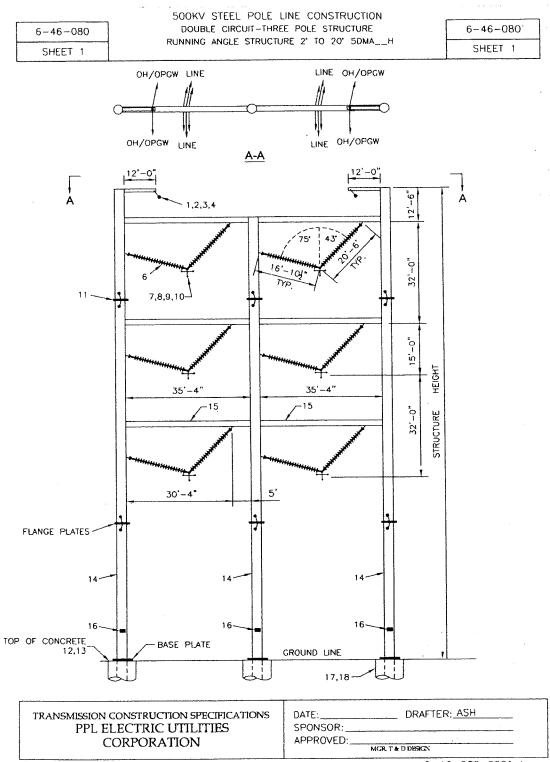
For a typical bare overhead transmission conductor installed to typical tension levels, this mechanical wave velocity is on the order of 400 ft/sec (120 m/sec). For exam ple, if a 795 kcmil – 26/7 ACSR "Drake" conductor is installed to 4725 lbs (15% RBS), the wave velocity is:

$$\sqrt{\frac{(4725)(32.2)}{1.094}} = 373 \, \text{ft/sec}$$

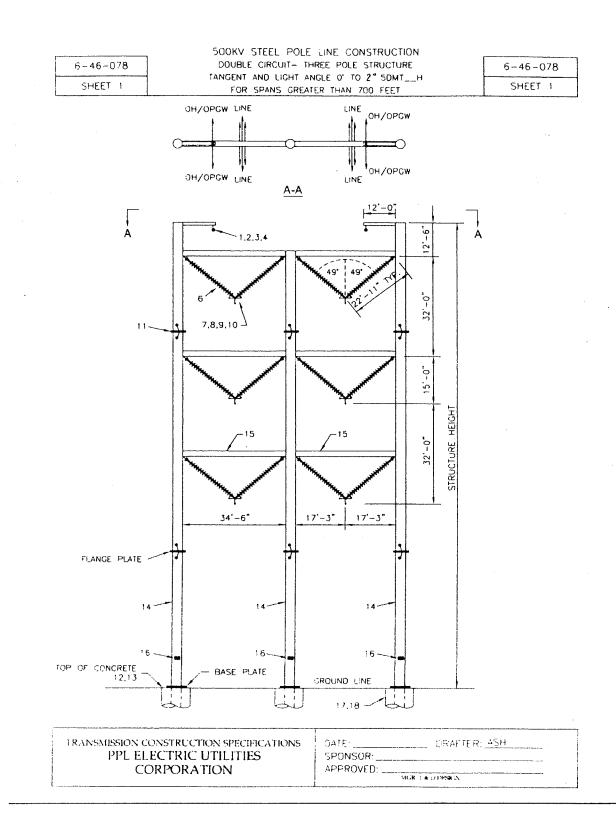
Combinations of traveling waves on the conductor callead to standing waves or string modes having certain discrete frequencies. These natural frequencies are related to both the span length, *L*, and the wave velocity, *V*:

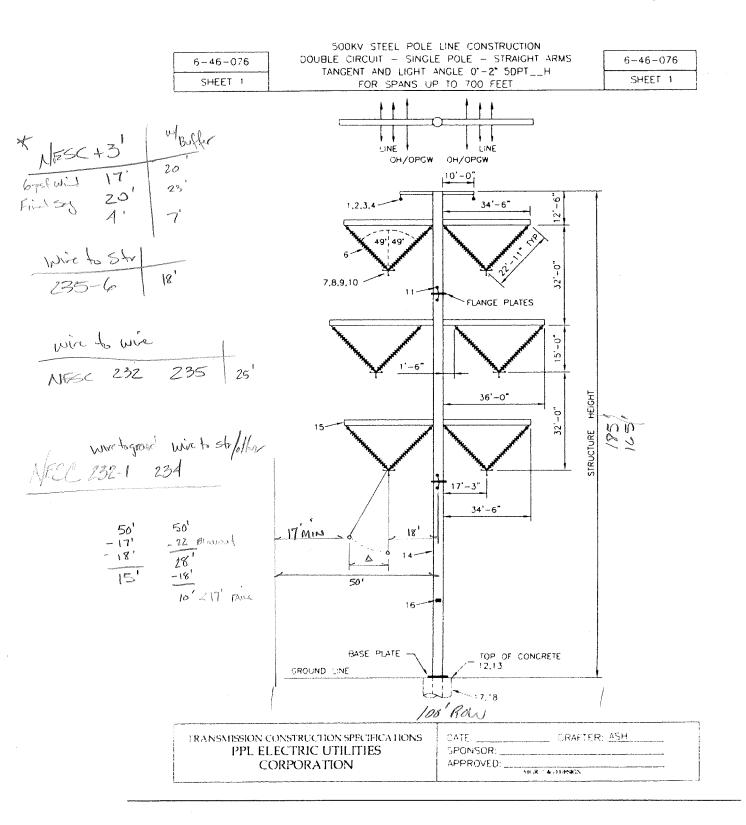

$$f_n = \left(\frac{n}{2L}\right) V \tag{5-14}$$

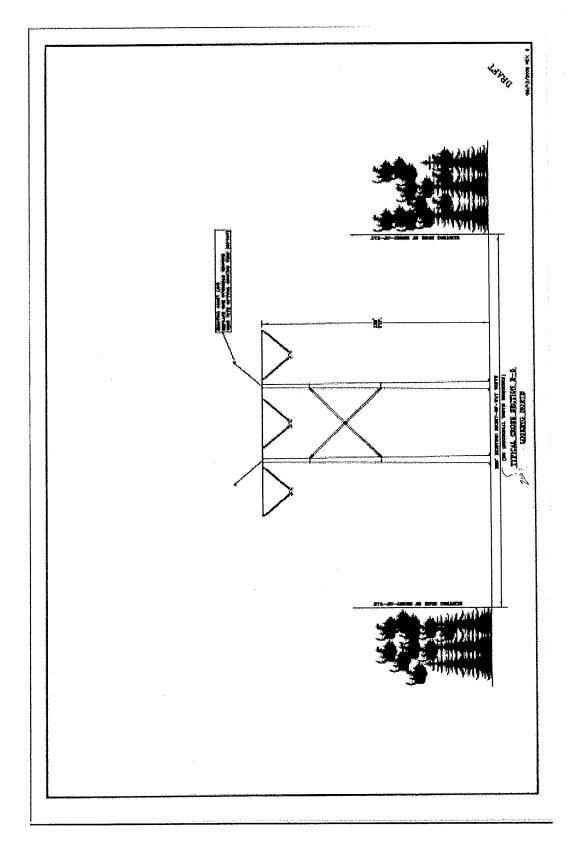
where:

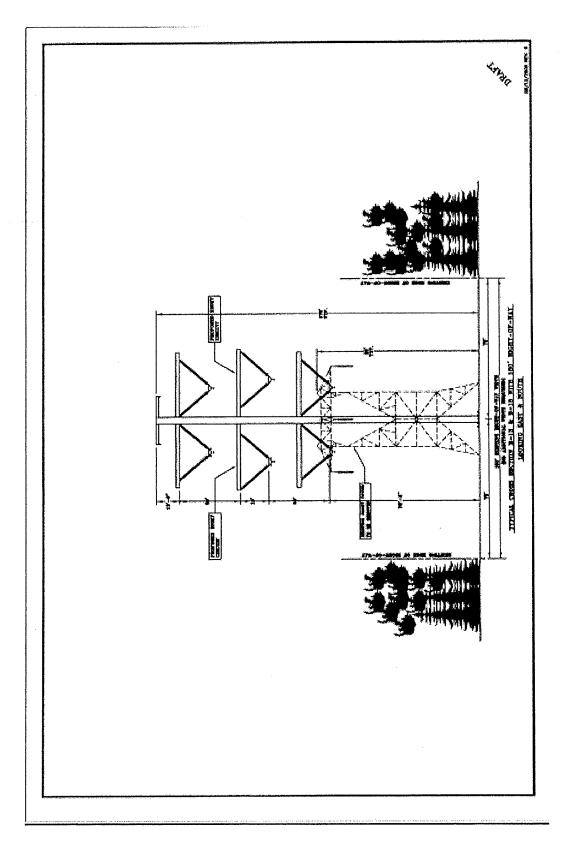

the modal number, n, is a positive whole number

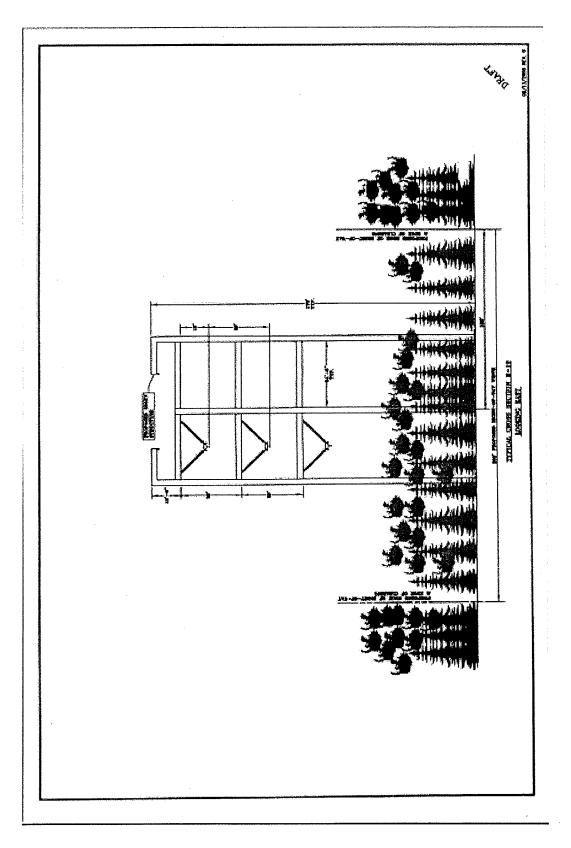
DESIGN BASICS DOCUMENT

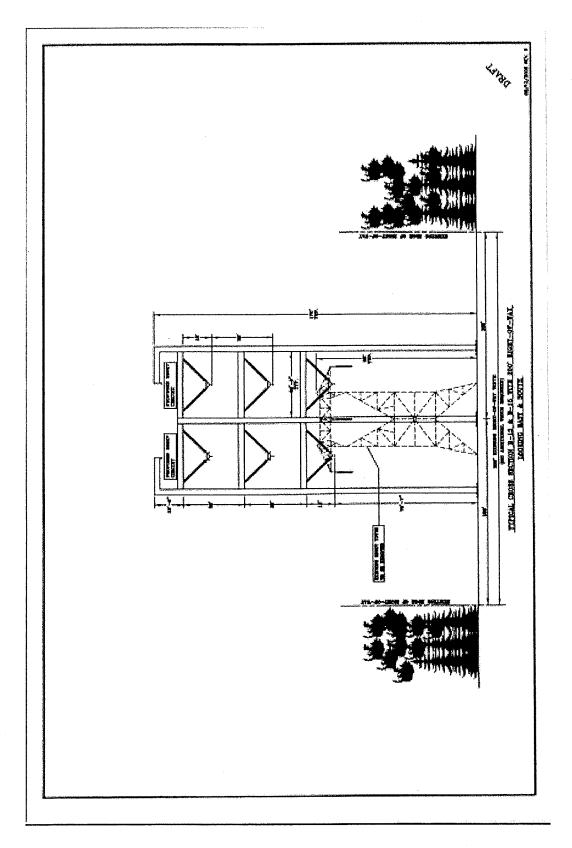

The information in this section was used to create the models for calculating the clearances within the 100' proposed ROW and the PLS CADD models for the blowout reports herein.

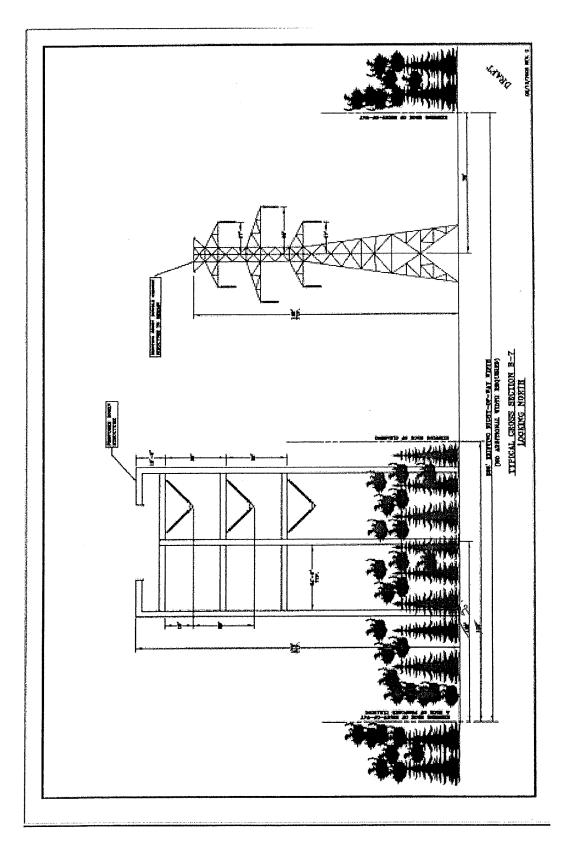

Mar. 06, 2009 Project No. 12937 Page 37




6-46-080_S001.dwg




• .



BLOWOUT REPORTS

PLS-CADD Version 10.40 9:25:24 AM Thursday, June 24, 2010 David Evans & Associates Project Name: 'c:\documents and settings\gabl\desktop\dewa elevations\dewa_alt_bb.DON'

Blowout Report

Offset measured relative to alignment center line.

_	· · · · · · · · · · · · · · · · · · ·	0 8 m m t m 9 8 m
st t fset	28.09 28.85 28.47 28.47 19.63 20.58 19.83 -11.73 -11.73 -11.36 -11.36 -19.06 -20.37 -19.83	27.80 29.32 28.56 19.06 20.58 19.83 -10.33 -11.84 -11.09 -11.09 -19.06 -19.06
Leftmost Blowout Station Offset (ft)	571.28 597.26 584.27 12.49 1173.54 1173.54 603.25 577.28 590.27 1173.54 1173.54	1765.97 1765.97 1765.97 2356.90 2356.90 2356.90 1765.97 1765.97 1765.97 2356.90 2356.90 2356.90
et	19.06 20.37 20.37 10.97 10.97 11.73 11.36 -19.63 -19.63 6 -28.85 6 -28.85 7 -28.47	19.06 20.58 19.83 19.83 11.84 11.09 -19.06 -20.58 -20.58 -27.80 -27.80 -27.80
LeftmostBlowoutBlowout	1173.54 12.49 1173.54 603.25 577.28 590.27 12.49 1173.54 1173.54 1173.54 571.28 597.26 584.27	1173.54 1173.54 1173.54 11765.97 1765.97 1765.97 1173.54 1173.54 1173.54 1173.54 1173.54 1765.97 1765.97
Max Blowout Blowout	571.28 28.09 597.26 28.85 584.27 28.47 12.49 19.63 1173.54 19.83 1173.54 -19.63 1173.54 -19.63 1173.54 -19.83 571.28 -28.09 597.26 -28.85 584.27 -28.47	1765.97 27.80 1765.97 29.32 1765.97 29.35 2356.90 19.06 2356.90 19.83 1173.54 -19.06 1173.54 -19.06 1173.54 -19.08 1173.54 -19.83 1765.97 -28.58 1765.97 -28.56
Wind From	Left Left Left Right Right Right Left Left Right Right Right	Left Left Left Right Right Left Right Right
Cable Condition	lax Sag RS lax Sag RS lax Sag RS lax Sag RS lax Sag RS fax Sag RS	Max Sag RS Max Sag RS
Weather Case Description	500 NESC Blowout 6PSF Max Sag RS 500 NESC Blowout 6PSF Max Sag RS	500 NESC Blowout 6PSF Max Sag 500 NESC Blowout 6PSF Max Sag
Ahead Volt Span -age Cable File Name (kV)		
Start Start End End End Struct Struct Struct Struct Struct Num Set Phase Number Set Phase	 falcon_acsr.wir 	 falcon_acsr.wir
End t Struc ber Set	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
End t Struct Numb	0000000000000	
Start Start Struct Struct Set Phase	- 0 m - 0 m - 0 m - 0 m	- 0 m - 0 m - 0 m - 0 m
Start t Struci Set		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Start Struct Num		~~~~~~~~~~

い い い い い い い い い い い い	4 4 4 4 4 4 4 4 4 4 4 4 4	دیا دیا دیا دیا دیا دیا دیا دیا دیا دی
ω ω ω ω ω ω ο ο ο ο ο ο	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	ω ω ω ω ω ω α ο ο ο ο ο ο ο
w v – w v – w v – w v –	ω ν - ω ν - ω ν - ω ν -	ω ρ – ω ρ – ω ρ – ω ρ –
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	いっこういういううううううう	4 4 4 4 4 4 4 4 4 4 4 4
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	() () () () () () () () () () () () () (
<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>
Left Left Right Right Left Left Right Right	Left Left Right Right Right Left Left Right	Left Left Right Right Right Left Left Right
5265.65 24.91 5232.68 25.66 5249.17 25.28 5697.99 19.70 4780.86 20.58 4780.86 19.83 5697.99 -19.70 4780.86 -20.58 4780.86 -20.58 4780.86 -20.58 5232.68 -25.66 5249.17 -25.28	4226.41 26.80 4226.41 28.32 4226.41 27.56 3669.96 19.06 3669.96 20.58 3669.96 19.83 4780.86 -19.06 4780.86 -20.58 4780.86 -19.83 4226.41 -26.80 4226.41 -27.56	3012.68 29.78 3012.68 31.30 3012.68 30.54 3669.96 19.06 3669.96 20.58 3669.96 19.83 2356.90 -19.06 2356.90 -19.83 3012.68 -29.78 3012.68 -31.30 3012.68 -30.54
4780.86 5697.99 4780.86 5225.18 5258.16 5241.67 5697.99 4780.86 4780.86 5265.65 5225.65 5232.68 5232.68	4780.86 4780.86 4226.41 4226.41 4226.41 4226.41 4780.86 4780.86 4780.86 4780.86 4780.86 4226.41 4226.41 4226.41	2356.90 2356.90 3012.68 3012.68 3012.68 2356.90 2356.90 2356.90 3012.68 3012.68
19.06 20.29 19.83 14.15 14.92 14.54 -19.70 -20.58 -19.83 -24.91 -25.66 -25.28	19.06 20.58 19.83 11.32 12.84 12.09 -19.06 -20.58 -19.83 -26.80 -28.32 -27.56	19.06 20.58 19.83 8.34 9.86 9.11 -19.06 -20.58 -19.83 -29.78 -31.30
5265.65 5232.68 5249.17 5697.99 4780.86 5225.18 5225.18 5225.18 5225.18 52241.67 4780.86 5241.67 4780.86 52697.99 4780.86	4226.41 4226.41 4226.41 3669.96 3669.96 4226.41 4226.41 4226.41 4226.41 3669.96 3669.96 3669.96	3012.68 3012.68 3012.68 3669.96 3669.96 3669.96 3012.68 3012.68 3012.68 3012.68 3669.96 3669.96
24.91 25.66 25.28 19.70 20.58 19.83 -14.15 -14.92 -14.92 -14.92 -14.94 -19.06 -20.29 -19.83	26.80 28.32 27.56 19.06 20.58 19.83 -11.32 -12.09 -12.09 -19.06 -20.58 -19.83	29.78 31.30 30.54 19.06 20.58 19.83 -8.34 -9.86 -9.11 -19.06 -20.58 -20.58

													~	~~~								,	<u> </u>	~ -	<u> </u>	
39.48 39.48 39.48 19.49	19.49 -0.52	-0.52 -0.52		-20.51 -20.51	31.42	32.18	31.80 19 58	20.58	19.83	-7.64	-8.40	-19.06	-20.42	-19.83	32.95	34.47	33.72	19.06	20.20 19.83	-5.17	-6.69	-5.93	-19.06	20.02-	-0.41-	
6630.41 6630.41 6630.41 5722.53 5722.53	5722.53 6630.41	6630.41 6630.41	5722.53	5722.53 5722.53	8255.10	8278.08	8266.59 7567 75	8982.42	8982.42	8283.58	8260.60	8982.42	7567.75	8982.42	9750.75	9750.75	9750.75	10515.07	1051501	9750.75	9750.75	9750.75	70.61601	10.0101		
20.51 20.51 20.51 0.52 0.52	0.52 -19.49	-19.49 -19.49	-39.48	-39.48 -39.48	19.06	20.42	19.83 7.64	8.40	8.03	-19.58	-20.58	-19.05 -31.42	-32.18	-31.80	19.06	20.58	19.83 5.5	5.17	0.09 5 93	-19.06	-20.58	-19.83	-52.45 71 12	-34.47	71.00-	
5722.53 5722.53 5722.53 6630.41 6630.41	6630.41 5722.53	5722.53 5722.53	6630.41	6630.41 6630.41	8982.42	7567.75	8982.42 8783 58	8260.60	8272.09	7567.75	8982.42 8087 17	8255.10	8278.08	8266.59	8982.42	8982.42	8982.42	9750.75	27.00279	8982.42	8982.42	8982.42 2222 22	C/.0C/.6	5/.05/9	C1.0C16	
6630.41 39.48 6630.41 39.48 6630.41 39.48 5722.53 19.49 5722.53 19.49	5722.53 19.49 5722.53 -19.49	5722.53 -19.49 5722.53 -19.49	6630.41 -39.48	6630.41 -39.48 6630.41 -39.48	8255.10 31.42	8278.08 32.18	8266.59 31.80 7567 75 19 58	8982.42 20.58	8982.42 19.83	7567.75 -19.58	8982.42 -20.58 8087 47 10 83	8255.10 -31.42	8278.08 -32.18	8266.59 -31.80	9750.75 32.95	9750.75 34.47	9750.75 33.72	10515.07 19.06	1051507 1983	8982.42 -19.06	8982.42 -20.58	8982.42 -19.83	9750.75 - 32.95	9750.75 -34.47	21.00-01.0016	
Left Left Left Right Right	Right Left ý	Left Left	Right	Right Right	Left	Left	Left Diaht	Right	Right	Left	Left Left	Right	Right	Right	Left	Left	Left	Right	Richt	Left	Left	Left	Kight	Right Dicht	Mgm	
falcon_acs falcon_acs falcon_acs falcon_acs falcon_acs	csr.wir 5 acsr.wir	2 falcon_acsr.wr 500 NESC Blowout 6PSF Max Sag RS 3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	falcon_acsr.wir	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag KS 3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	1 falcon acsr.wir 500 NESC Blowout 6PSF Max Sag RS	falcon_acsr.wir	3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	falcon acsr.wir 500 NESC Blowout 6PSF Max	falcon_acsr.wir :	falcon_acsr.wir	2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	falcon acsr.wir 500 NESC	falcon_acsr.wir	falcon_acsr.wir 500 NESC	1 falcon_acsr.wir_500 NESC Blowout 6PSF Max Sag RS	falcon_acsr.wir 500 NESC Blowout 6PSF Max	falcon_acsr.wir 500 NESC Blowout 6PSF Max	falcon_acsr.wir_500 NESC Blowout 6PSF Max	2 Ialcon_acst.wit_200 INESC Blowout 0FSF Max 2ag KS 3 falcon_acst wit_500 NFSC Blowout 6PSF Max Sao RS	falcon acsr.wir 500 NESC Blowout 6PSF Max	acsr.wir 500 NESC Blowout 6PSF Max	falcon_acsr.wir 500 NESC Blowout 6PSF Max	talcon_acsr.wir 500 NESC Blowout 6PSF Max	acsr.wir 500 NESC Blowout 6PSF Max	Ialcon_acsi. wit 200 NEOC DIOWOUL OF SF IMAX 248	
	_ = :	= =		= =			0 r								2	2	(1)	r4 r	10	i w	ŝ	ί	n c		n	
- 2 8 - 2							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									6										
	:			= =				- (1	 		= =			Ξ		2										
, o o o o o		0			٢	٢	~ ~	- 1-	٢	- r						∞										

)

==================		ە مە مە مە مە مە مە مە مە
ω ω ω ω ω ω ο ο ο ο ο ο	u u u u u u u u u u u u u u u u u u u	ωωωωωωρρηρορο
ω ο - ω ο - ω ο - ω ο -	w v – w v – w v – w v –	ω ο - ω ο - ω ο - ω ο -
$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$		10 10 10 10 10 10
ω ω ω ω ω ω ο ο ο ο ο ο	ω ω ω ω ω ω ο ο ο ο ο ο	ω ω ω ω ω ω ο ο ο ο ο ο
<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>
Left Left Right Right Left Left Right Right	Left Left Right Right Right Left Right Right	Left Left Right Right Right Left Right Right
14238.28 31.52 14238.28 33.04 14238.28 32.28 14968.19 19.06 14968.19 20.58 14968.19 19.83 13506.87 -19.06 13506.87 -20.58 13506.87 -19.83 14238.28 -31.52 14238.28 -33.04 14238.28 -32.28	12758.10 32.15 12758.10 33.67 12758.10 32.91 12011.34 19.06 12011.34 20.58 12011.34 20.58 12011.34 19.83 13506.87 -19.66 13506.87 -20.58 13506.87 -19.83 12758.10 -32.15 12758.10 -32.91	11263.45 32.11 11263.45 33.63 11263.45 32.87 10515.07 19.06 10515.07 20.58 10515.07 19.83 12011.34 -19.06 12011.34 -20.58 12011.34 -20.58 12011.34 -19.83 11263.45 -32.11 11263.45 -32.87
13506.87 13506.87 14238.28 14238.28 14238.28 14238.28 14238.28 13506.87 13506.87 13506.87 13506.87 14238.28 14238.28	13506.87 13506.87 13506.87 12758.10 12758.10 12758.10 13506.87 13506.87 13506.87 12758.10 12758.10	12011.34 12011.34 12011.34 11263.45 11263.45 11263.45 12011.34 12011.34 12011.34 12011.34 11263.45 11263.45 11263.45
19.06 20.58 19.83 6.60 8.12 7.37 -19.06 -20.58 -19.83 -19.83 -31.52 -33.04	19.06 20.58 19.83 5.98 7.49 6.74 -19.06 -20.58 -19.83 -32.15 -33.67	19.06 20.58 19.83 6.01 7.53 6.78 -19.06 -20.58 -19.83 -32.11 -33.63
14238.28 14238.28 14238.28 14968.19 14968.19 14968.19 14968.19 14238.28 14238.28 14238.28 14238.28 14238.28 14268.19 14968.19	12758.10 12758.10 12011.34 12011.34 12011.34 12011.34 12758.10 12758.10 12758.10 12758.10 12011.34 12011.34	11263.45 11263.45 11263.45 10515.07 10515.07 11263.45 11263.45 11263.45 11263.45 10515.07 10515.07
31.52 33.04 32.28 19.06 20.58 19.83 -6.60 -8.12 -7.37 -19.06 -20.58 -20.58	32.15 33.67 32.91 19.06 20.58 19.83 -5.98 -7.49 -6.74 -19.06 -20.58	32.11 33.63 32.87 19.06 20.58 19.83 -6.01 -7.53 -6.78 -19.06 -20.58

•

36.57 38.09 37.33 19.06 19.06 -1.55 -3.07 -2.32 -19.83 -19.83	38.60 39.37 19.06 19.83 0.48 -1.04 -1.04 -1.04 -128 -19.06 -19.05	30.07 31.59 31.59 30.84 19.06 20.58 -8.05 -8.05 -8.81 -19.83 -19.06 -19.83
15830.12 15830.12 15830.12 14968.19 14968.19 14968.19 15830.12 15830.12 15830.12 15830.12 14968.19 14968.19 14968.19	17596.92 17596.92 17596.92 16686.56 16686.56 16686.56 17596.92 17596.92 17596.92 16686.56 16686.56	19185.70 19185.70 19185.70 19868.11 19868.11 19868.11 19185.70 19185.70 19185.70 19185.70 19185.70 19185.70 19868.11 19868.11
19.06 20.58 19.83 1.55 3.07 2.32 -19.06 -19.83 -19.83 -36.57 -36.57 -37.33	19.06 20.58 19.83 -0.48 1.04 0.28 -19.06 -20.58 -19.83 -38.60 -40.12 -39.37	19.06 20.58 19.83 8.05 9.57 8.81 8.81 -19.06 -20.58 -19.83 -30.07 -31.59
16686.56 16686.56 16686.56 15830.12 15830.12 15830.12 15830.12 16686.56 16686.56 16686.56 16686.56 15830.12 15830.12 15830.12	18500.78 18500.78 18500.78 17596.92 17596.92 17596.92 18500.78 18500.78 18500.78 18500.78 18500.78 17596.92 17596.92	18500.78 18500.78 18500.78 19185.70 19185.70 19185.70 185.00.78 18500.78 18500.78 19185.70 19185.70 19185.70
15830.12 36.57 15830.12 36.57 15830.12 37.33 14968.19 19.06 14968.19 20.58 14968.19 19.83 16686.56 -19.06 16686.56 -19.05 16830.12 -36.57 15830.12 -36.57 15830.12 -37.33	17596.92 38.60 17596.92 40.12 17596.92 39.37 16686.56 19.06 16686.56 19.83 18500.78 -19.06 18500.78 -19.06 18500.78 -19.83 17596.92 -39.37 17596.92 -39.37	19185.70 30.07 19185.70 31.59 19185.70 31.59 19185.70 30.84 19868.11 19.06 19868.11 19.83 18500.78 -19.06 18500.78 -19.06 18500.78 -19.83 19185.70 -30.07 19185.70 -30.84
Left Left Left Right Right Left Left Right Right Right	Left Left Left Right Right Left Left Right Right Right	Left Left Left Right Right Left Left Left Right Right
<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	<ol> <li>falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
${\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}\underset{\scriptstyle}{\scriptstyle}}{\scriptstyle}$		15 15 15 15 15 15 15 15 15 15 15 15 15 1
- 0 m - 0 m - 0 m - 0 m	- 0 m - 0 m - 0 m - 0 m	- 0 m - 0 m - 0 m - 0 m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	
222222222222	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	

,

16 16 16	16 16 16	15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
دن دن دن دن دن دن	0000000	ωωωωωωνννννν
30-30-	32-32-	w n - w n - w n - w n -
17 17 17	17 17 17 17	16 16 16 16 16
	222222	w w w w w w w n n n n n n
<ol> <li>1 falcon_acsr.wir 500 NESC Blowout 6PSF.Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>	1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS 2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS 3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS 1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS 2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS 3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS	<ol> <li>1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>1 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>2 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> <li>3 falcon_acsr.wir 500 NESC Blowout 6PSF Max Sag RS</li> </ol>
Left Left Right Right Right	Left Left Right Right	Left Left Left Right Right Left Left Right Right
23072.07 -19.48 21284.23 -20.58 21284.23 -19.83 22195.63 -38.43 22177.65 -39.18 22177.65 -39.8	22195.63 38.43 22177.65 39.18 22186.64 38.80 23072.07 19.48 21284.23 20.58 21284.23 19.83	20572.92 31.43 20572.92 32.95 20572.92 32.20 21284.23 19.06 21284.23 20.58 21284.23 19.83 19868.11 -19.06 19868.11 -19.06 19868.11 -20.58 19868.11 -19.83 20572.92 -31.43 20572.92 -32.95 20572.92 -32.20
-	21284.23 23072.07 21284.23 22173.66 22191.64 22182.65	19868.11 19868.11 19868.11 20572.92 20572.92 20572.92 19868.11 19868.11 19868.11 19868.11 19868.11 19868.11 19868.11
	19.06 20.52 19.83 0.64 1.40 1.02	19.06 20.58 19.83 6.69 8.21 7.45 -19.06 -20.58 -19.83 -31.43 -32.95 -32.20
	22195.63 22177.65 22186.64 23072.07 21284.23 21284.23	20572.92 20572.92 20572.92 21284.23 21284.23 21284.23 21284.23 20572.92 20572.92 20572.92 20572.92 21284.23 21284.23 21284.23
-0.64 -1.40 -1.02 -19.06 -20.52 -19.83	38.43 39.18 38.80 19.48 20.58 19.83	31.43 32.95 32.20 19.06 20.58 19.83 -6.69 -8.21 -7.45 -19.06 -20.58 -19.83

For 500kV wires between structures 1 and 17, maximum offset is 40.12 (ft), the leftmost offset is -40.12 (ft), rightmost offset is 40.12 (ft)

## Recreated: 6/23/2010

#### <u>by: mdwi</u> DEA cjb DEA For: National Park Service

# Using Existing PPL ROW Alternative

	ort for Spans with 100' RC	W(
--	----------------------------	----

								Blowout			(Applicant)	Actual	
							Max. Blowout	from structure	Required	Structure	Remaining	Remaining	Minimum
						Proposed	from	centerline +	Clearance to	Deflection	Buffer from tree	Buffer from tree	Vegetation
Start	End		Voltage		Cable	ROW	centerline	V-string to	each side of	each side	line, each side	line, each side	Management
Str. #	Str. #	Cable Type	(kV)	Weather Case	Condition	Width (ft)	each side (ft)	ROW edge	ROW (ft)	(ft)	(ft)	(ft)	Cycle
B17-2	B17-2A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.06	43.56	17	2	8.94	-10.56	Every three years
B17-3	B17-3A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.09	44.59	17	2	7.91	-11.59	Every three years
B17-3A	B17-4	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	29.06	50,56	17	1	2.94	-17.56	Every year
B17-4	B17-5	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	23.33	44.83	17	2	7.67	-11.83	Every three years
B17-5	B17-5A	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	22.87	44.37	17	2	8.13	-11.37	Every three years
B17-5A	B17-6	FALCON ACSR	500	NESC HORIZ CLEAR-6 psf	Max Sag FE	100	24.84	46.34	17	2	6.16	-13.34	Every three years

Notes:

The column above titled: "Max. Blowout from centerline each side (ft)" fails to represent the required V-strings clearance which is 21.5' from structure centerline. 21.5'+ blowout equals actual remaining buffer.

NESC minimum clearance from blowout to ROW edge is 17' and PJM requires a 3' buffer, therefore actual "Required Clearance to each side of ROW (ft)" is 17'+ 3' = 20'

Throughout the ROW width development, the applicant has made reference to ACSR and ACCC conductor. Our models represent what is provided here, and we have information and calculations for ACCC as well.

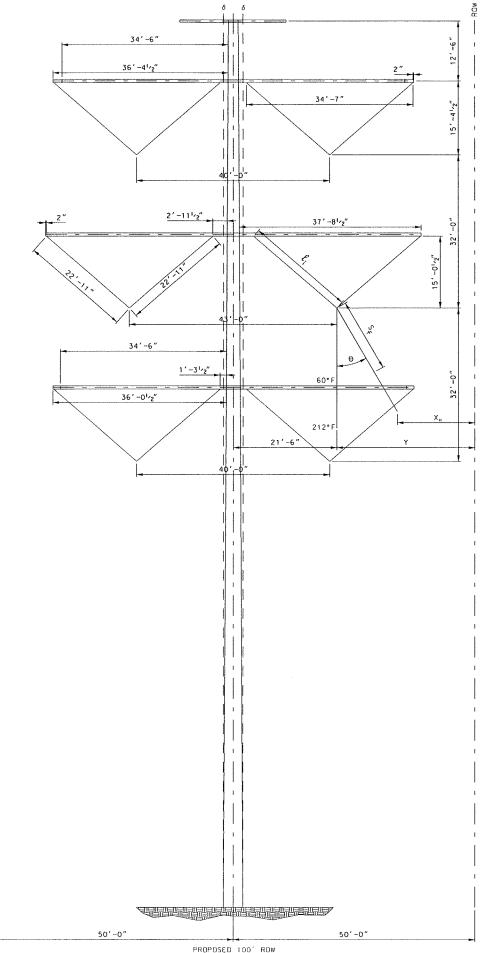
Applicant has provided two different Plan & Profiles; one from Seargant & Lundy and Burns & McDonald. Each plan & profile were prepared with different spans and structure types.

RUS Bulletin 1724E-200 only references voltages upto 230kV (230,000 volts).

No consideration for "Broken Insulators" per NESC 2007

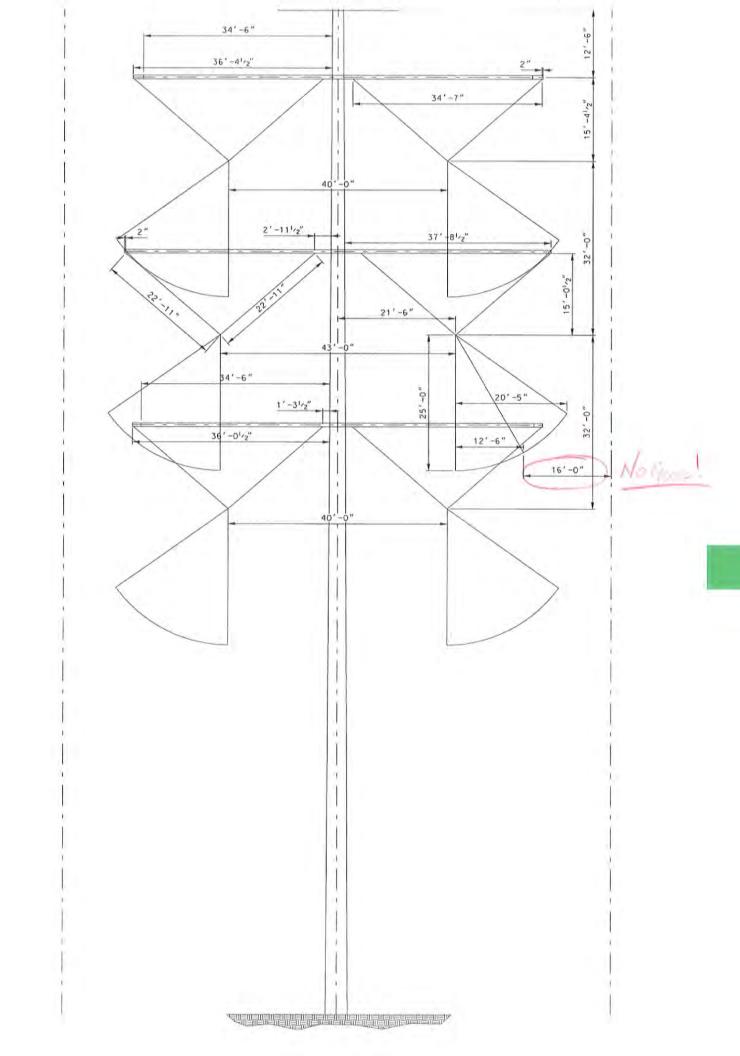
Several Geometry errors in structure provided by applicant. May cause an error in ROW clearance calculation.

Roupes By Jason @ BAM


				U U	0		Alternative	W	3' RUFF	FER PJM!	No from BOW	Z 17 . et 8 - TO ROND et 8 - TO ROND et 8 - Kzzi
Start Str. #	End Str. #	Cable Type	Voltage (kV)	Weather Case	Cable		Max. Blowout from centerline, each side (ft)	Required Clearance to	Deflection, each side (	Remaining Buffer from tree line, each side (ft)	Minimum Vegetation Management Cycle*	K 50
B17-2		FALCON ACSR			Max Sag FE		22.06	17	2	8.94 1	Every Three Years	29,06 +9.94
B17-3		FALCON ACSR			Max Sag FE		23.09	17	2	7.91	Every Three Years	25,09 30,06
B17-3A		FALCON ACSR			Max Sag FE		29.06	17	1	2.94	Every Year	25.53
B17-4	B17-5	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	23.33	17	2	7.67	Every Three Years	24:87
B17-5	B17-5A	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	22.87	17	2	8.13	Every Three Years	26,84
B17-5A	B17-6	FALCON ACSR	500	NESC HORZ CLEAR-6psf	Max Sag FE	100	24.84	(17)	2	6.16	Every Three Years	
*Assume	es a 2' gr	owth per year						17 +3	/			

1' TO RONJ - 29' BLOWDUT 30-C Ę 100' 4 Ò - ZZ' Blowbut -8' TO ROWER 8217 FAILS 20-

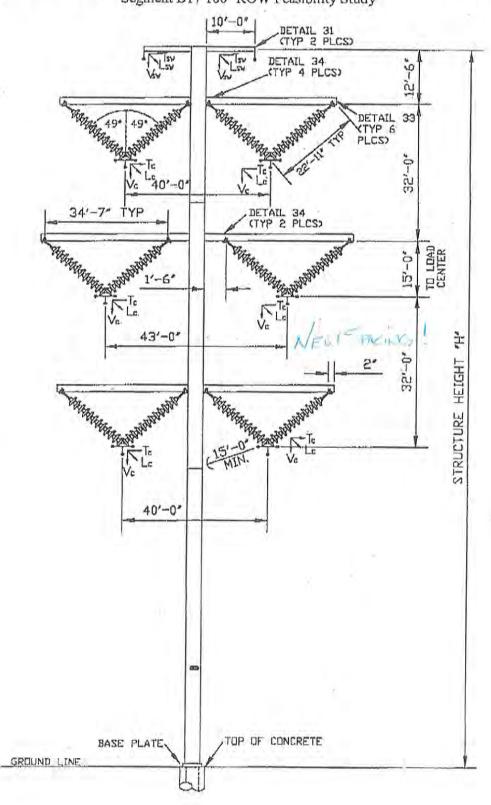
MIN NESC \$ TO ROWEdge


MIN NESC \$ TO ROWedge

# **STRUCTURE MODELS**

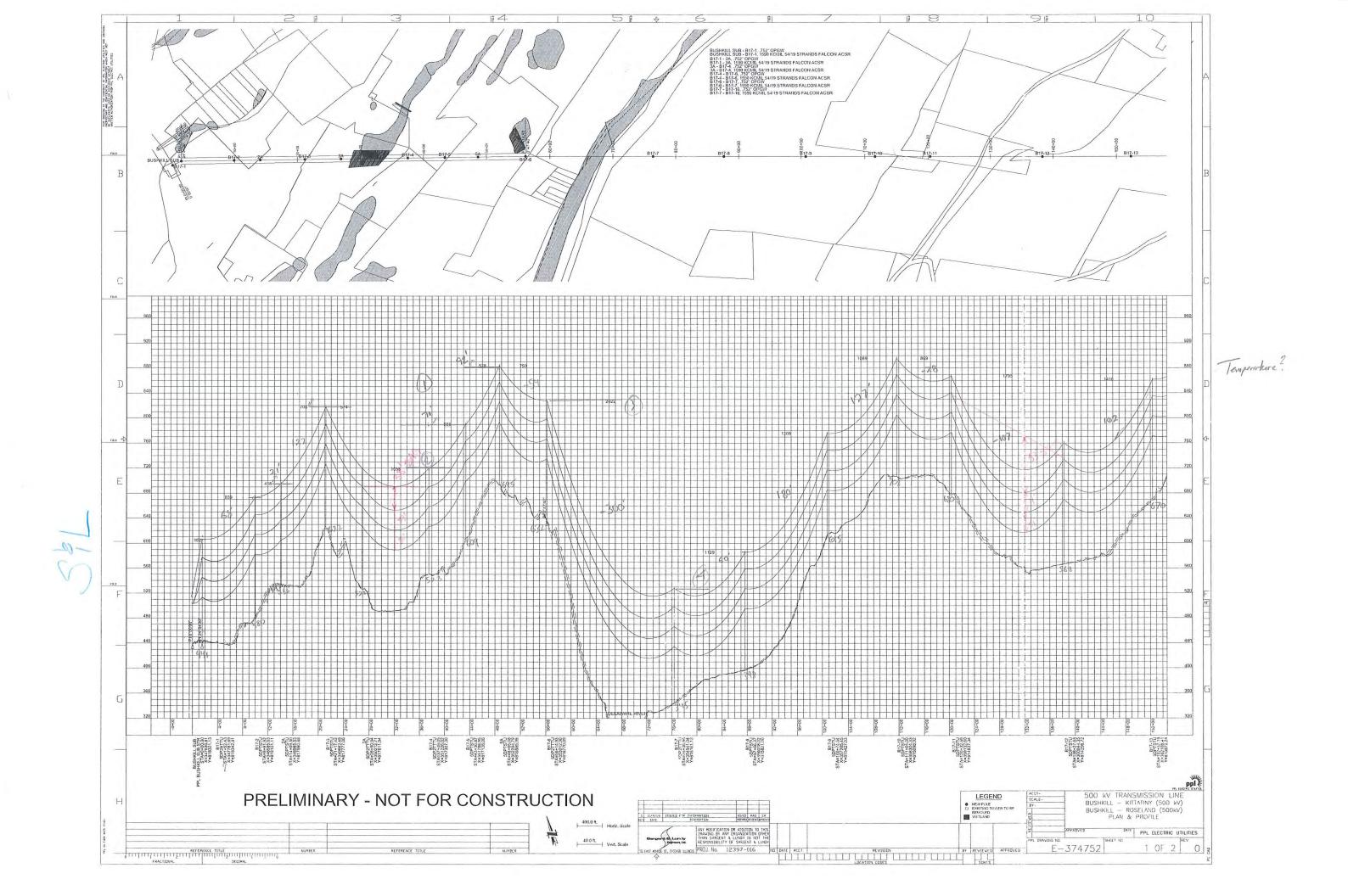


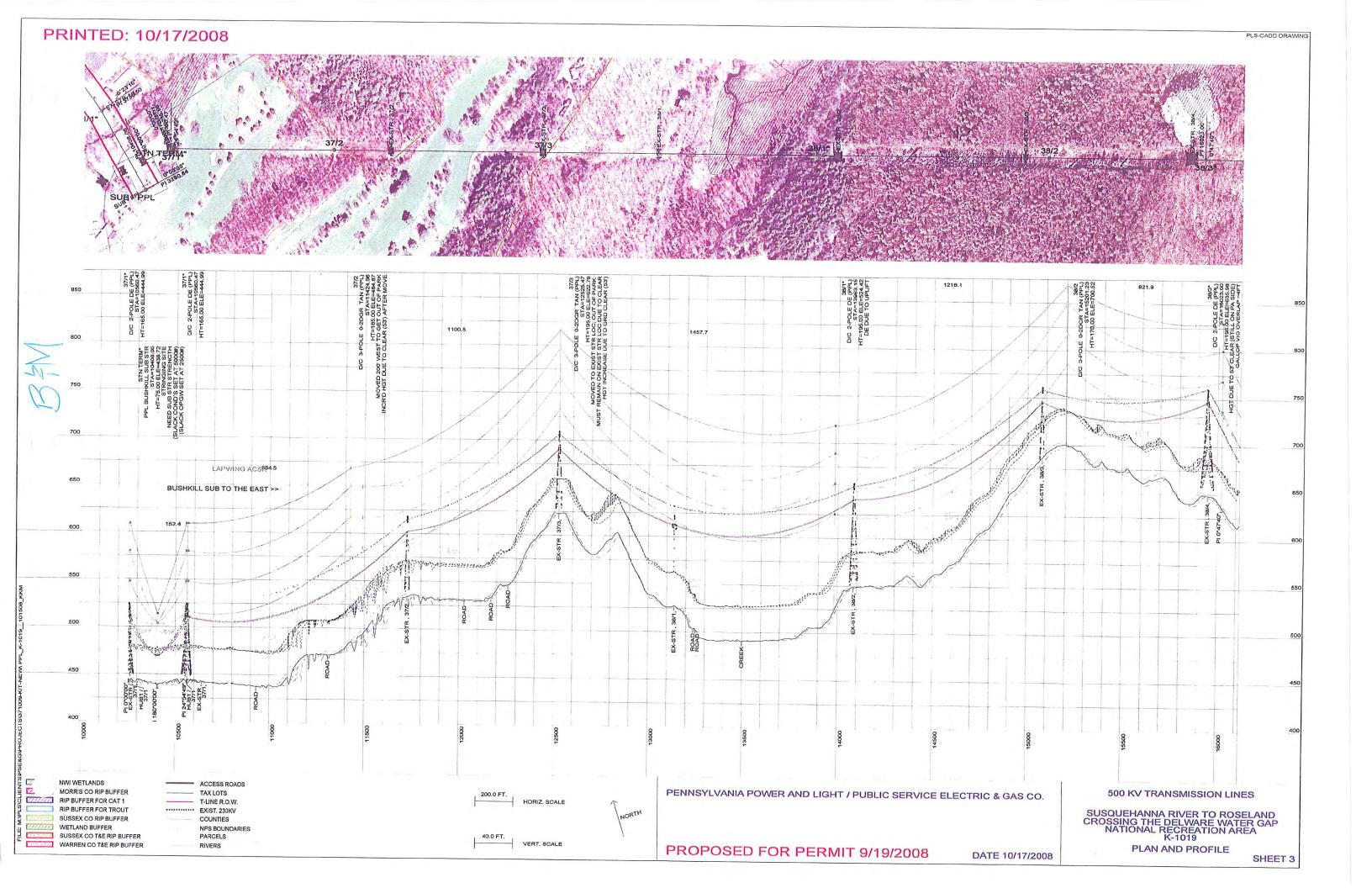
ROW

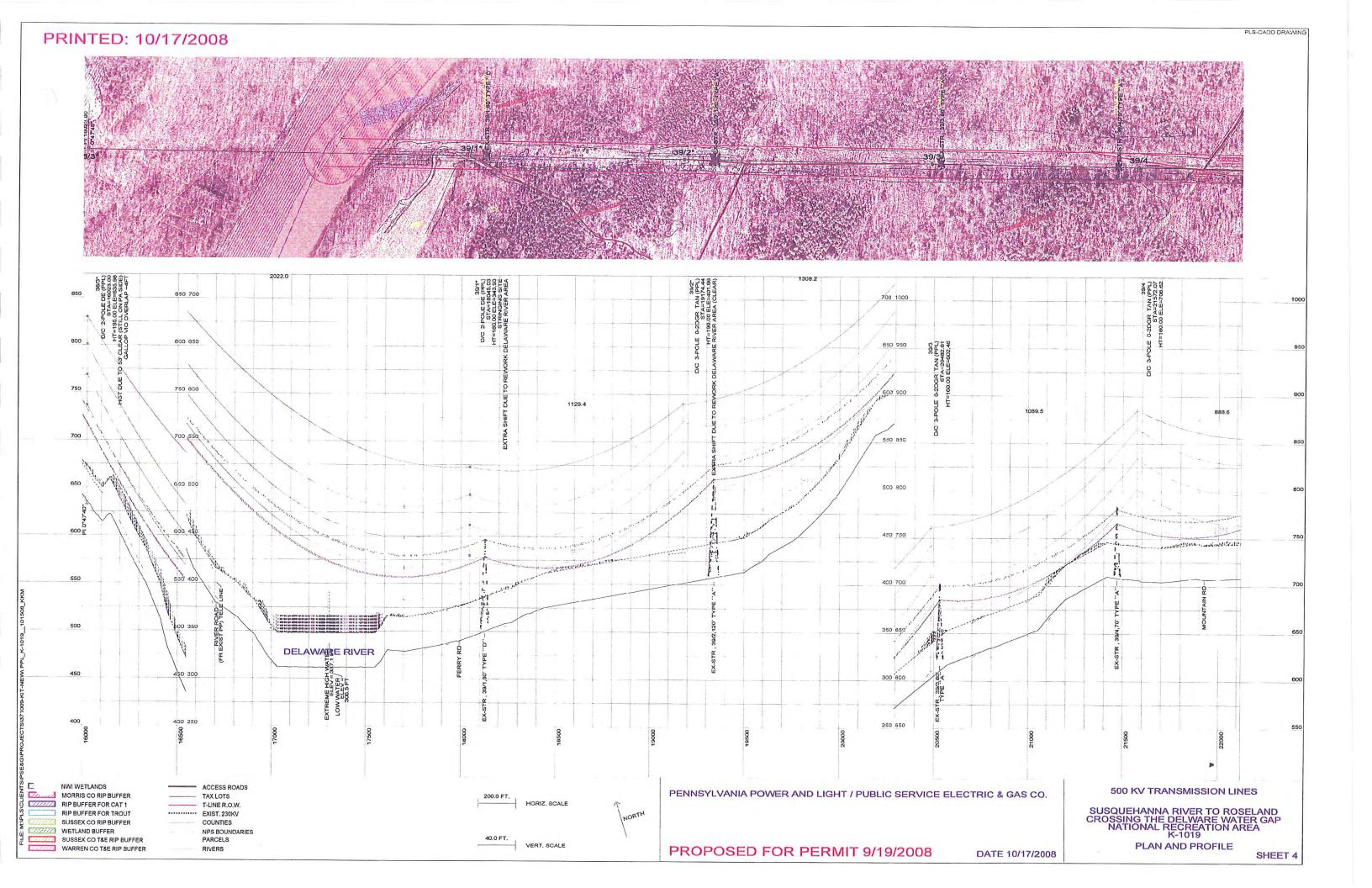

PROPOSED 100' ROW SR LINE

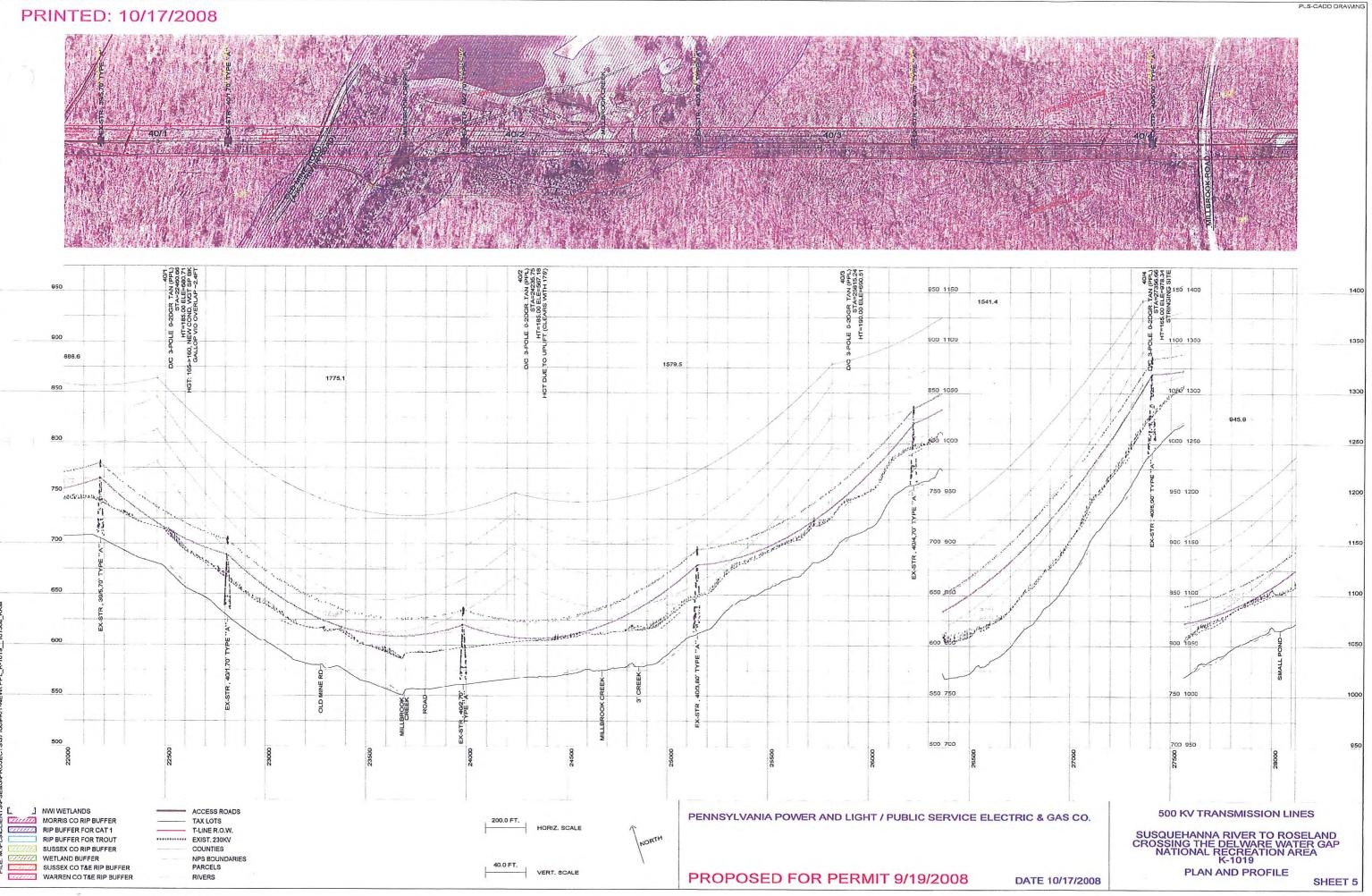


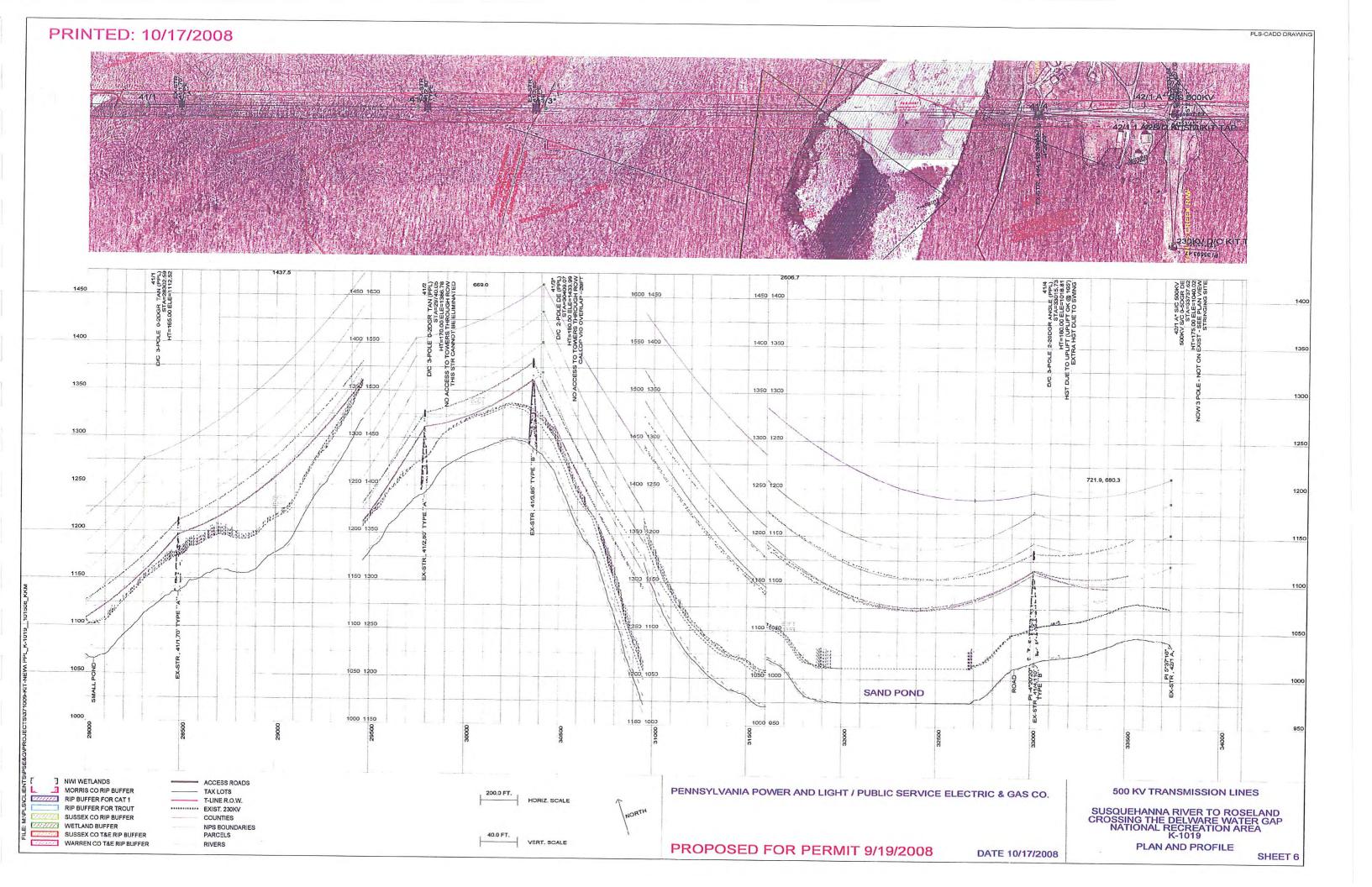
Sargent & Lundy LLC


Segment B17 100' ROW Feasibility Study


6/11/2010





# PLAN AND PROFILES By others


The plan & profiles by S&L and B&M attached in this section were used to verify span lengths, conductor sag and distance to edge of ROW.














# **SOUTHWIRE SAG 10**

The Southwire Sag 10 reports provided alternate verification to the PLS CADD sag reports to assure accuracy in the blowout calculations.

Initial

Tension

1b

22495

21064

23629

22421

21180

18603

15907

13112

8653

6101

Sag

Ft

0.34

0.32

0.21

0.23

0.24

0.27

0.32

0.39

0.59

0.83

1b

20230

17655

22348

20091

17843

13399*

9142

7491

6648

5871



# 6/22/2010 David Evans and Associates

Susquehanna - Roseland 500kV B&M P&P

2.603

2.304

1.745

1.745

1.745

1.745

1.745

1.745

1.745

1.745

Conductor: 1594.0 Kcmil 54/19 Stranding ACCR "FALCON"

K

lb/ft

0.20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Area = 1.4110 Sq. in Diameter = 1.547 in Weight = 1.745 lb/ft $RTS = 53600 \ lb$ Data from Chart No. 4-1100 English Units Limits and Outputs in Average Tensions.

Span = 152.4 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	s
Temp	Ice	Wind
°F	in	psf
15.0	0.25	4.00
32.0	0.25	0.00
0.0	0.00	0.00
15.0	0.00	0.00
30.0	0.00	0.00
60.0	0.00	0.00
90.0	0.00	0.00
120.0	0.00	0.00

0.00

0.00

* Design Condition

Span = 864.5 Feet Creep IS a Factor

167.0

212.0

0.00

0.00

Final Weight Sag Tension 1b/ft Ft

0.37

0.38

0.23

0.25

0.28

0.38

0.55

0.68

0.76

0.86

NESC M	edium	Load	Zone
Rolled	Rod		

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	к	Weight	Sag	Tension	Sag	Tension
°F	in	psf	1b/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.603	12.09	20123	11.21	21697
32.0	0.25	0.00	0.00	2.304	12.19	17672	10.81	19924
0.0	0.00	0.00	0.00	1.745	8.81	18505	7.92	20588
15.0	0.00	0.00	0.00	1.745	9.58	17027	8.33	19573
30.0	0.00	0.00	0.00	1.745	10.40	15682	8.78	18572
60.0	0.00	0.00	0.00	1.745	12.18	13400*	9.80	16639
90.0	0.00	0.00	0.00	1.745	14.04	11622	10.99	14848
120.0	0.00	0.00	0.00	1.745	15.92	10256	12.32	13247
167.0	0.00	0.00	0.00	1,745	17.34	9414	14.61	11173
212.0	0.00	0.00	0.00	1.745	18.06	9040	16.91	9657
	a							

* Design Condition

Span	=	1	10	00		5	F	eet	Ľ,
Creep		IS	ē	1	F	ac	t	or	

NESC	Me	dium	Load	Zone
Rolle	d	Rod		

Des	ign Poin	ts			F	inal	Initial	
Temp °F	Ice in	Wind psf	K lb/ft	Weight lb/ft	Sag Ft	Tension lb	Sag Ft	Tension 1b
15.0	0.25	4.00	0.20	2.603	19.63	20092	18.44	21392
32.0	0.25	0.00	0.00	2.304	19.76	17676	17.91	19497
0.0	0.00	0.00	0.00	1.745	15.40	17168	13.79	19167
15.0	0.00	0.00	0.00	1.745	16.46	16068	14.44	18308

30.0	0.00	0.00	0.00	1.745	17.54	15079	15.13	17478
60.0	0.00	0.00	0.00	1.745	19.74	13400*	16.61	15920
90.0	0.00	0.00	0.00	1.745	21.94	12059	18.22	14518
120.0	0.00	0.00	0.00	1.745	24.10	10983	19.92	13282
167.0	0.00	0.00	0.00	1.745	26.28	10075	22.68	11669
212.0	0.00	0.00	0.00	1.745	27.14	9757	25.35	10445
* Desi	gn Condi	tion						

Span = 1457.7 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			Fi	nal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.603	34.54	20059	32.96	21018
32.0	0.25	0.00	0.00	2.304	34.69	17680	32.29	18986
0.0	0.00	0.00	0.00	1.745	29.41	15786	26.77	17340
15.0	0.00	0.00	0.00	1.745	30.74	15105	27.73	16739
30.0	0.00	0.00	0.00	1.745	32.06	14485	28.71	16167
60.0	0.00	0.00	0.00	1.745	34.67	13400*	30.73	15109
90.0	0.00	0.00	0.00	1.745	37.21	12489	32.79	14162
120.0	0.00	0.00	0.00	1.745	39.68	11716	34.88	13319
167.0	0.00	0.00	0.00	1.745	42.89	10843	38.15	12183
212.0	0.00	0.00	0.00	1.745	43.93	10589	41.24	11275
the second se								

* Design Condition

Span = 1218.1 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			Fi	nal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.603	24.08	20080	22.74	21257
32.0	0.25	0.00	0.00	2.304	24,21	17678	22.16	19310
0.0	0.00	0.00	0.00	1.745	19.48	16630	17.50	18505
15.0	0.00	0.00	0.00	1.745	20.65	15692	18.27	17733
30.0	0.00	0.00	0.00	1.745	21.83	14846	19.06	16993
60.0	0.00	0.00	0.00	1.745	24.19	13400*	20.75	15615
90.0	0.00	0.00	0.00	1.745	26.52	12226	22.53	14383
120.0	0.00	0.00	0.00	1.745	28.80	11264	24.38	13296
167.0	0.00	0.00	0.00	1.745	31.34	10355	27.33	11865
212.0	0.00	0.00	0.00	1.745	32.26	10061	30.16	10759
* Desi	gn Condi	tion						

the second

Span = 821.8 Feet Creep IS a Factor

NESC	Medium	Load	Zone	
Rolle	ed Rod			

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	1b/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.603	10.92	20129	10.11	21755
32.0	0.25	0.00	0.00	2.304	11.01	17671	9.73	20007
0.0	0.00	0.00	0.00	1.745	7.85	18777	7.07	20845
15.0	0.00	0.00	0.00	1.745	8.55	17227	7.44	19807
30.0	0.00	0.00	0.00	1.745	9.32	15811	7.85	18778
60.0	0.00	0.00	0.00	1.745	11.00	13400*	8.78	16781
90.0	0.00	0.00	0.00	1.745	12.79	11525	9.88	14916
120.0	0.00	0.00	0.00	1.745	14.61	10096	11.13	13240
167.0	0.00	0.00	0.00	1.745	15.90	9279	13.33	11066
212.0	0.00	0.00	0.00	1.745	16.59	8893	15.55	9487
1.1								

* Design Condition

Span = 2022.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
οF	in	nef	1h/fr	16/ft	4.4	16	+ <b>'</b> #	16

15.0	0.25	4.00	0.20	2.603	66.69	20030	64.72	20635
32.0	0.25	0.00	0.00	2.304	66.86	17684	63.95	18483
0.0	0.00	0.00	0.00	1.745	60.93	14690	57.35	15601
15.0	0.00	0.00	0.00	1.745	62.44	14338	58.57	15277
30.0	0.00	0.00	0.00	1.745	63.93	14006	59.79	14967
60.0	0.00	0.00	0.00	1.745	66.84	13400*	62.24	14384
90.0	0.00	0.00	0.00	1.745	69.68	12859	64.67	13847
120.0	0.00	0.00	0.00	1.745	72.45	12372	67.09	13352
167.0	0.00	0.00	0.00	1.745	76.65	11702	70.84	12652
212.0	0.00	0.00	0.00	1.745	78.19	11473	74.37	12057
* Desi	gn Condi	tion						

Span = 1129.4 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	к	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	20.68	20089	19.45	21358
32.0	0.25	0.00	0.00	2.304	20.81	17677	18.91	19450
0.0	0.00	0.00	0.00	1.745	16.35	17028	14.65	19000
15.0	0.00	0.00	0.00	1.745	17.44	15970	15.33	18163
30.0	0.00	0.00	0.00	1.745	18.55	15018	16.04	17355
60.0	0.00	0.00	0.00	1.745	20.79	13400*	17.58	15842
90.0	0.00	0.00	0.00	1.745	23.03	12103	19.23	14483
120.0	0.00	0.00	0.00	1.745	25.21	11056	20.97	13286
167.0	0.00	0.00	0.00	1.745	27.49	10147	23.78	11720
212.0	0.00	0.00	0.00	1.745	28.36	9835	26.49	10527
+ Dooi	an Condi	tion						

* Design Condition

[]

Span = 1308.2 Feet Creep IS a Factor

## NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	In	Initial		
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension		
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb		
15.0	0.25	4.00	0.20	2.603	27.79	20071	26.35	21161		
32.0	0.25	0.00	0.00	2.304	27.93	17679	25.74	19179		
0.0	0.00	0.00	0.00	1.745	22.96	16276	20.72	18035		
15.0	0.00	0.00	0.00	1.745	24.20	15446	21.56	17330		
30.0	0.00	0.00	0.00	1.745	25.44	14695	22.44	16656		
60.0	0.00	0.00	0.00	1.745	27.91	13400*	24.26	15407		
90.0	0.00	0.00	0.00	1.745	30.33	12335	26.16	14292		
120.0	0.00	0.00	0.00	1.745	32.68	11451	28.11	13306		
167.0	0.00	0.00	0.00	1.745	35.48	10551	31.19	11996		
212.0 * Desi	0.00 gn Condit	0.00 tion	0.00	1.745	36.45	10273	34.12	10970		

Span = 1089.5 Feet Creep IS a Factor

Dec	ign Poin	ta			Final Initial				
Temp	Ice	Wind	к	Weight	Saq	Tension	Saq	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	19.24	20093	18.06	21406	
32.0	0.25	0.00	0.00	2.304	19.36	17676	17.53	19515	
0.0	0.00	0.00	0.00	1.745	15.05	17223	13.47	19231	
15.0	0.00	0.00	0.00	1.745	16.09	16107	14.11	18365	
30.0	0.00	0.00	0.00	1.745	17.16	15103	14.78	17526	
60.0	0.00	0.00	0.00	1.745	19.35	13400*	16.25	15950	
90.0	0.00	0.00	0.00	1.745	21.54	12042	17.84	14531	
120.0	0.00	0.00	0.00	1.745	23.68	10954	19.52	13281	
167.0	0.00	0.00	0.00	1.745	25.83	10047	22.26	11649	
212.0	0.00	0.00	0.00	1.745	26.68	9727	24.92	10413	
* Desig	* Design Condition								

Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	12.78	20119	11.87	21664
32.0	0.25	0.00	0.00	2.304	12.88	17672	11.45	19878
0.0	0.00	0.00	0.00	1.745	9.39	18354	8.43	20442
15.0	0.00	0.00	0.00	1.745	10.19	16917	8.86	19441
30.0	0.00	0.00	0.00	1.745	11.04	15612	9.34	18456
60.0	0.00	0.00	0.00	1.745	12.86	13400*	10.41	16561
90.0	0.00	0.00	0.00	1.745	14.77	11674	11.64	14811
120.0	0.00	0.00	0.00	1.745	16.68	10342	13.01	13251
167.0	0.00	0.00	0.00	1.745	18.18	9488	15.35	11231
212.0	0.00	0.00	0.00	1.745	18.92	9121	17.69	9749
* Dogi	an Condi	tion						

* Design Condition

L

Span = 1775.1 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	51.32	20040	49.49	20776
32.0	0.25	0.00	0.00	2.304	51.48	17683	48.76	18665
0.0	0.00	0.00	0.00	1.745	45.76	15059	42.50	16210
15.0	0.00	0.00	0.00	1.745	47.22	14598	43.64	15789
30.0	0.00	0.00	0.00	1.745	48.65	14170	44.78	~ 15387
60.0	0.00	0.00	0.00	1.745	51.46	13400*	47.09	14638
90.0	0.00	0.00	0.00	1.745	54.20	12728	49.40	13958
120.0	0.00	0.00	0.00	1.745	56.86	12138	51.70	13340
167.0	0.00	0.00	0.00	1.745	60.85	11348	55.27	12483
212.0	0.00	0.00	0.00	1.745	62.01	11138	58.64	11772
	a 1'	•						

* Design Condition

- $\square$
- Span = 1579.5 Feet Creep IS a Factor

NESC M	edium	Load	Zone
Rolled	Rod		

Des	ign Poin	ts			Final			Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	40.58	20051	38.90	20916	
32.0	0.25	0.00	0.00	2.304	40.74	17681	38.20	18850	
0.0	0.00	0.00	0.00	1.745	35.26	15464	32.34	16853	
15.0	0.00	0.00	0.00	1.745	36.65	14881	33.39	16329	
30.0	0.00	0.00	0.00	1.745	38.02	14346	34.44	15829	
60.0	0.00	0.00	0.00	1.745	40.72	13400*	36.59	14905	
90.0	0.00	0.00	0.00	1.745	43.34	12593	38.76	14073	
120.0	0.00	0.00	0.00	1.745	45.89	11898	40.94	13328	
167.0	0.00	0.00	0.00	1.745	49.42	11053	44.34	12312	
212.0	0.00	0.00	0.00	1.745	50.51	10818	47.55	11487	
* Design Condition									

Span = 1541.4 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	38.64	20054	36.99	20947
32.0	0.25	0.00	0.00	2.304	38.79	17681	36.30	18890
0.0	0.00	0.00	0.00	1.745	33.37	15558	30.54	16998
15.0	0.00	0.00	0.00	1.745	34.74	14947	31.56	16450
30.0	0.00	0.00	0.00	1.745	36.10	14387	32.59	15929
60.0	0.00	0.00	0.00	1.745	38.77	13400*	34.70	14965
90.0	0.00	0.00	0.00	1.745	41.37	12562	36.84	14100
120.0	0.00	0.00	0.00	1.745	43.90	11844	38.99	13325
167 0	$\cap$ $\cap$ $\cap$	0 00	$\cap$ $\cap$ $\cap$	1 745	47 22	10990	42 35	10074

Span = 945.9 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

45.52

11424

Desi	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	к	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	14.49	20111	13.49	21588
32.0	0.25	0.00	0.00	2.304	14.59	17673	13.04	19770
0.0	0.00	0.00	0.00	1.745	10.84	18008	9.72	20093
15.0	0.00	0.00	0.00	1.745	11.72	16666	10.21	19128
30.0	0.00	0.00	0.00	1.745	12.64	15452	10.74	18182
60.0	0.00	0.00	0.00	1.745	14.58	13400*	11.92	16377
90.0	0.00	0.00	0.00	1.745	16.57	11791	13.26	14725
120.0	0.00	0.00	0.00	1.745	18.55	10535	14.73	13260
167.0	0.00	0.00	0.00	1.745	20.24	9658	17.20	11362
212.0	0.00	0.00	0.00	1.745	21.01	9305	19.64	9956

* Design Condition

Span = 1437.5 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	33.58	20061	32.02	21036
32.0	0.25	0.00	0.00	2.304	33.73	17680	31.36	19010
0.0	0.00	0.00	0.00	1.745	28.49	15846	25.90	17427
15.0	0.00	0.00	0.00	1.745	29.81	15147	26.85	16813
30.0	0.00	0.00	0.00	1.745	31.12	14510	27.82	16228
60.0	0.00	0.00	0.00	1.745	33.71	13400*	29.81	15146
90.0	0.00	0.00	0.00	1.745	36.24	12470	31.85	14178
120.0	0.00	0.00	0.00	1.745	38.69	11684	33.92	13317
167.0	0.00	0.00	0.00	1.745	41.85	10806	37.17	12160
212.0	0.00	0.00	0.00	1.745	42.88	10549	40.24	11237

* Design Condition

Span = 669.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind K		Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	7.23	20153	6.63	21965
32.0	0.25	0.00	0.00	2.304	7.30	17667	6.35	20306
0.0	0.00	0.00	0.00	1.745	4.94	19785	4.49	21726
15.0	0.00	0.00	0.00	1.745	5.43	17990	4.74	20618
30.0	0.00	0.00	0.00	1.745	5.99	16315	5.01	19505
60.0	0.00	0.00	0.00	1.745	7.29	13400*	5.65	17298
90.0	0.00	0.00	0.00	1.745	8.78	11122	6.44	15173
120.0	0.00	0.00	0.00	1.745	10.36	9431	7.39	13211
167.0	0.00	0.00	0.00	1.745	11.16	8754	9.19	10629
212.0	0.00	0.00	0.00	1.745	11.75	8318	11.12	8792

Rolled Rod

NESC Medium Load Zone

* Design Condition

Span = 2606.7 Feet Creep IS a Factor

Des	Design Points				F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	111.26	20014	109.06	20411
32.0	0.25	0.00	0.00	2.304	111.44	17686	108.24	18201
0.0	0.00	0.00	0.00	1.745	105.22	14177	101.23	14730
15.0	0.00	0.00	0.00	1.745	106.80	13971	102.55	14543
20 0	0 00	0 0 0	0 0 0	1 745	108 35	12772	103 86	14261

60.0	0.00	0.00	0.00	1.745	111.42	13400*	106.48	14012	
90.0	0.00	0.00	0.00	1.745	114.42	13054	109.09	13682	
120.0	0.00	0.00	0.00	1.745	117.36	12731	111.68	13369	
167.0	0.00	0.00	0.00	1.745	121.86	12269	115.70	12911	
212.0	0.00	0.00	0.00	1.745	124.17	12044	119.50	12507	
* Design Condition									

Span = 721.9 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			Final		Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	$\bar{4}.00$	0.20	2.603	8.42	20145	7.75	21892
32.0	0.25	0.00	0.00	2.304	8.50	17668	7.43	20202
0.0	0.00	0.00	0.00	1.745	5.85	19433	5.31	21430
15.0	0.00	0.00	0.00	1.745	6.42	17720	5.59	20343
30.0	0.00	0.00	0.00	1.745	7.05	16134	5.90	19258
60.0	0.00	0.00	0.00	1.745	8.49	13400*	6.64	17119
90.0	0.00	0.00	0.00	1.745	10.09	11272	7.54	15082
120.0	0.00	0.00	0.00	1.745	11.76	9679	8.60	13221
167.0	0.00	0.00	0.00	1.745	12.73	8943	10.54	10790
212.0	0.00	0.00	0.00	1.745	13.35	8526	12.58	9049
* Desi	gn Condi	tion						

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

Initial

Tension

1b

22902

21520

23991

22840

21639

19074*

16279

8171

4277

13246

Sag

Ft

0.37

0.35

0.25

0.26

0.27

0.31

0.36

0.45

0.73

1.39



# 6/24/2010 David Evans and Associates

### Susquehanna - Roseland 500kV S&L P&P

Weight

lb/ft

2.890

2.602

2.044

2.044

2.044

2.044

2.044

2.044

2.044

2.044

Conductor: 1590.0 Kcmil 54/19 Stranding ACSR "FALCON"

Diameter = 1.545 inWeight = 2.044 lb/ft $Area = 1.4070 \, Sq. \, in$  $RTS = 54500 \ lb$ Data from Chart No. 1-1009 English Units Limits and Outputs in Average Tensions.

Span = 152.4 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Final

Sag

Ft

0.44

0.47

0.28

0.32

0.36

0.50

0.76

1.07

1.31

1.61

Tension

lb

18860

16232

21011

18699

16403

11905

7768

5561

4529

3697

Des	ign Point	ts	
Temp	Ice	Wind	K
۰F	in	psf	1b/ft
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00
* Desi	gn Condi	tion	

Span = 864.5 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F'.	inal	In.	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	1b/ft	1b/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.890	13.54	19964	11.43	23628
32.0	0.25	0.00	0.00	2.602	13.78	17653	11.04	22025
0.0	0.00	0.00	0.00	2.044	10.37	18421	8.30	23018
15.0	0.00	0.00	0.00	2.044	11.23	17022	8.68	22017
30.0	0.00	0.00	0.00	2.044	12.13	15758	9.09	21006
60.0	0.00	0.00	0.00	2.044	14.03	13625*	10.07	18979
90.0	0.00	0.00	0.00	2.044	15.99	11958	11.24	16998
120.0	0.00	0.00	0.00	2.044	17.94	10663	12.62	15141
167.0	0.00	0.00	0.00	2.044	20.88	9168	15.13	12636
212.0	0.00	0.00	0.00	2.044	22.52	8504	17.75	10776
i mand	and Armeda	1.2.2.						

* Design Condition

Span = 1105.5 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	In	itial
Temp °F	Ice in	Wind psf	K 1b/ft	Weight 1b/ft	Sag Ft	Tension 1b	Sag Ft	Tension lb
15.0	0.25	4.00	0.20	2.890	22.34	19790	19.35	22845
32.0	0.25	0.00	0.00	2.602	22.66	17574	18.85	21116
0.0	0.00	0.00	0.00	2.044	18.35	17032	14.73	21214
15.0	0.00	0.00	0.00	2.044	19.49	16040	15,37	20327

30.0	0.00	0.00	0.00	2.044	20.64	15147	16.07	19451
60.0	0.00	0.00	0.00	2.044	22.96	13625*	17.60	17759
90.0	0.00	0.00	0.00	2.044	25,24	12395	19.32	16185
120.0	0.00	0.00	0.00	2.044	27:47	11394	21.18	14765
167.0	0.00	0.00	0.00	2.044	30.82	10163	24.29	12881
212.0	0.00	0.00	0.00	2.044	33.51	9352	27.34	11448
* Desi	gn Condi	cion						

Span = 1455.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	ĸ	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	1b
15.0	0.25	4.00	0.20	2.890	39.09	19621	35.03	21880
32.0	0.25	0.00	0.00	2.602	39.47	17499	34,46	20029
0.0	0.00	0.00	0.00	2.044	34.42	15749	28.76	18836
15.0	0.00	0,00	0.00	2.044	35.79	15149	29.79	18186
30.0	0.00	0.00	0.00	2.044	37.15	14598	30.86	17562
60.0	0.00	0.00	0.00	2.044	39.82	13625*	33.06	16393
90.0	0.00	0.00	0.00	2.044	42.41	12797	35.35	15337
120.0	0.00	0.00	0.00	2.044	44.93	12085	37.69	14391
167.0	0.00	0.00	0.00	2.044	48.72	11153	41.37	13116
212.0	0.00	0.00	0.00	2.044	52.17	10421	44.88	12099
	and the second second	4.54 (1999) 40.111 [10]						

* Design Condition

Span = 1218.1 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.890	27.23	19727	23.85	22506
32.0	0.25	0.00	0.00	2.602	27.56	17545	23.31	20730
0.0	0.00	0.00	0.00	2.044	22.96	16534	18.61	20389
15.0	0.00	0.00	0.00	2.044	24.19	15694	19.39	19573
30.0	0.00	0.00	0.00	2.044	25.43	14934	20.21	18776
60.0	0.00	0.00	0.00	2.044	27.88	13625*	21.99	17259
90.0	0.00	0.00	0.00	2.044	30.29	12548	23.93	15869
120.0	0.00	0.00	0.00	2,044	32.62	11655	25.97	14624
167.0	0.00	0.00	0.00	2.044	36.13	10531	29.30	12970
212.0	0.00	0.00	0.00	2.044	39.29	9688	32.52	11693
	101 A 10	Cabolas V. m.						

NESC Medium Load Zone

Final Sag Tension

12.26 19914

12.50 17590

lb

18605

17136

15805

13557

11808

10462

8306

8928

Initial

Ft

10.32

9.96

7.44

7.78

8.16

10.14

9.05

11.43

13.83

16.36

Sag Tension

1b

23652

22069

23192

22177

21149

19075*

17033

15105

12494

10563

Rolled Rod

* Design Condition

Burghing Burghese

Span = 821.8 Feet Creep IS a Factor

Des	ign Point	CS .			F1
Temp	Ice	Wind	K	Weight	Sag
°F	in	psf	lb/ft	lb/ft	Ft
15.0	0.25	4.00	0.20	2.890	12.26
32.0	0.25	0.00	0.00	2.602	12.50
0.0	0.00	0.00	0.00	2.044	9.28
15.0	0.00	0.00	0.00	2.044	10.08
30.0	0.00	0.00	0.00	2.044	10.93
60.0	0.00	0.00	0.00	2.044	12.74
90.0	0.00	0.00	0.00	2.044	14.63
120.0	0.00	0.00	0.00	2.044	16.52
167.0	0.00	0.00	0.00	2.044	19.37
212.0	0.00	0.00	0.00	2.044	20.83
* Desi	gn Condit	cion			

Span = 2022.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
Ao	in	nef	1h/fr	1h/ft	+T	16	Ft	٦h

15.0	0.25	4.00	0.20	2.890	76.28	19471	71.17	20854
32.0	0.25	0.00	0.00	2.602	76.72	17433	70.60	18929
0.0	0.00	0.00	0.00	2.044	71.16	14752	63.79	16441
15.0	0.00	0.00	0.00	2.044	72.68	14447	65.15	16100
30.0	0.00	0.00	0.00	2.044	74.18	14158	66.52	15772
60.0	0.00	0.00	0.00	2.044	77.11	13625*	69.25	15155
90.0	0.00	0.00	0.00	2.044	79.98	13143	71.98	14587
120.0	0.00	0.00	0.00	2.044	82.78	12704	74.68	14063
167.0	0.00	0.00	0.00	2.044	87.02	12093	78.88	13324
212.0	0.00	0.00	0.00	2.044	90.95	11579	82.82	12698
* Desi	gn Condi	tion						

Span = 1129.4 Feet

Creep IS a Factor

	Ice	Wind	
۰F	in	psf	1b
15.0	0.25	4.00	Ο.
32.0	0.25	0.00	Ο.
0.0	0.00	0.00	ο.
15.0	0.00	0.00	Ο.
30.0	0.00	0.00	ο.
60.0	0.00	0.00	ο.
90.0	0.00	0.00	ο.
120.0	0.00	0.00	ο.
167.0	0.00	0.00	ο.
212.0	0.00	0.00	Ο.

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			Fi	nal	In	itial
Temp	Ice	Wind	к	Weight	Sag	Tension	Sag	Tension
۰F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	1b
15.0	0.25	4.00	0.20	2.890	23.34	19776	20.26	22771
32.0	0.25	0.00	0.00	2.602	23.66	17568	19.75	21032
0.0	0.00	0.00	0.00	2.044	19.28	16919	15.50	21036
15.0	0.00	0.00	0.00	2.044	20.45	15961	16.18	20163
30.0	0.00	0.00	0.00	2.044	21.62	15099	16.90	19304
60.0	0.00	0.00	0.00	2.044	23.96	13625*	18.49	17649
90.0	0.00	0.00	0.00	2.044	26.28	12430	20.25	16115
120.0	0.00	0.00	0.00	2.044	28.53	11453	22,15	14733
167.0	0.00	0.00	0.00	2.044	31.91	10246	25.31	12901
212.0	0.00	0.00	0.00	2.044	34.71	9426	28.40	11504
* Desi	gn Condi	tion						

Span = 1308.2 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

ign Point	ts			Fi	nal	In	itial
Ice	Wind	K 1b/ft	Weight	Sag	Tension	Sag	Tension 1b
0.25	4.00	0.20	2.890	31.48	19682	27.83	22253
0.25	0.00	0.00	2.602	31.84	17526	27.27	20445
0.00	0.00	0.00	2.044	27.04	16198	22.15	19763
0.00	0.00	0.00	2.044	28.34	15460	23.03	19009
0.00	0.00	0.00	2.044	29.62	14790	23.95	18279
0.00	0.00	0.00	2.044	32.17	13625*	25.91	16900
0.00	0.00	0.00	2.044	34.65	12653	28.00	15647
0.00	0.00	0.00	2.044	37.06	11835	30.17	14526
0.00	0.00	0.00	2.044	40.69	10789	33.64	13031
0.00 gn Condi	0.00	0.00	2.044	43.98	9988	36.98	11862
	Tce in 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00	in psf 0.25 4.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ice         Wind         K           in         psf         lb/ft           0.25         4.00         0.20           0.25         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00           0.00         0.00         0.00	IceWindKWeightinpsflb/ftlb/ftlb/ft0.254.000.202.8900.250.000.002.6020.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.0440.000.000.002.044	IceWindKWeightSaginpsflb/ftlb/ftlb/ftFt0.254.000.202.89031.480.250.000.002.60231.840.000.000.002.04427.040.000.000.002.04428.340.000.000.002.04429.620.000.000.002.04432.170.000.000.002.04434.650.000.000.002.04440.690.000.000.002.04440.69	IceWindKWeightSagTensioninpsflb/ftlb/ftFtlb0.254.000.202.89031.48196820.250.000.002.60231.84175260.000.000.002.04427.04161980.000.000.002.04428.34154600.000.000.002.04429.62147900.000.000.002.04432.1713625*0.000.000.002.04434.65126530.000.000.002.04437.06118350.000.000.002.04440.6910789	IceWindKWeightSagTensionSaginpsflb/ftlb/ftftlbFt0.254.000.202.89031.481968227.830.250.000.002.60231.841752627.270.000.000.002.04427.041619822.150.000.000.002.04428.341546023.030.000.000.002.04429.621479023.950.000.000.002.04432.1713625*25.910.000.000.002.04434.651265328.000.000.000.002.04440.691078933.64

Span = 1089.5 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	1b/ft	Ft	1.b	Ft	1b
15.0	0.25	4.00	0.20	2.890	21.69	19800	18.75	22895
32.0	0.25	0.00	0.00	2.602	22.00	17579	18.25	21174
0.0	0.00	0.00	0.00	2.044	17.74	17111	14.23	21335
15.0	0.00	0.00	0.00	2.044	18.87	16095	14.85	20438
30.0	0.00	0.00	0.00	2.044	20.00	15181	15.52	19551
60.0	0.00	0.00	0.00	2.044	22.30	13625*	17.02	17835
90.0	0.00	0.00	0.00	2.044	24.56	12371	18.70	16234
120.0	0.00	0.00	0.00	2.044	26.78	11353	20.54	14787
167.0	0.00	0.00	0.00	2.044	30.10	10107	23.61	12868
212.0	0.00	0.00	0.00	2.044	32.72	9301	26.64	11411
* Desi	gn Condi	tion						

Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	14.32	19944	12.12	23549
32.0	0.25	0.00	0.00	2.602	14.57	17644	11.72	21931
0.0	0.00	0.00	0.00	2.044	11.05	18263	8.84	22842
15.0	0.00	0.00	0.00	2.044	11.94	16909	9.24	21850
30.0	0.00	0.00	0.00	2.044	12.87	15687	9.68	20850
60.0	0.00	0.00	0.00	2.044	14.82	13625*	10.71	18851
90.0	0.00	0.00	0.00	2.044	16.82	12010	11.94	16910
120.0	0.00	0.00	0.00	2.044	18.80	10749	13.37	15099
167.0	0.00	0.00	0.00	2.044	21.79	9283	15.95	12665
212.0	0.00	0.00	0.00	2.044	23.53	8597	18.62	10854
* Dogi	an Condi	tion						

* Design Condition

Span = 1775.1 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	58.56	19523	53.82	21227
32.0	0.25	0.00	0.00	2.602	58.97	17456	53.23	19322
0.0	0.00	0.00	0.00	2.044	53.58	15081	46.74	17271
15.0	0.00	0.00	0.00	2.044	55.05	14680	48.01	16819
30.0	0.00	0.00	0.00	2.044	56.50	14306	49.28	16387
60.0	0.00	0.00	0.00	2.044	59.35	13625*	51.85	15579
90.0	0.00	0.00	0.00	2.044	62.12	13023	54.44	14844
120.0	0.00	0.00	0.00	2.044	64.82	12487	57.02	14176
167.0	0.00	0.00	0.00	2.044	68.90	11756	61.04	13251
212.0	0.00	0.00	0.00	2.044	72.65	11156	64.82	12486

* Design Condition

 $\square$ 

Span = 1579.5 Feet Creep IS a Factor

NESC	Мe	dium	Load	Zone	
Rolle	ed	Rod			

Des	ign Point	ts			F	inal	Initial		
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.890	46.19	19578	41.84	21600	
32.0	0.25	0.00	0.00	2.602	46.58	17480	41.25	19723	
0.0	0.00	0.00	0.00	2.044	41.38	15447	35.18	18153	
15.0	0.00	0.00	0.00	2.044	42.80	14938	36.32	17587	
30.0	0.00	0.00	0.00	2.044	44.20	14467	37.48	17045	
60.0	0.00	0.00	0.00	2.044	46.95	13625*	39.86	16034	
90.0	0.00	0.00	0.00	2.044	49.62	12897	42.28	15119	
120.0	0.00	0.00	0.00	2.044	52.22	12261	44.73	14296	
167.0	0.00	0.00	0.00	2.044	56.13	11414	48.56	13175	
212.0	0.00	0.00	0.00	2.044	59.71	10737	52.19	12268	
* Design Condition									

Span = 1541.4 Feet

Creep IS a Factor

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	43.95	19590	39.69	21682
32.0	0.25	0.00	0.00	2.602	44.34	17485	39.11	19812
0.0	0.00	0.00	0.00	2.044	39.18	15533	33.14	18351
15.0	0.00	0.00	0.00	2.044	40.59	14998	34.25	17760
30.0	0.00	0.00	0.00	2.044	41.98	14504	35.38	17194
60.0	0.00	0.00	0.00	2.044	44.70	13625*	37.71	16137
90.0	0.00	0.00	0.00	2.044	47.35	12868	40.09	15181
120.0	0.00	0.00	0.00	2.044	49.93	12210	42.51	14323
167 0	$\cap$ $\cap$ $\cap$	0 00	0 0 0	2 044	53 RN	11228	46 30	12158

19.89 12219

Span = 945.9 Feet

Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Desi	gn Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	16.26	19899	13.85	23359
32.0	0.25	0.00	0.00	2.602	16.53	17623	13.42	21710
0.0	0.00	0.00	0.00	2.044	12.78	17903	10.20	22416
15.0	0.00	0.00	0.00	2.044	13.74	16652	10.66	21447
30.0	0.00	0.00	0.00	2.044	14.74	15526	11.17	20475
60.0	0.00	0.00	0.00	2.044	16.80	13625*	12.33	18551
90.0	0.00	0.00	0.00	2.044	18.88	12125	13.70	16705
120.0	0.00	0.00	0.00	2.044	20.94	10940	15.25	15002
167.0	0.00	0.00	0.00	2.044	24.02	9541	17.99	12728
212.0	0.00	0.00	0.00	2.044	26.02	8812	20.77	11030
/	~ 7.1.							

* Design Condition

Span = 1437.5 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			Final			Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.890	38.14	19627	34.13	21921	
32.0	0.25	0.00	0.00	2.602	38.51	17502	33.55	20075	
0.0	0.00	0.00	0.00	2.044	33.49	15797	27.92	18939	
15.0	0.00	0.00	0.00	2.044	34.86	15182	28.93	18277	
30.0	0.00	0.00	0.00	2.044	36.21	14618	29.98	17641	
60.0	0.00	0.00	0.00	2.044	38.86	13625*	32.16	16449	
90.0	0.00	0.00	0.00	2.044	41.45	12781	34.43	15370	
120.0	0.00	0.00	0.00	2.044	43.95	12058	36.75	14406	
167.0	0.00	0.00	0.00	2.044	47.72	11113	40.41	13106	
212.0	0.00	0.00	0.00	2.044	51.16	10373	43.89	12073	

* Design Condition

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	lb
15.0	0.25	4.00	0.20	2.890	8.28	19532	6.90	23431
32.0	0.25	0.00	0.00	2.602	8.49	17166	6.65	21908
0.0	0.00	0.00	0.00	2.044	6.00	19075	4.88	23450
15.0	0.00	0.00	0.00	2.044	6.59	17367	5.11	22388
30.0	0.00	0.00	0.00	2.044	7.24	15799	5.37	21301
60.0	0.00	0.00	0.00	2.044	8.72	13128	6.00	19075*
90.0	0.00	0.00	0.00	2.044	10.33	11078	6.80	16830
120.0	0.00	0.00	0.00	2.044	11.99	9553	7.80	14659
167.0	0.00	0.00	0.00	2.044	14.35	7986	9.80	11683
212.0	0.00	0.00	0.00	2.044	15.32	7478	12.01	9534

* Design Condition

#### Span = 2606.8 Feet Creep IS a Factor

NESC Medium	n Load	Zone
Rolled Rod		

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	1b
15.0	0.25	4.00	0.20	2.890	127.79	19394	122.12	20277
32.0	0.25	0.00	0.00	2.602	128.25	17400	121.58	18338
0.0	0.00	0.00	0.00	2.044	122.49	14300	114.48	15283
15.0	0.00	0.00	0.00	2.044	124.06	14122	115.95	15093
30 N	0 0 0	0 00	$\cap$ $\cap$ $\cap$	2 044	125 KI	13951	117 41	14907

 $\Box$ 

Span = 669.0 Feet Creep IS a Factor

60.0	0.00	0.00	0.00	2.044	128.67	13625*	120.33	14552
90.0	0.00	0.00	0.00	2.044	131.67	13320	123.22	14216
120.0	0.00	0.00	0.00	2.044	134.63	13034	126.09	13898
167.0	0.00	0.00	0.00	2.044	139.15	12619	130.54	13434
212.0	0.00	0.00	0.00	2.044	143.37	12256	134.73	13024
* Desi	gn Condi	tion						

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.



#### 6/22/2010 David Evans and Associates

Susquehanna - Roseland 500kV B&M P&P

Weight

lb/ft

2.603

2.304

1.745

1.745

1.745

1.745

1.745

1.745 1.745

1.745

Conductor: 1594.0 Kcmil 54/19 Stranding ACCR "FALCON"

Area = 1.4110 Sq. in Diameter = 1.547 in Weight = 1.745 lb/ft $RTS = 53600 \ lb$ Data from Chart No. 4-1100 English Units Limits and Outputs in Average Tensions.

Span = 152.4 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Final

Tension

lb

20230

17655

22348

20091

17843

13399*

9142

7491

6648

5871

Sag

Ft

0.37

0.38

0.23

0.25

0.28

0.38

0.55

0.68

0.76

0.86

Des	ign Point	CS .	
Temp	Ice	Wind	K
۰F	in	psf	lb/ft
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00
* Desi	gn Condit	cion	

Span = 839.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts		F	Final		itial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.603	11.39	20126	10.54	21731
32.0	0.25	0.00	0.00	2.304	11.48	17671	10.15	19973
0.0	0.00	0.00	0.00	1.745	8.23	18666	7.40	20742
15.0	0.00	0.00	0.00	1.745	8.96	17145	7.79	19713
30.0	0.00	0.00	0.00	1.745	9.75	15758	8.22	18695
60.0	0.00	0.00	0.00	1.745	11.47	13400*	9.19	16723
90.0	0.00	0.00	0.00	1.745	13.29	11565	10.32	14888
120.0	0.00	0.00	0.00	1.745	15.13	10162	11.60	13243
167.0	0.00	0.00	0.00	1.745	16.47	9334	13.84	11109
212.0	0.00	0.00	0.00	1.745	17.18	8953	16.09	9556
+ Deal	an Roadi	6 1						

* Design Condition

Span = 418.0 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Design Points					F	inal	In	itial
Temp °F	Ice	Wind psf	K 1b/ft	Weight lb/ft	Sag Ft	Tension 1b	Sag Ft	Tension lb
15.0	0.25	4.00	0.20	2.603	2.82	20196	2.55	22280
32.0	0.25	0.00	0.00	2.304	2.85	17660	2.42	20757
0.0	0.00	0.00	0.00	1.745	1.79	21324	1.66	22913
15.0	0.00	0.00	0.00	1.745	1.98	19224	1.75	21734

Initial

Tension

1b

22495

21064

23629

22421

21180

18603

15907

13112

8653

6101

Sag

Ft

0.34

0.32

0.21

0.23

0.24

0.27

0.32

0.39

0.59

0.83

30.0	0.00	0.00	0.00	1.745	2.22	17186	1.86	20534
60.0	0.00	0.00	0.00	1.745	2.84	13400*	2.11	18080
90.0	0.00	0.00	0.00	1.745	3.72	10243	2.44	15596
120.0	0.00	0.00	0,00	1.745	4.56	8371	2.90	13157
167.0	0.00	0.00	0.00	1.745	4.92	7747	3.92	9722
212.0	0.00	0.00	0.00	1.745	5.30	7194	5.19	7353
* Desi	gn Condi	tion						

Span = 708.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	Final		Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	8.10	20147	7.45	21912	
32.0	0.25	0.00	0.00	2.304	8.17	17668	7.14	20230	
0.0	0.00	0.00	0.00	1.745	5.60	19526	5.08	21509	
15.0	0.00	0.00	0.00	1.745	6.15	17791	5.36	20416	
30.0	0.00	0.00	0.00	1.745	6.76	16181	5.66	19323	
60.0	0.00	0.00	0.00	1.745	8.16	13400*	6.37	17166	
90.0	0.00	0.00	0.00	1.745	9.74	11234	7.24	15106	
120.0	0.00	0.00	0.00	1.745	11.38	9616	8.28	13218	
167.0	0.00	0.00	0.00	1.745	12.31	8894	10.18	10749	
212.0	0.00	0.00	0.00	1.745	12.92	8473	12.19	8983	
	handle franch and the state	CONTRACTOR OF A DESCRIPTION OF A DESCRIP							

* Design Condition

Span = 574.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			Final		Initial	
Temp	Ice	Wind	к	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	1b	Ft.	lb
15.0	0.25	4.00	0.20	2.603	5.32	20169	4.85	22092
32.0	0.25	0.00	0.00	2.304	5.37	17665	4.63	20487
0.0	0.00	0.00	0.00	1.745	3.52	20404	3.23	22222
15.0	0.00	0.00	0.00	1.745	3.89	18476	3.41	21081
30.0	0.00	0.00	0.00	1.745	4.32	16649	3.61	19929
60.0	0.00	0.00	0.00	1.745	5.37	13400*	4.08	17612
90.0	0.00	0.00	0.00	1.745	6.64	10823	4.69	15337
120.0	0.00	0.00	0.00	1.745	8.05	8932	5.45	13190
167.0	0.00	0.00	0.00	1.745	8.57	8392	6.97	10314
212.0	0.00	0.00	0.00	1.745	9.08	7920	8.69	8280
* Desi	gn Condi	tion						

NESC Medium Load Zone

Ft

18.14

18.26

14.06

15.06

16.11

18.24

20.39

22.50

24.55 25.39

Final

Tension

16

20097

17675

17384

16221

15174

11991

10869

9966

9639

13400*

Sag

Initial

Tension

1b

21444

19569

19417

18528

17665

16040

14571

13276

11591

10320

Sag

Ft

17.00

16.49

12.58

13.19

13.83

15.24

16.77

18.41

21.10

23.71

Rolled Rod

Weight

lb/ft

2.603

2.304

1.745

1.745

1.745

1.745

1,745

1.745

1.745

1.745

Span = 1058.0 Feet

Creep IS a Factor

Des	ign Poin	ts	
Temp	Ice	Wind	K
°F	in	psf	1b/ft
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00
* Desi	gn Condi	tion	

Span = 588.0 Feet Creep IS a Factor

Temp 940

Des	ign Poin	ts		Final			Initial	
Гетр	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
913	in	nef	1H/FF	1h/ft	FF	16	Ft	Th

15.0	0.25	4.00	0.20	2.603	5.58	20167	5.10	22073
32.0	0.25	0.00	0.00	2.304	5.64	17665	4.87	20461
0.0	0.00	0.00	0.00	1.745	3.71	20314	3.40	22153
15.0	0.00	0.00	0.00	1.745	4.10	18405	3.59	21016
30.0	0.00	0.00	0.00	1.745	4.54	16600	3.80	19868
60.0	0.00	0.00	0.00	1.745	5.63	13400*	4.29	17567
90.0	0.00	0.00	0.00	1.745	6.94	10869	4.93	15313
120.0	0.00	0.00	0.00	1.745	8.38	9011	5.72	13194
167.0	0.00	0.00	0.00	1.745	8.94	8447	7.28	10363
212.0	0.00	0.00	0.00	1.745	9.46	7980	9.03	8360

* Design Condition

Span = 528.0 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	Initial		
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	4.50	20177	4.10	22150	
32.0	0.25	0.00	0.00	2.304	4.55	17663	3.90	20571	
0.0	0.00	0.00	0.00	1.745	2.94	20691	2.71	22444	
15.0	0.00	0.00	0.00	1.745	3.25	18707	2.86	21290	
30.0	0.00	0.00	0.00	1.745	3.62	16812	3.02	20121	
60.0	0.00	0.00	0.00	1.745	4.54	13400*	3.42	17758	
90.0	0.00	0.00	0.00	1.745	5.71	10663	3.95	15416	
120.0	0.00	0.00	0.00	1.745	6.94	8766	4.61	13181	
167.0	0.00	0.00	0.00	1.745	7.41	8208	6.00	10148	
212.0	0.00	0.00	0.00	1.745	7.89	7715	7.60	8007	
* Dogi	an Condi	tion							

* Design Condition

### $\square$

Span = 750.0 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	$\bar{4}.00$	0.20	2.603	9.09	20140	8.38	21854
32.0	0.25	0.00	0.00	2.304	9.17	17669	8.04	20147
0.0	0.00	0.00	0.00	1.745	6.38	19247	5.77	21269
15.0	0.00	0.00	0.00	1.745	6.98	17579	6.08	20194
30.0	0.00	0.00	0.00	1.745	7.65	16040	6.42	19124
60.0	0.00	0.00	0.00	1.745	9.16	13400*	7.21	17023
90.0	0.00	0.00	0.00	1.745	10.82	11347	8.16	15034
120.0	0.00	0.00	0.00	1.745	12.53	9802	9.28	13226
167.0	0.00	0.00	0.00	1.745	13.59	9041	11.30	10871
212.0	0.00 an Condit	0.00	0.00	1.745	14.23	8633	13.39	9178
* Deci	an condi	r i on						

* Design Condition

Span = 2024.0 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	66.83	20030	64.85	20634	
32.0	0.25	0.00	0.00	2.304	67.00	17684	64.08	18482	
0.0	0.00	0.00	0.00	1.745	61.06	14687	57.48	15597	
15.0	0.00	0.00	0.00	1.745	62.57	14336	58.70	15274	
30.0	0.00	0.00	0.00	1.745	64.06	14005	59.92	14964	
60.0	0.00	0.00	0.00	1.745	66.98	13400*	62.37	14382	
90.0	0.00	0.00	0.00	1.745	69.82	12859	64.80	13846	
120.0	0.00	0.00	0.00	1.745	72.59	12374	67.22	13352	
167.0	0.00	0.00	0.00	1.745	76.78	11705	70.97	12653	
212.0	0.00	0.00	0.00	1.745	78.33	11476	74.50	12059	
*									

* Design Condition

Rolled Rod

Des	ign Poin [.]	ts			F	inal	In	itial
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	20.67	20089	19.44	21358
32.0	0.25	0.00	0.00	2.304	20.79	17676	18.89	19450
0.0	0.00	0.00	0.00	1.745	16.34	17029	14.64	19002
15.0	0.00	0.00	0.00	1.745	17.42	15971	15.32	18165
30.0	0.00	0.00	0.00	1.745	18.53	15019	16.03	17356
60.0	0.00	0.00	0.00	1.745	20.78	13400*	17.57	15843
90.0	0.00	0.00	0.00	1.745	23.01	12102	19.22	14483
120.0	0.00	0.00	0.00	1.745	25.20	11055	20.96	13286
167.0	0.00	0.00	0.00	1.745	27.47	10146	23.77	11719
212.0	0.00	0.00	0.00	1.745	28.34	9834	26.47	10525
* Design Condition								

IJ

Span = 1308.0 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	In	itial
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	27.78	20072	26.34	21161
32.0	0.25	0.00	0.00	2.304	27.92	17679	25.73	19179
0.0	0.00	0.00	0.00	1.745	22.96	16277	20.71	18036
15.0	0.00	0.00	0.00	1.745	24.19	15446	21.56	17331
30.0	0.00	0.00	0.00	1.745	25.43	14695	22.43	16657
60.0	0.00	0.00	0.00	1.745	27.90	13400*	24.25	15408
90.0	0.00	0.00	0.00	1.745	30.32	12335	26.15	14292
120.0	0.00	0.00	0.00	1.745	32.67	11451	28.10	13306
167.0	0.00	0.00	0.00	1.745	35.47	10551	31.18	11996
212.0	0.00	0.00	0.00	1.745	36.44	10273	34.11	10970
the manual states and the states and								

* Design Condition

1.1

Span = 1089.0 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	19.22	20094	18.04	21407	
32.0	0.25	0.00	0.00	2.304	19.34	17676	17.52	19517	
0.0	0.00	0.00	0.00	1.745	15.03	17225	13.46	19234	
15.0	0.00	0.00	0.00	1.745	16.07	16109	14.09	18368	
30.0	0.00	0.00	0.00	1.745	17.14	15104	14.77	17529	
60.0	0.00	0.00	0.00	1.745	19.33	13400*	16.23	15952	
90.0	0.00	0.00	0.00	1.745	21.52	12041	17.82	14532	
120.0	0.00	0.00	0.00	1.745	23.66	10953	19.50	13281	
167.0	0.00	0.00	0.00	1.745	25.81	10046	22.24	11649	
212.0	0.00	0.00	0.00	1.745	26.66	9726	24.90	10412	
the Thermal	Comdi								

* Design Condition

Span = 869.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	12.22	20122	11.33	21691
32.0	0.25	0.00	0.00	2.304	12.32	17672	10.93	19916
0.0	0.00	0.00	0.00	1.745	8.92	18476	8.01	20560
15.0	0.00	0.00	0.00	1.745	9.69	17006	8.43	19548
30.0	0.00	0.00	0.00	1.745	10.52	15668	8.88	18550
60.0	0.00	0.00	0.00	1.745	12.30	13400*	9.91	16624
90.0	0.00	0.00	0.00	1.745	14.18	11632	11.11	14841
120.0	0.00	0.00	0.00	1.745	16.06	10272	12.44	13248
167 0	$\cap$ $\cap$ $\cap$	$\cap$ $\cap$ $\cap$	$\cap \cap \cap$	1 745	17 50	947 <b>8</b>	14 75	11184

Span = 1795.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

9056

17.05

9674

Des	ign Point	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	$\bar{4.00}$	0.20	2.603	52.49	20040	50.64	20763
32.0	0.25	0.00	0.00	2.304	52.65	17683	49.91	18649
0.0	0.00	0.00	0.00	1.745	46.91	15024	43.61	16154
15.0	0.00	0.00	0.00	1.745	48.37	14573	44.76	15741
30.0	0.00	0.00	0.00	1.745	49.81	14154	45.91	15348
60.0	0.00	0.00	0.00	1.745	52.63	13400*	48.23	14614
90.0	0.00	0.00	0.00	1.745	55.37	12740	50.55	13947
120.0	0.00	0.00	0.00	1.745	58.04	12159	52.86	13341
167.0	0.00	0.00	0.00	1.745	62.07	11377	56.45	12499
212.0	0.00	0.00	0.00	1.745	63.24	11168	59.83	11798
* Deed	an Condi	F t am						

* Design Condition

Span = 1410.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	In	itial
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	$\bar{4}.00$	0.20	2.603	32.30	20063	30.77	21062
32.0	0.25	0.00	0.00	2.304	32.45	17680	30.12	19044
0.0	0.00	0.00	0.00	1.745	27.26	15930	24.74	17550
15.0	0.00	0.00	0.00	1.745	28.57	15206	25.67	16917
30.0	0.00	0.00	0.00	1.745	29.86	14547	26.62	16314
60.0	0.00	0.00	0.00	1.745	32.43	13400*	28.58	15198
90.0	0.00	0.00	0.00	1.745	34.94	12443	30.60	14201
120.0	0.00	0.00	0.00	1.745	37.37	11637	32.64	13315
167.0	0.00	0.00	0.00	1.745	40.46	10754	35.85	12127
212.0	0.00	0.00	0.00	1.745	41.47	10493	38.89	11184

* Design Condition

Span = 669.0 Feet Creep IS a Factor

Des	ign Point	ts			F	inal	In	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	7.23	20153	6.63	21965	
32.0	0.25	0.00	0.00	2.304	7.30	17667	6.35	20306	
0.0	0.00	0.00	0.00	1.745	4.94	19785	4.49	21726	
15.0	0.00	0.00	0.00	1.745	5.43	17990	4.74	20618	
30.0	0.00	0.00	0.00	1.745	5.99	16315	5.01	19505	
60.0	0.00	0.00	0.00	1.745	7.29	13400*	5.65	17298	
90.0	0.00	0.00	0.00	1.745	8.78	11122	6.44	15173	
120.0	0.00	0.00	0.00	1.745	10.36	9431	7.39	13211	
167.0	0.00	0.00	0.00	1.745	11.16	8754	9.19	10629	
212.0	0.00	0.00	0.00	1.745	11.75	8318	11.12	8792	

Rolled Rod

NESC Medium Load Zone

* Design Condition

#### 2606 7 Feet S (

Span :		26	06	•	/ .	reet	
Creep	Ι	S	а	Fa	aC	tor	

#### NESC Medium Load Zone Rolled Rod

Des	Design Points				F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.603	111.26	20014	109.06	20411
32.0	0.25	0.00	0.00	2.304	111.44	17686	108.24	18201
0.0	0.00	0.00	0.00	1.745	105.22	14177	101.23	14730
15.0	0.00	0.00	0.00	1.745	106.80	13971	102.55	14543
20 0	$\cap$ $\cap$ $\cap$	0 00	0 00	1 745	108 35	12772	103 86	14261

 $\square$ 

60.0	0.00	0.00	0.00	1.745	111.42	13400*	106.48	14012
90.0	0.00	0.00	0.00	1.745	114.42	13054	109.09	13682
120.0	0.00	0.00	0.00	1.745	117.36	12731	111.68	13369
167.0	0.00	0.00	0.00	1.745	121.86	12269	115.70	12911
212.0	0.00	0.00	0.00	1.745	124.17	12044	119.50	12507
* Design Condition								

0

Span = 721.9 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	Design Points					Final Init:			
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.603	8.42	20145	7.75	21892	
32.0	0.25	0.00	0.00	2.304	8.50	17668	7.43	20202	
0.0	0.00	0.00	0.00	1.745	5.85	19433	5.31	21430	
15.0	0.00	0.00	0.00	1.745	6.42	17720	5.59	20343	
30.0	0.00	0.00	0.00	1.745	7.05	16134	5.90	19258	
60.0	0.00	0.00	0.00	1.745	8.49	13400*	6.64	17119	
90.0	0.00	0.00	0.00	1.745	10.09	11272	7.54	15082	
120.0	0.00	0.00	0.00	1.745	11.76	9679	8.60	13221	
167.0	0.00	0.00	0.00	1.745	12.73	8943	10.54	10790	
212.0	0.00	0.00	0.00	1.745	13.35	8526	12.58	9049	
* Desi	gn Condi [.]	tion							

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

Initial

Tension

1b

22902

21520

23991

22840

21639

16279

13246

8171

4277

19074*

Sag

Ft

0.37

0.35

0.25

0.26

0.27

0.31

0.36

0.45

0.73

1.39



#### 6/22/2010 David Evans and Associates

Susquehanna - Roseland 500kV B&M P&P

Weight

lb/ft

2.890

2.602

2.044

2.044

2.044

2.044

2.044

2.044

2.044

2.044

Conductor: 1590.0 Kcmil 54/19 Stranding ACSR "FALCON"

Area = 1.4070 Sq. in Diameter = 1.545 in Weight = 2.044 lb/ft RTS = 54500 lb Data from Chart No. 1-1009 English Units Limits and Outputs in Average Tensions.

Span = 152.4 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Sag

Ft

0.44

0.47

0.28

0.32

0.36

0.50

0.76

1.07

1.31

1.61

Final

Tension

1b

18860

16232

21011

18699

16403

11905

7768

5561

4529

3697

Des	ign Point	CS .	
Temp	Ice	Wind	к
°F	in	psf	lb/ft
15.0	0.25	4.00	0.20
32.0	0.25	0.00	0.00
0.0	0.00	0.00	0.00
15.0	0.00	0.00	0.00
30.0	0.00	0.00	0.00
60.0	0.00	0.00	0.00
90.0	0.00	0.00	0.00
120.0	0.00	0.00	0.00
167.0	0.00	0.00	0.00
212.0	0.00	0.00	0.00
* Deci	an Condit	tion	

* Design Condition

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.890	12.75	19960	10.75	23677
32.0	0.25	0.00	0.00	2.602	12.99	17639	10.37	22087
0.0	0.00	0.00	0.00	2.044	9.70	18560	7.77	23162
15.0	0.00	0.00	0.00	2.044	10.51	17117	8.12	22153
30.0	0.00	0.00	0.00	2.044	11.38	15811	8.51	21131
60.0	0.00	0.00	0.00	2.044	13.23	13604	9.43	19075*
90.0	0.00	0.00	0.00	2.044	15.15	11885	10.55	17056
120.0	0.00	0.00	0.00	2.044	17.07	10556	11,88	15153
167.0	0.00	0.00	0.00	2.044	19.95	9034	14.32	12578
212.0	0.00	0.00	0.00	2.044	21.48	8394	16.88	10670
10 MA / 1 M	Contraction of the second second	A REAL PROPERTY OF A REAL						

* Design Condition

Span = 418.0 Feet Creep IS a Factor

Des	ign Poin	ts			Final		Initial	
Temp °F	Ice in	Wind psf	K 1b/ft	Weight lb/ft	Sag Ft	Tension lb	Sag Ft	Tension 1b
15.0	0.25	4.00	0.20	2.890	3.31	19056	2.73	23113
32.0	0.25	0.00	0.00	2.602	3.43	16571	2.62	21675
0.0	0.00	0.00	0.00	2.044	2.22	20076	1.88	23788
15.0	0.00	0.00	0.00	2.044	2.48	17996	1.97	22669

Span = 839.0 Feet Creep IS a Factor

30.0	0.00	0.00	0.00	2.044	2,79	16007	2.08	21509
60.0	0.00	0.00	0.00	2.044	3.59	12439	2.34	19075*
90.0	0.00	0.00	0.00	2.044	4.63	9637	2.70	16511
120.0	0.00	0.00	0.00	2.044	5.82	7674	3.21	13893
167.0	0.00	0.00	0.00	2.044	6.91	6471	4.43	10091
212.0	0.00	0.00	0.00	2.044	7.60	5881	6.02	7426
* Desi	gn Condi	tion						

Span = 708.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
۰F	in	psf	lb/ft	1b/ft	Ft	1b	Ft	1b
15.0	0.25	4.00	0.20	2.890	9.23	19625	7.71	23486
32.0	0.25	0.00	0.00	2.602	9.45	17272	7.43	21948
0.0	0.00	0.00	0.00	2.044	6.76	18943	5.48	23387
15.0	0.00	0.00	0.00	2.044	7.41	17297	5.74	22336
30.0	0.00	0.00	0.00	2.044	8.11	15792	6.02	21264
60.0	0.00	0.00	0.00	2.044	9.68	13238	6.72	19075*
90.0	0.00	0.00	0.00	2.044	11.37	11274	7.59	16882
120.0	0.00	0.00	0.00	2.044	13.09	9799	8.67	14776
167.0	0.00	0.00	0.00	2.044	15.66	8197	10.77	11901
212.0	0.00	0.00	0.00	2.044	16.67	7698	13.07	9812
the second se	1							

* Design Condition

Span = 574.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	6.16	19324	5.11	23302
32.0	0.25	0.00	0.00	2.602	6.34	16920	4.91	21814
0.0	0.00	0.00	0.00	2.044	4.33	19431	3.57	23592
15.0	0.00	0.00	0.00	2.044	4.79	17573	3.74	22505
30.0	0.00	0.00	0.00	2.044	5.32	15844	3.94	21388
60.0	0.00	0.00	0.00	2.044	6.55	12860	4.41	19075*
90.0	0.00	0.00	0.00	2.044	7.97	10572	5.04	16704
120.0	0.00	0.00	0.00	2.044	9.46	8909	5.86	14370
167.0	0.00	0.00	0.00	2.044	11.32	7446	7.58	11120
212.0	0.00	0.00	0.00	2.044	12.20	6912	9.57	8807

Design Condition

Span = 1058.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			Fi	nal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	20.43	19820	17.60	22995
32.0	0.25	0.00	0.00	2.602	20.73	17588	17.12	21288
0.0	0.00	0.00	0.00	2.044	16.58	17271	13.27	21571
15.0	0.00	0.00	0.00	2.044	17.67	16207	13.85	20657
30.0	0.00	0.00	0.00	2.044	18.78	15250	14.49	19750
60.0	0.00	0.00	0.00	2.044	21.02	13625*	15.92	17986
90.0	0.00	0.00	0.00	2.044	23.26	12322	17.53	16332
120.0	0.00	0.00	0.00	2.044	25.44	11270	19.31	14831
167.0	0.00	0.00	0.00	2.044	28.71	9991	22.31	12839
212.0	0.00	0.00	0.00	2.044	31.20 *	9199	25.29	11334
* Desi	gn Condi	tion						

Span = 588.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
A a	in	nef	1h/f+	Th/ft	RH	1h	Ft	76

15.0	0.25	4.00	0.20	2.890	6.46	19353	5.36	23321
32.0	0.25	0.00	0.00	2.602	6.64	16955	5.15	21827
						19376	3.75	23572
0.0	0.00	0.00	0.00	2.044	4.56		3.75	
15.0	0.00	0.00	0.00	2.044	5.04	17540	3.93	22489
30.0	0.00	0.00	0.00	2.044	5.58	15835	4.13	21376
60.0	0.00	0.00	0.00	2.044	6.85	12899	4.63	19075*
90.0	0.00	0.00	0.00	2.044	8.30	10649	5.28	16723
120.0	0.00	0.00	0.00	2.044	9.82	9008	6.13	14413
167.0	0.00	0.00	0.00	2.044	11.75	7528	7.89	11206
212.0	0.00	0.00	0.00	2.044	12.65	6998	9.92	8919
* Desi	gn Condi	tion						

Span = 528.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin [.]	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	1 <b>b</b>	Ft	lb
15.0	0.25	4.00	0.20	2.890	5.24	19234	4.33	23242
32.0	0.25	0.00	0.00	2.602	5.40	16808	4.17	21770
0.0	0.00	0.00	0.00	2.044	3.63	19615	3.01	23655
15.0	0.00	0.00	0.00	2.044	4.03	17688	3.16	22557
30.0	0.00	0.00	0.00	2.044	4.49	15880	3.32	21426
60.0	0.00	0.00	0.00	2.044	5.60	12732	3.74	19075*
90.0	0.00	0.00	0.00	2.044	6.91	10310	4.28	16644
120.0	0.00	0.00	0.00	2.044	8.32	8570	5.01	14227
167.0	0.00	0.00	0.00	2.044	9.95	7171	6.58	10830
212.0	0.00	0.00	0.00	2.044	10.77	6623	8.46	8426
* Desi	gn Condi	tion						

Span = 750.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	10.31	19730	8.63	23547
32.0	0.25	0.00	0.00	2.602	10.53	17388	8.32	21992
0.0	0.00	0.00	0.00	2.044	7.64	18810	6.17	23317
15.0	0.00	0.00	0.00	2.044	8.35	17230	6.45	22279
30.0	0.00	0.00	0.00	2.044	9.11	15791	6.77	21223
60.0	0.00	0.00	0.00	2.044	10.77	13357	7.54	19075*
90.0	0.00	0.00	0.00	2.044	12.54	11477	8.49	16938
120.0	0.00	0.00	0.00	2.044	14.32	10052	9.65	14900
167.0	0.00	0.00	0.00	2.044	17.01	8465	11.86	12127
212.0 * Desig	0.00 gn Condit	0.00 tion	0.00	2.044	18.17	7928	14.25	10100

Span = 2024.0 Feet Creep IS a Factor

Desi	ign Poin	ts			F	inal	In	itial
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	76.44	19470	71.32	20851
32.0	0.25	0.00	0.00	2.602	76.87	17433	70.75	18926
0.0	0.00	0.00	0.00	2.044	71.32	14749	63.94	16436
15.0	0.00	0.00	0.00	2.044	72.83	14445	65.30	16095
30.0	0.00	0.00	0.00	2.044	74.33	14157	66.67	15767
60.0	0.00	0.00	0.00	2.044	77.27	13625*	69.40	15152
90.0	0.00	0.00	0.00	2.044	80.13	13144	72.13	14585
120.0	0.00	0.00	0.00	2.044	82.93	12706	74.84	14063
167.0	0.00	0.00	0.00	2.044	87.18	12095	79.03	13325
212.0	0.00	0.00	0.00	2.044	91.11	11582	82.97	12700
* Desig	gn Condi	tion						

Rolled Rod

Des	ign Point	ts			F	inal	In	itial
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	23.32	19776	20.25	22772
32.0	0.25	0.00	0.00	2.602	23.64	17567	19.74	21033
0.0	0.00	0.00	0.00	2.044	19.27	16921	15.49	21039
15.0	0.00	0.00	0.00	2.044	20.43	15962	16.16	20166
30.0	0.00	0.00	0.00	2.044	21.60	15099	16.88	19306
60.0	0.00	0.00	0.00	2.044	23.95	13625*	18.47	17650
90.0	0.00	0.00	0.00	2.044	26.26	12429	20.23	16116
120.0	0.00	0.00	0.00	2.044	28.51	11452	22.14	14733
167.0	0.00	0.00	0.00	2.044	31.89	10244	25.30	12901
212.0	0.00	0.00	0.00	2.044	34.69	9425	28.38	11503
* Do		- d am						

* Design Condition

- 1

#### Span = 1308.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Point	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	31.47	19682	27.82	22254
32.0	0.25	0.00	0.00	2.602	31.83	17526	27.26	20445
0.0	0.00	0.00	0.00	2.044	27.03	16199	22.14	19764
15.0	0.00	0.00	0.00	2.044	28.33	15461	23.02	19011
30.0	0.00	0.00	0.00	2.044	29.61	14791	23.94	18280
60.0	0.00	0.00	0.00	2.044	32.16	13625*	25.90	16901
90.0	0.00	0.00	0.00	2.044	34.64	12653	27.99	15647
120.0	0.00	0.00	0.00	2.044	37.05	11835	30.16	14527
167.0	0.00	0.00	0.00	2.044	40.67	10788	33.63	13031
212.0	0.00	0.00	0.00	2.044	43.97	9987	36.97	11862
	a 1'							

* Design Condition

Span = 1089.0 Feet Creep IS a Factor

#### NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	21.67	19801	18.73	22897
32.0	0.25	0.00	0.00	2.602	21.98	17579	18.24	21176
0.0	0.00	0.00	0.00	2.044	17.72	17113	14.21	21338
15.0	0.00	0.00	0.00	2.044	18.85	16097	14.83	20441
30.0	0.00	0.00	0.00	2.044	19.98	15182	15.51	19554
60.0	0.00	0.00	0.00	2.044	22.28	13625*	17.00	17837
90.0	0.00	0.00	0.00	2.044	24.54	12370	18.69	16235
120.0	0.00	0.00	0.00	2.044	26.76	11352	20.52	14787
167.0	0.00	0.00	0.00	2.044	30.08	10105	23.59	12867
212.0	0.00	0.00	0.00	2.044	32.70	9300	26.62	11410
* Design Condition								

Span = 869.0 Feet Creep IS a Factor

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	13.68	19961	11.56	23614
32.0	0.25	0.00	0.00	2.602	13.93	17652	11.17	22008
0.0	0.00	0.00	0.00	2.044	10.50	18391	8.40	22985
15.0	0.00	0.00	0.00	2.044	11.36	17001	8.78	21986
30.0	0.00	0.00	0.00	2.044	12.26	15745	9.20	20978
60.0	0.00	0.00	0.00	2.044	14.18	13625*	10.18	18956
90.0	0.00	0.00	0.00	2.044	16.14	11968	11.37	16982
120.0	0.00	0.00	0.00	2.044	18.10	10679	12.76	15134
167 0	0 00	0 00	0 00	2 044	21 04	9190	15 28	12642

212	2.0 (	O.00	0.00	0.00	2.044
*	Design	Conditio	n		

22.70 8521 17.91 10791

Span = 1795.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin [.]	ts			F	inal	In	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
٥F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.890	59.90	19518	55.13	21193	
32.0	0.25	0.00	0.00	2.602	60.31	17454	54.54	19286	
0.0	0.00	0.00	0.00	2.044	54.91	15050	48.02	17193	
15.0	0.00	0.00	0.00	2.044	56.38	14658	49.29	16752	
30.0	0.00	0.00	0.00	2.044	57.84	14292	50.57	16329	
60.0	0.00	0.00	0.00	2.044	60.70	13625*	53.16	15539	
90.0	0.00	0.00	0.00	2.044	63.48	13034	55.76	14820	
120.0	0.00	0.00	0.00	2.044	66.18	12507	58.36	14166	
167.0	0.00	0.00	0.00	2.044	70.27	11786	62.39	13258	
212.0	0.00	0.00	0.00	2.044	74.04	11195	66.19	12505	
	~ 1'								

* Design Condition

Span = 1410.0 Feet Creep IS a Factor

NESC Medium Load Zone Rolled Rod

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
٥F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	4.00	0.20	2.890	36.67	19638	32.73	21989
32.0	0.25	0.00	0.00	2.602	37.04	17506	32.16	20150
0.0	0.00	0.00	0.00	2.044	32.06	15875	26.62	19106
15.0	0.00	0.00	0.00	2.044	33.41	15236	27.61	18425
30.0	0.00	0.00	0.00	2.044	34.75	14652	28.63	17769
60.0	0.00	0.00	0.00	2.044	37.39	13625*	30.77	16539
90.0	0.00	0.00	0.00	2.044	39.95	12756	33.00	15425
120.0	0.00	0.00	0.00	2.044	42.44	12014	35.29	14430
167.0	0.00	0.00	0.00	2.044	46.17	11048	38.92	13092
212.0	0.00	0.00	0.00	2.044	49.58	10295	42.37	12032

* Design Condition

Span = 669.0 Feet Creep IS a Factor

Creep I	S a Fact	or		Rolled Ro	bc				
Des	ign Poin	ts			F	inal	Initial		
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension	
٥F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb	
15.0	0.25	4.00	0.20	2.890	8.28	19532	6.90	23431	
32.0	0.25	0.00	0.00	2.602	8.49	17166	6.65	21908	
0.0	0.00	0.00	0.00	2.044	6.00	19075	4.88	23450	
15.0	0.00	0.00	0.00	2.044	6.59	17367	5.11	22388	
30.0	0.00	0.00	0.00	2.044	7.24	15799	5.37	21301	
60.0	0.00	0.00	0.00	2.044	8.72	13128	6.00	19075*	
90.0	0.00	0.00	0.00	2.044	10.33	11078	6.80	16830	
120.0	0.00	0.00	0.00	2.044	11.99	9553	7.80	14659	
167.0	0.00	0.00	0.00	2.044	14.35	7986	9.80	11683	
212.0	0.00	0.00	0.00	2.044	15.32	7478	12.01	9534	

NESC Medium Load Zone

* Design Condition

i.	

Span = 2606.7 Feet

Des	ign Poin	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	1b	Ft	lb
15.0	0.25	4.00	0.20	2.890	127.78	19394	122.11	20277
32.0	0.25	0.00	0.00	2.602	128.24	17400	121.57	18338
0.0	0.00	0.00	0.00	2.044	122.48	14300	114.47	15284
15.0	0.00	0.00	0.00	2.044	124.05	14122	115.94	15093
30 0	$\cap  \cap  \cap$	$\cap  \cap  \cap$	$\cap  \cap  \cap$	2 044	125 60	12951	117 41	14907

60.0	0.00	0.00	0.00	2.044	128.66	13625*	120.32	14552
90.0	0.00	0.00	0.00	2.044	131.67	13320	123.22	14216
120.0	0.00	0.00	0.00	2.044	134.62	13034	126.09	13898
167.0	0.00	0.00	0.00	2.044	139.14	12619	130.53	13434
212.0	0.00	0.00	0.00	2.044	143.36	12256	134.73	13024
* Desi	gn Condit	tion						

Span = 721.9 Feet Creep IS a Factor NESC Medium Load Zone Rolled Rod

Des	ign Poin [.]	ts			F	inal	Initial	
Temp	Ice	Wind	К	Weight	Sag	Tension	Sag	Tension
°F	in	psf	lb/ft	lb/ft	Ft	lb	Ft	lb
15.0	0.25	$\overline{4}.00$	0.20	2.890	9.58	19660	8.01	23507
32.0	0.25	0.00	0.00	2.602	9.80	17310	7.72	21963
0.0	0.00	0.00	0.00	2.044	7.05	18898	5.70	23364
15.0	0.00	0.00	0.00	2.044	7.71	17274	5.97	22318
30.0	0.00	0.00	0.00	2.044	8.44	15791	6.27	21250
60.0	0.00	0.00	0.00	2.044	10.04	13277	6.98	19075*
90.0	0.00	0.00	0.00	2.044	11.75	11342	7.88	16901
120.0	0.00	0.00	0.00	2.044	13.49	9884	8.99	14818
167.0	0.00	0.00	0.00	2.044	16.12	8275	11.13	11977
212.0	0.00	0.00	0.00	2.044	17.16	7775	13.46	9909
* Design Condition								

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

11

## **CONDUCTOR CUT SHEETS**

The information in this section was used to determine the insulator swing angle  $\Theta$ . See calculations tab for detailed information.

.

## TransPowr[™] ACCC/TW Bare Overhead Conductor Trapezoidal Aluminum Conductor Composite Core Concentric-Lay-Stranded

#### ACSR vs ACSS vs ACSS/TW vs ACCC/TW CONDUCTORS - COMPARISON OF PHYSICAL PROPERTIES OF EQUIVALENT SIZES

CODE WORD (1)	SIZE	TYPE	NO. OF ALUM.	CORE	CORE O.D.	ARE	ECTIONAL A (in)	NOMINAL 0.D.	NO	MINAL WEI Ib/1000 ft	GHT	CTC	D STRENGT	HS/MS	AMPS 75°C	AMPS 200°C		RCENT VEIGHT	REEL	DAROPACK/ WGHT.	AGE (6) LNGTH
	kcmil	(2)	WIRES		INCHES	TOTAL	ALUM.	INCHES	TOTAL	ALUM.	CORE	CORE	STEEL	STEEL	(1)	(5)	ALUM.	CORE	SIZE	Pounds	Feel
LIVINET ACSR UNINET ACSS LIVINET ACSS/TW LIVINET ACSS/TWD	336.4 336.4 336.4 393.7	16 16 16	20 26 18 18	5:0.0034 740:0584 75:0:0584 75:0:0584 75:0:0582	0.2052 0.2652 0.2652 0.2652 0.2835	0.3071 0.3071 0.3071 0.3641	0.2641 0.2641 0.2641 0.3152	0.720 0.720 0.663 0.720	462 462 462 547	317 317 316 375	145 145 145 172		14100 11200 11200 13000	14900 12300 12300 14000	530 535 525 580	945 970 1030	68.5 68.5 68.5 68.5	31.5 31.4 31.5 31.9	RMT 84,35 RMT 84,36 RMT 84,36 RMT 84,36	75580 7590 7880 7880	1639 1630 1708 1431
LINNET ACCC/TW	431	A	16	1x0.2350	0,2350	0.3819	0,3385	0.720	441	405	36	15300		•	600	1060*	92.1	7.9	RM 78,48	5010	1140
HAWK ACSR HAWK ACSS HAWK ACSS/TW CAUMENT ACSS TW	471 477 477 555.3	10 16 16	26 26 18 20	710 1053 200,1053 7x0,1053 7x0,1053 7x0,1145	0.3159 0.3159 0.3159 0.3150 0.3138	04353 04353 04353 04353 04353	0.3744 0.3744 0.1745 0.4138	0.858 0.858 0.789 0.858	656 656 655 776	449 449 448 531	205 205 205 244		19500 15500 19500 18400	20700 17100 17100 20200	600 665 650 725	949 1160 1295	68,5 68,5 68,5 68,5	31,5 31,5 31,5 31,5	RM1 84.36 RM1 84.36 RM1 84.36 RM1 84.36	7530 7590 7890 8790	1155 1156 1205 1130
нашк ассслтш	611	A	16	1x0.2800	0.2800	0.5415	0.4799	0.858	624	574	51	23200	•		745	1330*	92.1	7.9	RM 78.48	3420	5500
DOVE ACSR DOVE ACSS DOVE ACSS/TW OSWEGO ACSS/TW	555.5 556.5 556.5 556.5	16 16 16 16	26 26 20 20	50,1138 50,1138 740,1138 740,1138 740,1244	0.3414 0.3414 0.3414 0.3732	0.5/183 0.5083 0.5083 0.5083 0.6073	0.4371 0.4371 0.4371 0.5222	0.927 0.927 0.850 0.927	765 765 764 913	524 523 525	241 241 241 288		22500 18200 18200 21700	24000 20000 19900 23400	725 735 720 800	1315 1280 1440	1.8.5 68.5 68.4 68.4	31.5 31.5 31,6 31,6	RMT 84.36 RMT 84.36 RMT 84.36 RMT 84.36 RMT 84.30	7590 7590 8760 8770	9910 9910 1147 9510
DOVE ACCC/TW	713	A	18	1x0.3050	0.3050	0.6328	0.5597	0.927	728	659	59	27500		· · ·	820	1470*	92.0	8.0	RM 78.48	3850	5350
CROSBEAK ACSE GROSEEAK ACSS GROSEEAK ACSS TW WABASH ACSS/TW	636 636 638 762.8	16 16 16	26 26 20 20	7x0.1216 7x0.1216 7x0.1216 7x0.1216 7x0.1331	0.3648 0.3648 0.3648 0.3648	0.5507 0.5607 0.5809 0.5809	0.4994 0.4994 0.4996 0.5989	0.990 0.590 0.908 0.908	874 874 873 1046	599 599 593 717	275 275 275 215 330		25200 20609 20809 20809 24909	25800 22400 22409 26809	790 800 780 875	1435 1400 1570	68.5 68.5 68.5 68.5 68.5	31.5 31.9 31.8 31.5	RIMT 84.36 RIMT 84.36 RIMT 84.36 RIMT 84.36	7590 7590 8760 8760	8670 8670 10040 8370
GROSBEAK ACCC/TW	816	A	19	1x0.3200	0,3200	0.7215	0.6411	0.990	832	766	65	30400			890	1610*	92,3	7.7	RM 78.48	4730	5700
DRAKE ACSR DRAKE ACSS DRAKE ACSS/TW SIRVANNEE ACSS/TW	795 795 755 958.6	16	26 20 20 72	760 1360 760 1360 760 1360 760 1360 760 1491	0.4030 0.4060 0.4080 0.4080 0.4479	0.7243 0.7263 0.7259 0.8764	0.6246 0.6246 0.6242 0.7539	1.107 1.107 1.010 1.108	1093 1093 1091 1317	749 749 747 902	344 344 344 415		11500 26000 23900 10700	33500 38000 27600 33100	905 915 895 1005	1660 1615 1825	68.5 68.5 68.5 68.5	31.5 31.5 31.5 31.5 31.5	RMT 84.35 RMT 84.35 RMT 84.36 RMT 84.36 RMT 84.36	1590 1591 8761 9540	6910 6940 8030 7320
DRAKE ACCC/TW	1020	A	22	1x0.3750	0.3750	0.9112	0.8014	1.103	1046	957	89	41100	•		1025	1865*	91.6	8,4	RM 38.48	5960	5700
CARDINAL ACSR TARDINAL ACSS LARDINAL ACSS TW HUDSON ACSS/TW	954 954 954 1158.4	13 13 13	54 54 21	h0.1329 7/0.1329 7/0.1329 7/0.1420 7/0.1457	0.7387 0.3987 0.3937 0.4401	0.8462 0.8462 0.8463 1.0729	0.7491 0.7491 0.7492 0.9096	1.195 1.196 1.084 1.196	1227 1227 1224 1488	899 899 895 1087	329 329 329 401	-	13800 26000 20000 31100	35700 28000 28000 33500	935 1005 995 1120	1824 1805 2050	11.2 13.2 73.1 73.1	25,8 26,8 25,9 24,9	RMT 50.45 RMT 50.45 RMT 84.36 RMT 84.36	11790 11780 8520 10570	9500 9500 7040 7170
CARDINAL ACCC/TW	1222	B	36	1x0.3450	0.3450	1.0536	0.9601	1.195	1228	1152	76	37100			1140	2080*	\$4.0	6.0	RM 78.48	6930	5700
BITTEEN ACSR BITTEEN ACSS BITTEEN ACSS/TW POTOMAC ACSS/TW	1272 1272 1272 1272 1557,4		40 44 45 14 55	50 1121 760 1171 760 1191 760 1191 760 1191	0.3363 0.3363 0.1393 0.3725	1.0579 1.0579 1.0585 1.0685	0.5588 0.5588 0.5586 0.9594 1.2237	1.345 1.345 1.815 1.345	1432 1432 1432 1432	1198 1160 1168 1467	234 234 254 267		14100 22900 27300 27400	35400 24000 24100 29000	1185 1195 1165 1320	2200 2130 2430	83.7 63.7 81.7 83.7	16.3 (d.3) 16.3 16.3	RUAT 90.45 RUAT 90.45 RUAT 84.26 RUAT 84.45	10740 10740 11830 12910	7500 7500 8260 7350
BITTERN ACCC/TW	1572	B	39	1x0.3450	0.3450	1.3283	1,2348	1.345	1554	1478	76	39300			1320	2440*	95.3	4.7	RMT 90.45	8850	\$700
LAPWING ACSR LAPWING ACSS LAPWING ACSS/TW ATHABASKA ACSS/TW	1590 1590 1590 1949.6	******	47 35 55 A	0x0.1253 0x0.1253 0x0.1253 0x0.1251 0x0.1251	0.3759 0.1159 0.3759 0.4146	1.3351 1.3280 1.3281 1.3261 1.6967	1.2490 1.2488 1.2488 1.2488 1.5317	1.504 1.361 1.361 1.502	1790 1790 1790 2195	1458 1458 1458 1810	292 242 292 355		42200 27400 27900 36000	43900 29100 29600 36100	1355 1330 1330 1505	25/5 (400 (815	537 817 837 838	18.3 18.3 18.3 18.3	RIAT \$6.45 RIAT \$9.45 RIAT \$4.45 RIAT \$6.60	10740 10740 12900 20049	6000 6000 7210 9130
LAPWING ACCC/TW	1966	B	56	1x0.3850	0.3850	1,6608	1,5444	1.504	1960	1864	96	49000	•		1500	2805*	95.3	4.7	RMT 90.45	11150	5700
CHUKAR AČSR CHUKAR AČŠŠ CHUKAR AČŠŠ/TW POMDER AČŠŠ/TW	1780 1780 1780 2153.8	00 00 00 00	2345	15494674 1940.0874 1940.0874 1940.099	0,4370 0,4370 0,4370 0,4370 0,1805	1.5112 1.5112 1.5122 1.8293	1,3974 1,3974 1,3974 1,3982 1,3915	1,601 1,601 1,447 1,602	2071 2071 2061 2510	1686 1685 1674 2042	167 187 187 457	1 4 4 4	51000 35300 35400 42100	53160 32260 36200 45500	1450 1465 1420 1600	2750 2630 3010	81.3 81.3 81.5 81.9 81.4	18.7 18.7 18.8 18.6	RUAT \$6.60 RUAT \$6.00 RUAT \$1.45 RUAT \$6.60	19050 19050 18059 73593	9200 9200 6810 9400
CHUKAR ACCC/TW	2242	B	56	1x0.3950	0.3950	1.883	1,761	1.602	2225	2126	99	52700		•	1610	3045*	95.7	4.3	RMT 90.45	12670	5700
RUFEIRD ACSR RUFEIRD ACSS BLUERIRD ACSS/TW SANTEE ACSS/TW	2156 2156 2156 2156 2521.3	9: 6: 9: 6	2 2 2 1 2 2	Han (95) Han (95) Han (96) Han (96) Han (95)	0.4305 0.4805 0.4805 0.5310	1,8308 1,8308 1,8312 2,2327	(300) 1,6930 1,6934 2,6643	1.767 1.762 1.612 1.762	2908 2908 2512 3002	2041 2041 2045 2452	482 452 452 571		(0300 42100 42100 51400	62000 45500 45500 55600	1620 1640 1600 1785	3116 3010 3405	61.A 81.4 81.4 61.4	18.6 18.6 18.6 18.6	RMT 96.60 RDA1 58.60 RDA1 56.60 RDAT 96.60 RDAT 96.60	18910 18910 25590 25610	7500 /500 9330 7710
BLUEBIRD ACCC/TW	2727	В	64	1x0.4150	0.4150	2.217	2,1424	1.762	2696	2586	110	59800			1790	3430*	96.1	3.9	RMT 95.60	15350	570

The commons temperature racking for the Transford ACCO 101 cm ductor is Hall C. The 200 Chemoerature is a short-ducation emergency operation temperature.

Footnotes

Tenders

III Discourse of a grant from and the document of the ALS product All Services and and the contract of \$50 million and the file document \$50 million in the file document \$50 million and \$50 million

Will expany idia a concellentia of 1940 and 31 and

of Receptual explorations are as a second second with a provident second with reparty calculations with



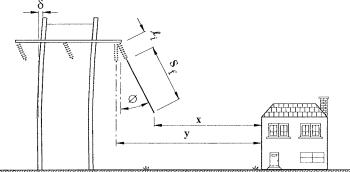


## BULLETIN 1724E-200 SECTION 5

This section was used to determine and calculate the ROW width required based on the conductor swing angle (blowout) calculations using the formulas tabbed herein.

#### 5. <u>HORIZONTAL CLEARANCES FROM LINE CONDUCTORS TO OBJECTS AND</u> <u>RIGHT-OF-WAY WIDTH</u>

**5.1** <u>General</u>: The preliminary comments and assumptions in Chapter 4 of this bulletin also apply to this chapter.


**5.2** <u>Minimum Horizontal Clearance of Conductor to Objects</u>: Recommended design horizontal clearances of conductors to various objects are provided in Table 5-1 and minimum radial operating clearances of conductors to vegetation in Table 5-2. The clearances apply only for lines that are capable of automatically clearing line-to-ground faults.

Clearance values provided in Table 5-1are recommended design values. In order to provide an additional margin of safety, the recommended design values exceed the minimum clearances in the 2007 NESC. Clearance values provided in Table 5-2 are minimum operating clearances to be used by the designer to determine appropriate design clearances for vegetation maintenance management.

#### 5.2.1 <u>Conditions Under Which Horizontal Clearances to Other Supporting Structures</u>, <u>Buildings and Other Installations Apply</u>:

<u>Conductors at Rest (No Wind Displacement)</u>: When conductors are at rest the clearances apply for the following conditions: (a) 167°F but not less than 120°F, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) 32°F, final sag with radial thickness of ice for the loading district (0 in.,  $\frac{1}{4}$  in., or  $\frac{1}{2}$  in.).

<u>Conductors Displaced by 6 psf Wind:</u> The clearances apply when the conductor is displaced by 6 lbs. per sq. ft. at final sag at 60°F. See Figure 5-1.





where:

- $\phi$  = conductor swing out angle in degrees under 6 psf. of wind
- $\dot{S}_{f}$  = conductor final sag at 60°F with 6 psf. of wind
- $\dot{x}$  = horizontal clearance required per Tables 5-1 for conductors displaced by 6 psf wind (include altitude correction if necessary)
- $\ell_i$  = insulator string length ( $\ell_i = 0$  for post insulators or restrained suspension insulators).
- y = total horizontal distance from insulator suspension point (conductor attachment point for post insulators) to structure with conductors at rest
- $\delta$  = structure deflection with a 6 psf. Wind

#### TABLE 5-1

#### RECOMMENDED DESIGN HORIZONTAL CLEARANCES (in feet) FROM CONDUCTORS AT REST AND DISPLACED BY 6 PSF WIND TO OTHER SUPPORTING STRUCTURES, BUILDINGS AND OTHER INSTALLATIONS

#### (NESC Rules 234B, 234C, 234D, 234E, 234F, 234I, Tables 234-1, 234-2, 234-3)

#### Conditions under which clearances apply:

No wind: When the conductor is at rest the clearances apply at the following conditions: (a) 120°F, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) 32°F, final sag with radial thickness of ice for the loading district (1/4 in. for Medium or 1/2 in. Heavy).

**Displaced by Wind**: Horizontal clearances are to be applied with the conductor displaced from rest by a 6 psf wind at final sag at 60°F. The displacement of the conductor is to include deflection of suspension insulators and deflection of flexible structures.

The clearances shown are for the displaced conductors and do not provide for the horizontal distance required to account for blowout of the conductor and the insulator string. This distance is to be added to the required clearance. See Equation 5-1.

Clearances are based on the Maximum Operating Voltage

Nominal voltage, Phas	se to Phase, kV _{L-L}		34.5 & 46	69	115	138	161	230
Max. Operating Voltag	e, Phase to Phase, kV _{L-L}			72.5	120.8	144.9	169.1	241.5
Max. Operating Voltag	e, Phase to Ground, kV _{L-G}			41.8	69.7	83.7	97.6	139.4
		NESC						
Horizontal Clearance	<u>s - (Notes 1,2,3)</u>	<u>Basic</u> Clear			Clearar	nces in feet	Ī	
1.0 From a lighting suppo or supporting structur								
At rest	(NESC Rule 234B1a)	5.0	6.5	6.5	7.2	7.6	8.1	9.5
Displaced by wind	(NESC Rule 234B1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9
2.0 From buildings, walls windows, windows n balconies, and areas a								
At rest	(NESC Rule 234C1a)	7.5	9.2	9.7	10.6	11.1	11.5	12.9
Displaced by wind	(NESC Rule 234C1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9
3.0 From signs, chimneys antennas, tanks & oth classified as building	s, billboards, radio, & TV her installations not							
At rest	(NESC Rule 234C1a)	7.5	9.2	9.7	10.6	11.1	11.5	12.9
Displaced by wind	(NESC Rule 234C1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9
4.0 From portions of brid								
At rest	(NESC Rule 234D1a)	7.5	9.2	9.7	10.6	11.1	11.5	12.9
Displaced by wind	(NESC Rule 234D1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9
5.0 From portions of brid								
At rest	(NESC Rule 234D1a)	6.5	8.2	8.7	9.6	10.1	10.5	11.9
Displaced by wind	(NESC Rule 234D1b)	4.5	6.2	6.7	7.6	8.1	8.5	9.9

#### TABLE 5-1 (continued) RECOMMENDED DESIGN HORIZONTAL CLEARANCES (in feet) FROM CONDUCTORS AT REST AND DISPLACED BY 6 PSF WIND TO OTHER SUPPORTING STRUCTURES, BUILDINGS AND OTHER INSTALLATIONS

(NESC Rules 234B, 234C, 234D, 234E, 234F, 234I, Tables 234-1, 234-2, 234-3)

#### Conditions under which clearances apply:

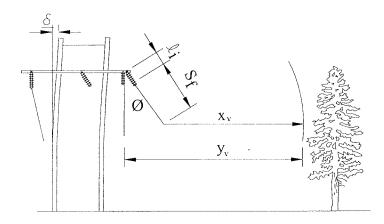
**No wind**: When the conductor is at rest the clearances apply at the following conditions: (a) 120°F, final sag, (b) the maximum operating temperature the line is designed to operate, final sag, (c) 32°F, final sag with radial thickness of ice for the loading district (1/4 in. for Medium or 1/2 in. Heavy).

**Displaced by Wind:** Horizontal clearances are to be applied with the conductor displaced from rest by a 6 psf wind at final sag at 60°Funder extreme wind conditions (such as the 50 or 100-year mean wind) at final sag at 60°F. The displacement of the conductor is to include deflection of suspension insulators and deflection of flexible structures.

The clearances shown are for the displaced conductors and do not provide for the horizontal distance required to account for blowout of the conductor and the insulator string. This distance is to be added to the required clearance. See Equation 5-1. Clearances are based on the Maximum Operating Voltage

Nominal voltage, Phase to Phase, kV _{L-L}		34.5 & 46	69	115	138	161	230
Max. Operating Voltage, Phase to Phase, kV _{L-L}			72.5	120.8	144.9	169.1	241.5
Max. Operating Voltage, Phase to Ground, kV _{L-G}			41.8	69.7	83.7	97.6	139.4
	<u>NESC</u>						
Horizontal Clearances - (Notes 1,2,3)	<u>Basic</u> Clear			Clearanc	es in feet	:	
6.0 Swimming pools – see section 4.4.3 of							
Chapter 4 and item 9 of Table 4–2.							
(NESC Rule 234E)							
Clearance in any direction from swimming	25.0	27.2	27.7	28.6	29.1	29.5	30.9
pool edge (Clearance A, Figure 4-2 of this bulletin)							
Clearance in any direction from diving	17.0	19.2	19.7	20.6	21.1	21.5	22.9
structures (Clearance B, Figure 4-2 of this bulletin)							
7.0 From grain bins loaded with permanently							
attached conveyor							
At rest (NESC Rule 234F1b)	15.0	17.2	17.7	18.6	19.1	19.5	20.9
Displaced by wind (NESC Rule 234C1b)	4.5	6.7	7.2	8.1	8.6	9.0	10.4
8.0 From grain bins loaded with a portable conveyor.							
Height 'V' of highest filling or probing port on bin							
must be added to clearance shown. Clearances for 'at							
rest' and not displaced by the wind. See NESC							
Figure 234-4 for other requirements.							
Horizontal clearance envelope (includes area of sloped clearance per NESC Figure 234-4b)			(2	(4+V) + 1.	5V (Note	3)	
9.0 From rail cars (Applies only to lines parallel to							
tracks) See Figure 234-5 and section 2341 (Eye) of							
the NESC							
Clearance measured to the nearest rail		14.1	14.1	15.1	15.6	16.0	17.5
ALTITUDE CORRECTION TO BE ADDED TO VALU	ES ABOV	<u>'E</u>					
Additional feet of clearance per 1000 feet of altitude above		.02	.02	.05	.07	.08	.12
3300 feet							
Notes:							
1. Clearances for categories 1-5 in the table arc approximate	ly 1.5 feet	t greater th	nan NESC	clearance	s.		

2. Clearances for categories 6 to 9 in the table are approximately 2.0 feet greater than NESC clearances.


3. "V" is the height of the highest filling or probing port on a grain bin. Clearance is for the highest voltage of 230 kV.

#### 5.2.2 Considerations in Establishing Radial and Horizontal Clearances to Vegetation:

The designer should identify and document clearances between vegetation and any overhead, ungrounded supply conductors, taking into consideration transmission line voltage, the effects of ambient temperature on conductor sag under maximum design loading, and the effects of wind velocities on conductor sway. Specifically, the designer should establish clearances to be achieved at the time of vegetation management work and should also establish and maintain a set of clearances to prevent flashover between vegetation and overhead ungrounded supply conductors. As a minimum, these clearances should apply to all transmission lines operated at 200 kV phase-to-phase and above and to any lower voltage lines designated as critical (refer to NERC FAC 003).

The designer should determine and document appropriate clearance distances to be achieved at the time of transmission vegetation management work based upon local conditions and the expected time frame in which the Transmission Owner plans to return for future vegetation management work. Local conditions may include, but are not limited to: operating voltage, appropriate vegetation management techniques, fire risk, reasonably anticipated tree and conductor movement, species types and growth rates, species failure characteristics, local climate and rainfall patterns, line terrain and elevation, location of the vegetation within the span, and worker approach distance requirements.

The designer should determine and document specific radial clearances to be maintained between vegetation and conductors under all rated electrical operating conditions. These minimum clearance distances are necessary to prevent flashover between vegetation and conductors and will vary due to such factors as altitude and operating voltage. These specific minimum clearance distances should be no less than those set forth in the Institute of Electrical and Electronics Engineers (IEEE) Standard 516-2003 (Guide for Maintenance Methods on Energized Power Lines) and as specified in its Section 4.2.2.3, Minimum Air Insulation Distances without Tools in the Air Gap. Where transmission system transient overvoltage factors are not known, clearances shall be derived from Table 5, IEEE 516-2003, phase-to-ground distances, with appropriate altitude correction factors applied. Where transmission system transient overvoltage factors are known, clearances shall be derived from Table 5, IEEE 516-2003, phase-to-ground distances, with appropriate altitude correction factors applied. Table 7, IEEE 516-2003, phase-to-phase voltages, with appropriate altitude correction factors applied. Table 5-2 contains radial clearances determined from Table 5, IEEE 516-2003, where transmission system transient overvoltage factors are not known.



#### FIGURE 5-2: RADIAL CLEARANCE REQUIREMENT TO VEGETATION

where:

- $\phi$  = conductor swing out angle in degrees under all rated operating conditions
- $S_f$  = conductor final sag at all rated operating conditions
- $\dot{x_v}$  = radial clearance (include altitude correction if necessary)
- $l_i =$ insulator string length ( $l_i = 0$  for post insulators or restrained suspension insulators).
- $y_v$  = horizontal clearance at the time of vegetation management work
- $\delta$  = structure deflection at all rated operating conditions

#### TABLE 5-2

#### RADIAL OPERATING CLEARANCES (in feet) FROM IEEE 516 FOR USE IN DETERMINING CLEARANCES TO VEGETATION FROM CONDUCTORS (NERC Standard FAC-003.1 Transmission Vegetation Management Program, IEEE 516, Guideline For Maintenance Methods Of Energized Power Lines)

Conditions under which clearances apply:

**Displaced by Wind:** Radial operating clearances are to be applied at all rated operating conditions. The designer should determine applicable conductor temperature and wind conditions for all rated operating conditions. The displacement of the conductor is to include deflection of suspension insulators and deflection of flexible structures.

The operating clearances shown are for the displaced conductors and do not provide for the horizontal distance required to account for blowout of the conductor and the insulator string. This distance is to be added to the required clearance. See Equation 5-1.

Clearances are based on the Maximum Operating Voltage. Nominal voltage, Phase to Phase, kV _{L-L}	34.5 & 46 ¹	69 ¹	115 ¹	138 ¹	161 ¹	230 ^{1,2}
Max. Operating Voltage, Phase to Phase, kV _{L-L}		72.5	120.8	144.9	169.1	241.5
Max. Operating Voltage, Phase to Ground, kV _{L-G}		41.8	69.7	83.7	97.6	139.4
Radial Table 5 IEEE Standard 516 Operating Clearances			Clearanc	es in fee	t	
Operating clearance at all rated operating conditions	1.8	1.8	1.9	2.3	2.5	2.7
Design adder for survey and installation tolerance		1	.5 feet for	all voltag	es	
Design adder for vegetation	I	Determined	l by desigr	ner (see N	ote 3 belo	w)
ALTITUDE CORRECTION TO BE ADDED TO VALUES ABOV	<u>E</u>					
Additional feet of clearance per 1000 feet of altitude above	.02	.02	.05	.07	.08	.12
3300 feet						

Notes:

1. These clearances apply to all transmission lines operated at 200 kV phase-to-phase and above and to any lower voltage lines designated as critical (refer to NERC FAC 003).

2. The 230 kV elearance is based on 3.0 Per Unit switching surge.

3. The design adder for vegetation, applied to conductors displaced by wind, should account for reasonably anticipated tree movement, species types and growth rates, species failure characteristics, and local climate and rainfall patterns. The design adder for vegetation, applied to conductors at rest, should account for worker approach distances in addition to the aforementioned factors.

**5.2.3** <u>Clearances to Grain Bins</u>: The NESC has defined clearances from grain bins based on grain bins that are loaded by permanent or by portable augers, conveyers, or elevator systems.

In NESC Figure 234-4(a), the horizontal clearance envelope for permanent loading equipment is graphically displayed and shown Figure 5-2.

P = probe clearance, item 7, Table 4-2 H = horizontal clearance, item 7, Table 5-1 T = transition clearance  $V_1 = \text{vertical clearance, item 2\&3,}$  Table 4-2 $V_2 = \text{vertical clearance, Table 4-1}$ 

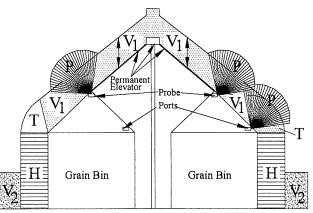
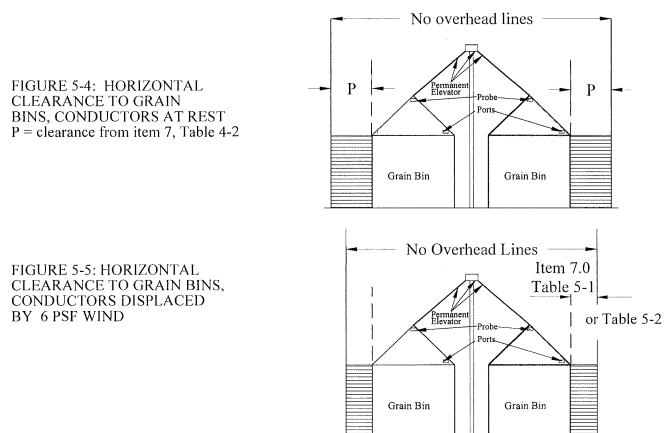
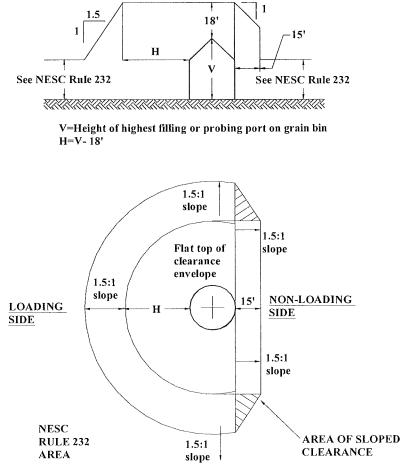





FIGURE 5-3: CLEARANCE TO GRAIN BINS NESC FIGURE 234-4a From IEEE/ANSI C2-2007, National Electrical Safety Code, Copyright 2006. All rights reserved.

Because the vertical distance from the probe in Table 4-2, item 7.0, is greater than the horizontal distance, (see Table 5-1, item 7.0), the user may want to simplify design and use this distance as the horizontal clearance distance as shown below:



The clearance envelope for portable loading equipment from NESC Figure 234(b), is shown in Figure 5-6.





In order to simplify the clearance envelope, the horizontal clearances in category 8 of Table 5-1 is shown as 'H' in the drawing below:

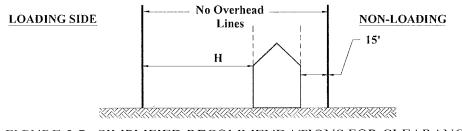



FIGURE 5-7: SIMPLIFIED RECOMMENDATIONS FOR CLEARANCES TO GRAIN BINS WITH PORTABLE LOADING EQUIPMENT

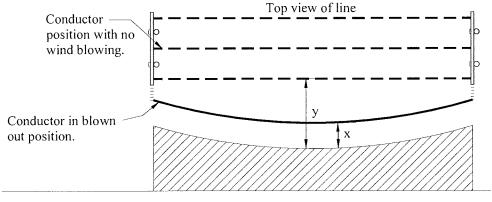
**5.2.4** <u>Altitude Greater Than 3300 Feet</u>: If the altitude of the transmission line or portion thereof is greater than 3300 feet, an additional clearance as indicated in Table 5-1 and 5-2 has to be added to the base clearance given.

**5.2.5** <u>Total Horizontal Clearance to Point of Insulator Suspension to Object</u>: As can be seen from Figure 5-1, the total horizontal clearance (y) is:

$$y = (\ell_i + S_f) \sin \phi + x + \delta$$
 Eq. 5-1

Symbols are defined in Section 5.2.1 and figure 5-1. The factor " $\delta$ " indicates that structure deflection should be taken into account.

For the sake of simplicity when determining **horizontal** clearances, the insulator string should be assumed to have the same swing angle as the conductor. This assumption should be made only in this chapter as its use in calculations elsewhere may not be appropriate.


The conductor swing angle ( $\phi$ ) under wind can be determined from the formula.

$$\phi = \tan^{-1} \left( \frac{(d_c)(F)}{12 w_c} \right)$$
 Eq. 5-2

where:

 $d_C$  = conductor diameter in inches  $w_C$  = weight of conductor in lbs./ft. F = wind force;

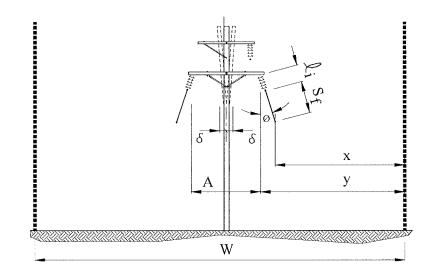
The total horizontal distance (y) at a particular point in the span depends upon the conductor sag at that point. The value of (y) for a structure adjacent to the maximum sag point will be greater than the value of (y) for a structure placed elsewhere along the span. See Figure 5-7.



x = clearance from wind-displaced conductor, y= total horizontal clearance from conductor at rest

FIGURE 5-8: A TOP VIEW OF A LINE SHOWING TOTAL HORIZONTAL CLEARANCE REQUIREMENTS **5.2.6** Examples of Horizontal Clearance Calculations: The following examples demonstrate the derivation of the horizontal clearance in Table 5-1 of this bulletin.

To determine the horizontal clearance of a 115 kV line to a building (category 2.0 of Table 5-1), the clearance is based on NESC Table 234-1 and NESC Rule 234.


At rest:	
NESC Horizontal Clear.	= NESC Basic Clearance(Table 234-1) + $.4(kV_{L-G} - 22)/12$ = 7.5 feet + $.4(69.7-22)/12$ feet = 7.5 feet + 1.59 feet
NESC Horizontal Clear.	= 9.09 feet
Recommended Clearance	= NESC Horizontal Clearance + Adder = 9.09 feet + 1.5 feet y = 10.59 feet (10.60 feet in Table 5-1)
Conductors displaced by 6 ps	sf wind:
	= NESC Basic Clearance (Table 234-1) + .4( $kV_{L-G}$ - 22)/12 = 4.5 feet + .4(69.7-22)/12 feet = 4.5 feet + 1.59 feet
NESC Horizontal Clear.	= 6.09 feet
Recommended Clearance	= NESC Horizontal Clearance + Adder = 6.09 feet + 1.5 feet x = 7.59 feet (7.6 feet in Table 5-1)

**5.3** <u>**Right-of-Way (ROW) Width</u></u>: For transmission lines, a right-of-way provides an environment allows the line to be operated and maintained safely and reliably. Determination of the right-of-way width is a task that requires the consideration of a variety of judgmental, technical, and economic factors.</u>** 

Typical right-of-way widths (predominantly H-frames) that have been used by agency borrowers in the past are shown in Table 5-2. In many cases a range of widths is provided. The actual width used will depend upon the particulars of the line design.

	TYPICAL	TABLE RIGHT-O	E 5-3 F-WAY WII	DTHS	
		Nominal L	ine-to-Line Vo	oltage in kV	-
president and part	69	115	138	161	230
ROW Width, ft.	75-100	100	100-150	100-150	125-200

**5.4** <u>Calculation of Right-of-Way Width for a Single Line of Structures on a Right-of-Way</u>: Right-of-way widths can be calculated using the method described below. The calculated values for right-of-way widths are directly related to the particular parameters of the line design. This method provides sufficient width to meet clearance requirements to buildings of undetermined height or vegetation located directly on the edge of the right-of-way. See Figures 5-8 and 5-9.



#### FIGURE 5-9: ROW WIDTH FOR SINGLE LINE OF STRUCTURES

$$W = A + 2(\ell_i + S_f)\sin\phi + 2\delta + 2x$$
 Eq. 5-3

where:

W =total right-of-way width required

- A = separation between points of suspension of insulator strings for outer two phases
- x = clearance required per Table 5-1 and appropriate clearance derived from Table 5-2 of this bulletin (include altitude correction if necessary)
- y = clearance required per Section 5.2.1 and Table 5-1 and appropriate clearance derived from Section 5.2.2. and Table 5-2 of this bulletin (include altitude correction if necessary)

Other symbols are as previously defined. In some instances, clearance "x" may control. In other instances, clearance "y" may control.

There are two ways of choosing the length (and thus the sag) on which the right-of-way width is based. One is to use a width based on the maximum span length in the line. The other way is to base the width on a relatively long span, (the ruling span, for instance), but not the longest span. For those spans that exceed this base span, additional width is added as appropriate.

**5.5** <u>Right-of-Way Width for a Line Directly Next to a Road</u>: The right-of-way width for a line next to a road can be calculated based on the two previous sections with one exception. No ROW is needed on the road side of the line as long as the appropriate clearances to existing or possible future structures on the road side of the line are met.

If a line is to be placed next to a roadway, consideration should be given to the possibility that the road may be widened. If the line is on the road right-of-way, the borrower would generally be expected to pay for moving the line. If the right-of-way is on private land, the highway

department should pay. Considerations involved in placing a line on a road right-of-way should also include evaluation of local ordinances and requirements.

**5.6** <u>Right-of-Way Width for Two or More Lines of Structures on a Single Right-of-Way:</u> To determine the right-of-way width when the right ROW contains two parallel lines, start by calculating the distance from the outside phases of the lines to the ROW edge (see Section 5.4). The distance between the two lines is governed by the two criteria provided in section 5.6.1. If one of the lines involved is an extra high voltage (EHV) line (345 kV and above), the NESC should be referred to for additional applicable clearance rules not covered in this bulletin.

**5.6.1** <u>Separation Between Lines as Dictated by Minimum Clearance Between Conductors</u> <u>Carried on Different Supports</u>: The horizontal clearance between a phase conductor of one line to a phase conductor of another line shall meet the larger of  $C_1$ , or  $C_2$  below, under the following conditions: (a) both phase conductors displaced by a 6 psf wind at 60°F, final sag; (b) if insulators are free to swing, one should be assumed to be displaced by a 6 lbs/sq. ft. wind while the other should be assumed to be unaffected by the wind (see Figure 5-10). The assumed wind direction should be that which results in the greatest separation requirement. It should be noted that in the Equations 5-5, and 5-6, the ' $\delta_1$ - $\delta_2$ ' term, (the differential structure deflection between the two lines of structures involved), is to be taken into account. An additional 1.5 feet have been added to the NESC clearance to obtain design clearances 'C₁'and 'C₂'. Note Equation 5-6 has been revised from previous versions due to the voltage adder change in the 2007 NESC edition.

$$C_1 = 6.5 + (\delta_1 - \delta_2)$$
 (NESC Rule 233B1) Eq. 5-5

$$C_{2} = 6.5 + \frac{.4}{12} \left[ \left( k V_{LG1} + k V_{LG2} \right) - 22 \right] + \left( \delta_{1} - \delta_{2} \right) \text{ (NESC Rule 233B1)}$$
 Eq. 5-6

where:

 $C_{l}, C_{2} =$  clearance requirements between conductors on different lines in feet (largest value governs)  $kV_{LG_{l}} =$  maximum line-to-ground voltage in kV of line 1  $kV_{LG_{2}} =$  maximum line-to-ground voltage in kV of line 2  $\delta_{l} =$  deflection of the upwind structure in feet

$$\delta'_2$$
 = deflection of the downwind structure in feet

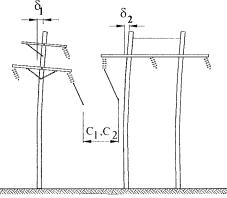



FIGURE 5-10: CLEARANCE BETWEEN CONDUCTORS OF ONE LINE TO CONDUCTOR OF ANOTHER LINE

**5.6.2** Separation Between Lines as Dictated by Minimum Clearance of Conductors From One Line to the Supporting Structure of Another: The horizontal clearance of a phase conductor of one line to the supporting structure of another when the conductor and insulator are displaced by a 6 psf wind at 60°F final sag should meet Equation 5-7.

$$C_3 = 6' + \frac{.4}{12} \left( k V_{LG} - 22 \right) + \left( \delta_1 - \delta_2 \right)$$
 Eq. 5-7

where:

 $kV_{LG}$  = the maximum line-to-ground voltage in kV  $C_3$  = the clearance of conductors of one line to structure of another in feet

Other symbols are defined in Figure 5-1.

Additional 1.5 feet have been added to the NESC clearance and included in equation 5-7 to obtain the design clearance ' $C_3$ '.

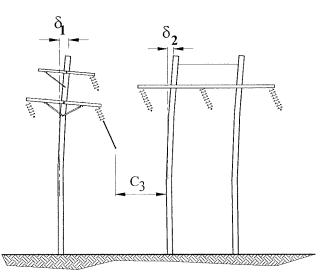



FIGURE 5-11: CLEARANCE BETWEEN CONDUCTORS OF ONE LINE AND STRUCTURE OF ANOTHER

The separation between lines will depend upon the spans and sags of the lines as well as how structures of one line match up with structures of another. In order to avoid the unreasonable task of determining separation of structures span-by-span, a standard separation value should be used, based on a worst case analysis. Thus if structures of one line do not always line up with those of the other, the separation determined in section 5.6.2 should be based on the assumption that the structure of one line is located next to the mid-span point of the line that has the most sag.

**5.6.3** <u>Other Factors</u>: Galloping should be taken into account in determining line separation. In fact, it may be the determining factor in line separation. See Chapter 6 for a discussion of galloping.

Standard phase spacing should also be taken into account. For example, if two lines of the same voltage using the same type structures and phase conductors are on a single ROW, a logical separation of the two closest phases of the two lines should be at least the standard phase separation of the structure.

**5.6.4** <u>Altitude Greater than 3300 Feet</u>: If the altitude at which the lines included in the design are installed greater than 3300 feet, NESC Section 23 rules provide additional separation requirements.

## NESC MINIMUM CLEARANCE PRACTICES BY OTHERS

The information in this section provides a summary of the standard practices used in the industry. If required other utility standards can be provided.

# Clearances—from Buildings, Bridges, and Other Installations (NESC 234)

### A. Scope

This Standard provides the *minimum* clearances of wires, conductors, cables and equipment from buildings, bridges, swimming pools, and other installations as required by the National Electric Safety Code (NESC) Rule 234. These clearances apply to all PacifiCorp transmission facilities, with the exception of facilities in the states of California and Washington.

#### **B.** General

The vertical and horizontal clearances specified in this standard apply under whichever conditions of conductor temperature and loading that produce the minimum clearance (refer also to TC 011, C2).

1. Horizontal Clearances (with Wind Displacement)

For horizontal clearances, conductors or cables shall be considered to be displaced from rest toward the installation by a 6 pound per square foot (psf) wind at a 60 degree F (15 degrees C) final sag. The displacement of a conductor or cable shall include the deflection of suspension insulators and structures.

2. Transition between Horizontal and Vertical Clearances.

The horizontal clearance governs above the level of the roof or top of an installation to the point where the diagonal equals the vertical clearance requirement. Similarly, the horizontal clearance governs above or below projections from installations to the point where the diagonal equals the vertical clearance requirement. From this point, the transitional clearance shall equal the vertical clearance, as shown in Figure 1.

1			
Transmission Construction Standard	Clearances from Buildings, Bridges,		POWER UTAH POWER
Stds Team Leader (C. L. Wright):	and Other Installations (NESC 234)	17 Oct 95	<b>TC 151</b> Page 1 of 26



Table 1 – Minimum Clearances of Conductors	
from Other Supporting Structures	

	Clearances (Feet)				
Conductor or Cable	Horizontal	Vertical			
Guys, Messengers, Neutrals	3.0	2.0			
Cables - 0 to 300 V	3.0	2.0			
Cables - 301 to 750 V	3.5	4.5			
Cables – Above 750 V	3.5	4.5			
Open Supply Lines – 0 to 750 V	3.5	4.5			
Open Supply Lines – 751 V to 22 kV	4.5	4.5			

The wind displacement does not need to be considered for communication conductors.

### D. Minimum Clearances of Conductors and Rigid Live Parts Adjacent But Not Attached to Buildings

The minimum vertical and horizontal clearances of conductors not attached to buildings are summarized in Clearance Tables 3a–3d. Clearances with six pounds per square foot wind are summarized in Clearance Tables 4a–4d.



Stds Team Leader (C. L. Wright)ः दिन्द्रेः Standards Services (M. Brimhall): जिन्द्र Clearances from Buildings, Bridges, and Other Installations (NESC 234) PACIFICORP

17 Oct 95

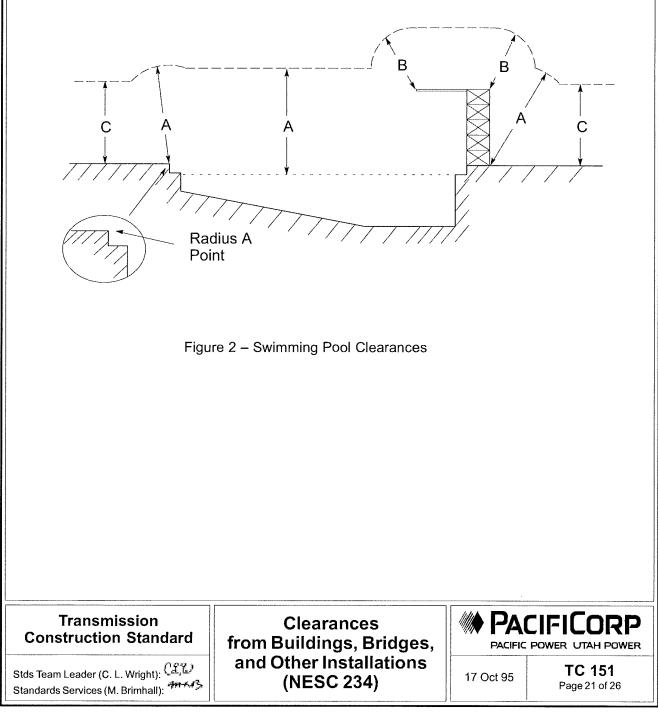
**TC 151** Page 3 of 26

### E. Minimum Clearances of Conductors and Rigid Live Parts From Bridges

The minimum vertical and horizontal clearances of conductors or rigid live parts located adjacent to or within a bridge structure, are summarized in Clearance Tables 5a–5d and 6a–6d. No wire, conductor, cable or live part shall be closer to a bridge structure.

PACIFIC POWER UTAH POWERCleanPACIFIC POWER UTAH POWERfrom BuildinTC 15117 Oct 95Page 12 of 2617 Oct 95

Clearances from Buildings, Bridges, and Other Installations (NESC 234) Transmission Construction Standard


Stds Team Leader (C. L. Wright): (157) Standards Services (M. Brimhall): 417-43

### F. Minimum Clearances from Swimming Areas

Where wires, conductors, or cables cross over a swimming pool or the surrounding area, the clearances in any direction shall not be less than Clearance Tables 7a–7d. These horizontal clearances shall also be met under wind conditions. The clearances are illustrated in Figure 3.

In general, avoid placing lines near swimming areas whenever possible.

Swimming areas where rescue poles are not used or waterways subject to water skiing, shall conform to TC 111 (NESC 232).

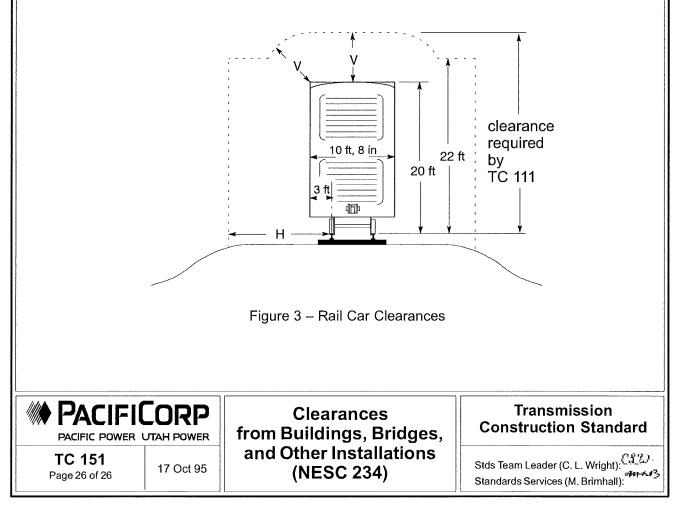


## G. Clearances of Conductors and Rigid Live Parts from Grain Bins

Refer to NESC 234F for the special requirement which apply to grain bins.

### H. Additional Clearances for Voltages Exceeding 22 kV for Conductors and Unguarded Rigid Live Parts

For voltages between 22 and 470 kV, the clearances specified in paragraphs C, D, F, G, H, and J shall be increased at the rate of 0.4 inch per kV in excess of 22 kV.


For voltages exceeding 50 kV, the additional clearance specified above shall be increased 3 percent for each 1000 feet in excess of 3300 feet above mean sea level.

### I. Clearances of Conductors to Rail Cars

Where overhead wires, conductors, or cables run along railroad tracks, the clearance in any direction shall be not less than that shown in Figure 4. The Values of V and H are as defined below:

- V = Vertical clearance from the wire, conductor, or cable above the top of the rail as specified in TC 111 (Rule 232) minus 20 feet, the assumed height of the rail car
- H = Horizontal clearance from the wire, conductor, or cable to the nearest rail, which is equal to the required vertical clearance above the rail minus 15 feet.

Refer to NESC 234 I for rail cars smaller than standard freight cars.



Table 1 - PacifiCorp Standard Practice (NESC Table 234 Clearances of Wires, Conductors, and Cables, and Unguarded Rig Adjacent but Not Attached to Buildings and Other Installations Exc Clearances are with NO WIND. See NESC Rules 230C1 and 230C2a. Elevelion range for table: See Level to 2000 according and other lines 2000 and 2000 clearances are with NO WIND. See NESC Rules 230C1 and 230C2a. Elevelion range for table: See Level to 2000 according and other lines 2000 according and a line with the lines 2000 according a line with the line according a line according according a line according according according according ac	234–1 EXCel 15 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235–1 235	234–1) Rigid Live Parts Except Bridges 	234-1) Rigid Live Parts Except Bridges
	1) id Live Part; Cept Bridges Coper Supply Con Oper Supply Con over 2 8 V to 20 8 V to 20 0 V to 8 4 V to 20 0 138 8 V (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) (	Live Parts Live Parts t Bridges pen Supply Conductors to 70 kV to 94 kV to 94 kV to 98 kV to 18 kV to 98 kV to 94 kV to 98 kV to 94 kV to	Live Parts Live Parts t Bridges Per Supply Conductors to 70 kV to 84 kV to 95 kV

Construction		nda	ard	fr	on	n E	Cl Bui Oth	ea Idi	ran ing:	ices s, B stlla	s Srid	ge	S		, .			<b>IFIC</b>		
Adjac Clear: Transmis	sio		me protection guys: n.	supp Clearances of	1. Buildings			(2) To unguarded windows.	(3) To balconies and areas readily accessible to pedestrians.	b. Vertical	<ol> <li>Over or under roofs or projections not readily accessible to pedestrians.</li> </ol>	(2) Over or under balconies and roofs readily accessible to pedestrians.	(3) Over roofs accessible to vehicles but not subject to truck traffic.	(4) Over roofs accessible to truck traffic.	<ol> <li>Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.</li> </ol>	a. Horizontal	b. Vertical over or under	<ol> <li>Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.</li> </ol>	a. Horizontal	b. Vertical
Table 2 Clearances of W Adjacent but No		Insulated communication conductors and cables	messengers; surge protection wires; grounded guys; natural conductors meeting Rule 230E1;	supply cables meeting Rule 230C1 /feet/	1001		9.0 (4.5)	9.0 (4.5)	9.0 (4.5)		7.0 (3.0)	15.0 (10.5)	15.0 (10.5)	20.0 (15.5)		7.0 (3.0)	7.0 (3.0)		9.0 (5.0)	9.0 (4.5)
2 – Pacifi Vires, Cor ot Attache ^{Clearances ar}			Supply cables cables of 0 to750 V	230C2 or 230C3 (feet)	11001		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		8.0 (3.5)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	8.0 (3.5)		9.0 (5.0)	9.0 (4.5)
2 – PacifiCorp Standard Practice (NESC Table 234–1) Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Vot Attached to Buildings and Other Installations Except Bridges Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 3300 Construction tolerance:		Unguarded rigid live parts, 0 to 750 V;	communication conductors	(1991)		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		14.0 (10.0)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		9.0 (5.0)	10.0 (5.5)		9.0 (5.0)	9.0 (4.5)
dard Prac Ind Cable ings and insc	r table: 3300 ance:	Supply cables over		-	(1991)		10.0 (5.5)	10.0 (5.5)	10.0 (5.5)		15.0 (10.5)	16.0 (11.5)	16.0 (11.5)	21.0 (16.5)		10.0 (5.5)	10.0 (6.0)		9.0 (5.0)	9.0 (4.5)
rd Practice (NESC Table 2 d Cables, and Unguarded gs and Other Installations see NESC Rules 233C1 and 233C2a	6300 4 feet			(34.5 kV ( to phase) (feet)		·	12.0 (7.5)	12.0 (7.5)	12.0 (7.5)		17.0 (12.5)	18.0 (13.5)	18.0 (13.5)	23.0 (18.5)		12.0 (7.5)	12.0 (8.0)		9.0 (5.0)	10.0 (5.5)
SC Table Inguarde stallatior				(46 kV to (69 phase) ph (feet) (f							17.0 (12.7) (1	18.0 1 (13.7) (1	18.0 (13.7) (1	23.0 2 (18.7) (1		12.0 (7.7)			9.0 (5.0)	10.0 1 (5.5) (5
e 234–1) id Rigid I is Excep		0		(feet) (feet)				13.0 14.0 (8.2) (9.2)			18.0 19.0 (13.2) (14.2)	19.0 20.0 (14.2) (15.2)	19.0 20.0 (14.2) (15.2)	24.0 25.0 (19.2) (20.2)		13.0 14.0 (8.2) (9.2)			9.0 10.0 (5.0) (5.7)	10.0 11.0 (5.5) (6.2)
Live Part		Open Supply Conductors		V (138 kV e) to phase)				14.0 (9.8)			19.0 (14.8)	20.0 (15.8)	20.0 (15.8)	25.0 (20.8)		14.0 (9.8)	Ŭ		11.0 (6.2)	
Ω. a		Iductors		(161 kV to phase)			15.0 (10.3)	15.0 (10.3)	15.0 (10.3)		20.0 (15.3)	21.0 (16.3)	21.0 (16.3)	26.0 (21.3)		15.0 (10.3)	15.0 (10.8)		11.0 (6.7)	12.0 (7.2)
				(230 kV (3 to phase)	10001		16.0 (11.8)	16.0 (11.8)	16.0 (11.8)		21.0 (16.8)	22.0 (17.8)	22.0 (17.8)	27.0 (22.8)		16.0 (11.8)	17.0 (12.3)		13.0 (8.3)	13.0 (8.8)
				(345 kV to ( phase) to (	المحدر		19.0 (14.3)	19.0 (14.3)	19.0 (14.3)		24.0 (19.3)	25.0 (20.3)	25.0 (20.3)	30.0 (25.3)		19.0 (14.3)	19.0 (14.8)		15.0 (10.8)	16.0 (11.3)
			over 210 kV to 318 kV to ground	(500 kV (500 kV (feet)	/icci/		23.0 (18.3)	23.00 (18.3)	23.0 (18.3)		28.0 (23.3)	29.0 (24.3)	29.0 (24.3)	34.0 (29.3)		23.0 (18.3)	23.0 (18.8)		19.0 (14.7)	20.0 (15.2)

Transm Constructio					1. Buil		f n E	® Cle Buil	eara eara dir er li	anc	€ es,Br	idć	ී ges	(4)	2. Signs, antenr classif	<b>Þ</b> F	<b>7</b> 4	, CIFI		DRP
Table Clearances of Adjacent but l		Insulated communication conductors and cables	messengers; surge protection wires; grounded guys; natural conductors meeting Rule 230E1; errorus rehap Rule 230E1;	Clearances of	sbu	a. Horizontal	<ul> <li>To walls, projection, and guarded windows.</li> </ul>	To unguarded windows.	To balconies and areas readily accessible to pedestrians.	rtical	<ul> <li>Over or under roofs or projections not readily accessible to pedestrians.</li> </ul>	<ul> <li>Over or under balconies and roofs readily accessible to pedestrians.</li> </ul>	<ul> <li>Over roofs accessible to vehicles but not subject to truck traffic.</li> </ul>	Over roofs accessible to truck traffic.	Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.	a. Horizontal	b. Vertical over or under	Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.	a. Horizontal	rtical
Table 3 ces of Wi nt but No		sulated communication conductors and cables			hand		9.0 (4.5)	9.0 (4.5)	9.0 (4.5)		7.0 (3.0)	15.0 (10.5)	15.0 (10.5)	20.0 (15.5)		7.0 (3.0)	7.0 (3.0)		9.0 (5.0)	9.0 (4.5)
3 – PacifiCorp Stal Wires, Conductors, lot Attached to Buil Clearances are with NO WI			Supply cables cables of 0 to750 V meeting Rules	230C3 230C3 (feet)	6000		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		8.0 (3.5)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	8.0 (3.5)		9.0 (5.0)	9.0 (4.5)
Table 3 – PacifiCorp Standard Practice (NESC Table 234–1) Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 6300 Construction tolerance:		Unguarded rigid live parts, 0 to 750 V; noninsulated	communication conductors (feet)	6000		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		14.0 (10.0)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		9.0 (5.0)	10.0 (5.5)		9.0 (5.0)	9.0 (4.5)
ndard Practice (NESC Table 234–1) and Cables, and Unguarded Rigid Live Parts dings and Other Installations Except Bridges ND. See NESC Rules 233C1 and 233C2a.	r table: 6300 ance:	Supply cables over		to 750 V (feet)	()		10.0 (5.5)	10.0 (5.5)	10.0 (5.5)		15.0 (10.5)	16.0 (11.5)	16.0 (11.5)	21.0 (16.5)		10.0 (5.5)	10.0 (6.0)		9.0 (5.0)	9.0 (4.5)
stice (NE s, and L Other In 3 Rules 233	9300 4 feet		over 750 V to 22 kV to ground	to phase) (feet)			12.0 (7.5)	12.0 (7.5)	12.0 (7.5)		17.0 (12.5)	18.0 (13.5)	18.0 (13.5)	23.0 (18.5)		12.0 (7.5)	12.0 (8.0)		9.0 (5.0)	10.0 (5.5)
SC Tab Jnguard Istallatio C1 and 233				(140 kv uv (10 phase) p (feet)			12.0 (7.7)	12.0 (7.7)	12.0 (7.7)		17.0 (12.7) (	18.0 (13.7) (	18.0 (13.7) (	23.0 (18.7) (		12.0 (7.7)	13.0 (8.2)		9.0 (5.0)	10.0 (5.5)
le 234–` ed Rigid ns Exce			over o 27 kV to 42   42 kV to 70   ground gro				13.0 1- (8.2) (9				18.0 11 (13.2) (1-	19.0 21 (14.2) (11	19.0 2(14.2) (1)	24.0 21 (19.2) (2)		13.0 1- (8.2) (9			9.0 11 (5.0) (5	10.0 1 (5.5) (6
l) Live Pa pt Bridgé		Open Supply Conductors	over over 42 kV to 70 kV to 70 kV to 84 kV to ground ground				14.0 14.0 (9.4) (9.9)				19.0 19.0 (14.4) (14.9)	20.0 20.0 (15.4) (15.9)	20.0 20.0 (15.4) (15.9)	25.0 25.0 (20.4) (20.9)		14.0 14.0 (9.4) (9.9)			10.0 11.0 (5.8) (6.3)	11.0 11.0 (6.3) (6.8)
tt s		Conductors	over to 84 kV to to 98 kV to d ground				15.0 (10.5)				20.0 (15.5)			26.0 (21.5)		15.0 (10.5)	15.0 (11.0)		11.0 (6.9)	12.0 (7.4)
			over 98 kV to 140 kV to ground				17.0 (12.1)	17.0 (12.1)	17.0 (12.1)		22.0 (17.1)	23.0 (18.1)	23.0 (18.1)	28.0 (23.1)		17.0 (12.1)	17.0 (12.6)		13.0 (8.6)	14.0 (9.0)
			over 140 kV to 210 kV to ground				19.0 (14.9)	19.0 (14.9)	19.0 (14.9)		24.0 (19.9)	25.0 (20.9)	25.0 (20.9)	30.0 (25.9)		19.0 (14.9)	20.0 (15.4)		16.0 (11.3)	16.0 (11.8)
	-		over 210 kV to 318 kV to ground	to phase) (feet)			24.0 (19.1)	24.0 (19.1)	24.0 (19.1)		29.0 (24.1)	30.0 (25.1)	30.0 (25.1)	35.0 (30.1)		24.0 (19.1)	24.0 (19.6)		20.0 (15.5)	21.0 (16.0)

Transmis Construction Stds Team Leader (C. L. N Standards Services (M. B	Stai Wright	nda t): {	LL	fr	on and	n B d C	ui )th	ldi er	ng: Ins	ices s, B stlla 234)	rid tio	lge ns	S			PACI	FIC F	POWER UT TC Page	ан г 15	1
		<u>su</u>	protect	Sur Clearances of	1. Buildings	a. Horizontal		(2) To unguarded windows.	(3) To balconies and areas readily accessible to pedestrians.	b. Vertical	(1) Over or under roofs or projections not readily accessible to pedestrians.	(2) Over or under balconies and roofs readily accessible to pedestrians.	(3) Over roofs accessible to vehicles but not subject to truck traffic.	(4) Over roofs accessible to truck traffic.	<ol> <li>Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.</li> </ol>	a. Horizontal	b. Vertical over or under	<ol> <li>Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.</li> </ol>	a. Horizontal	b. Vertical
Table d Clearances of M Adjacent but No		Insulated communication conductors and cables		supply cables meeting Rule 230C1 (feet)		ō	(4.5)	9.0 (4.5)	9.0 (4.5)			15.0 (10.5)	ut 15.0 (10.5)		sion not	7.0 (3.0)	7,0 (3.0)	ors, ting ting sing	9.0 (5.0)	9.0 (4.5)
4 – Pacifi( Vires, Con lot Attache Clearances arr			Supply cables cables of 0 to750 V	230C2 or 230C3 or 230C3	(heed)	c	e.0 (5.0)	9.0 (5.0)	9.0 (5.0)		8.0 (3.5)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	8.0 (3.5)		9.0 (5.0)	9.0 (4.5)
4 – PacifiCorp Standard Practice (NESC Table 234–1) Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Vot Attached to Buildings and Other Installations Except Bridges Clearances are with NO WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 9300 Construction tolerance:		Unguarded rigid live parts, 0 to 750 V;	communication conductors	(1991)	c	5.0)	9.0 (5.0)	9.0 (5.0)		14.0 (10.0)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		9.0 (5.0)	10.0 (5.5)		9.0 (5.0)	9.0 (4.5)
dard Prac ind Cable ings and ⁽	rr table: 9300 ance:	Supply cables over		conductors 0 to 750 V	(1001)	007	10.U (5.5)	10.0 (5.5)	10.0 (5.5)		15.0 (10.5)	16.0 (11.5)	16.0 (11.5)	21.0 (16.5)		10.0 (5.5)	10.0 (6.0)		9.0 (5.0)	9.0 (4.5)
rd Practice (NESC Table 2 I Cables, and Unguarded 3s and Other Installations See NESC Rules 233C1 and 233C2a	12300 4 feet			(34.5 kV (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		0	(7.5)	12.0 (7.5)	12.0 (7.5)		17.0 (12.5)	18.0 (13.5)	18.0 (13.5)	23.0 (18.5)		12.0 (7.5)	12.0 (8.0)		9.0 (5.0)	10.0 (5.5)
SC Tablı İnguarde stallatior				(46 kV to (69 phase) ph							17.0 (12.7) (1			23.0 2 (18.7) (1		12.0 1 (7.7) (8			9.0 (5.0)	
e 234–1) id Rigid I is Excep		Ō		(feet) (feet)				13.0 14.0 (8.2) (9.5)			18.0 19.0 (13.2) (14.5)	19.0 20.0 (14.2) (15.5)		24.0 25.0 (19.2) (20.5)		13.0 14.0 (8.2) (9.5)			9.0 10.0 (5.0) (6.8)	
_ive Part⊧ t Bridges		Open Supply Conductors		KV (138 kV se) to phase)	1			15.0 (10.1)			(15.1) (15.1)			) (21.1)		15.0 (10.1)			11.0 (6.4)	
Ø		iductors	over 84 kV to 98 kV to	to phase)	(mai)		15.0 (10.7)	15.0 (10.7)	15.0 (10.7)		20.0 (15.7)	21.0 (16.7)	21.0 (16.7)	26.0 (21.7)		15.0 (10.7)	16.0 (11.2)		12.0 (7.0)	12.0 (7.5)
				(230 kV (34 (34 (34 (34 (34 (34 (34 (35 (34 (35 (34 (35 (34 (35 (34 (35 (34 (35 (34 (34 (34 (34 (34 (34 (34 (34 (34 (34	/icci/			17.0 (12.5)			22.0 (17.5)			28.0 (23.5)		17.0 (12.5)			13.0 (8.8)	
				(feet) (feet)				20.0 25.0 (15.5) (20.0)			25.0 30.0 (20.5) (25.0)			31.0 36.0 (26.5) (31.0)		20.0 25.0 (15.5) (20.0)			16.0 21.0 (11.8) (16.3)	

Table 5 - PacifiCorp Standard Practice (NESC Table 234-1)Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live PartsAdjacent but Not Attached to Buildings and Other Installations Except BridgesGenances are with 6 to Sundar Apple table: Sea Last IAdjacent but Not Attached to Buildings and Other Installations Except BridgesGenances are with 6 to Sundar Apple table: Sea Last ISea Resonances are with 6 to Sundar Apple table: Sea Last ISea Resonances are with 6 to Sundar Apple table: Sea Last ISundar Apple table: Sea Last ISu	1)     -1.)       d Live Parts       ept Bridges       ept Bridges       oren Supply Conductors       over     over       over     (feet)       (feet)     (feet)       (feet)     (fo.0)       (fi.1)
	over 98 kV to 140 kV to 140 kV to 130 kV to 230 kV (230 kV (15.4) (15.4) (15.4) (15.4) (15.4) (15.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4) (17.4)

Transmis Construction Sids Team Leader (C. L.	Sta	nda		fr a	on and	n E d C	3ui Oth	ldi ner	ran ing: Ins iC 2	s, E stlla	Brid atio	lge ns	S		, .	PACI				POWEF
			mess protection wi guys: natu meetin	supply c	1. Buildings		<ol> <li>To walls, projection, and guarded windows.</li> </ol>	(2) To unguarded windows.	(3) To balconies and areas readily accessible to pedestrians.	b. Vertical	<ol> <li>Over or under roofs or projections not readily accessible to pedestrians.</li> </ol>	(2) Over or under balconies and roofs readily accessible to pedestrians.	(3) Over roofs accessible to vehicles but not subject to truck traffic.	(4) Over roots accessible to truck traffic.	<ol> <li>Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.</li> </ol>	a. Horizontal	b. Vertical over or under	<ol> <li>Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, raffic signal support, or a supporting structure of a second line, without being attached thereto.</li> </ol>	a. Honizontal	b. Vertical
Table 6 Clearances of W Adjacent but Nc		Insulated communication conductors and cables		supply cables meeting Rule 230C1 (feet)			9.0 (4.5)	9.0 (4.5)	9.0 (4.5)		7.0 (3.0)	15.0 (10.5)	15.0 (10.5)	20.0 (15.5)		7.0 (3.0)	7.0 (3.0)		8.0 (3.5)	9.0 (4.5)
6 – Pacifi Vires, Cor ot Attache			Supply cables cables of 0 to750 V meeting Rules	230C2 or 230C3 (feet)			9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		8.0 (3.5)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (4.5)
e 6 – PacifiCorp Standard Practice (NESC Table 234–1) Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Not Attached to Buildings and Other Installations Except Bridges Clearances are with 6 lb/sf WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 3300 Construction tolerance:		Unguarded rigid live parts, 0 to 750 V; noninsulated	communication conductors (feet)			9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		14.0 (10.0)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)
dard Prac nd Cable ings and ID. See NES	r table: 3300 ance:	Supply cables over		conductors 0 to 750 V (feet)			8.0 (3.5)	8.0 (3.5)	8.0 (3.5)		15.0 (10.5)	16.0 (11.5)	16.0 (11.5)	21.0 (16.5)		8.0 (3.5)	10.0 (6.0)		8.0 (3.5)	9.0 (4.5)
d Practice (NESC Table 2 Cables, and Unguarded F s and Other Installations E see NESC Rules 233C1 and 233C2a	6300 4 feet		over 750 V to 22 kV to ground	(34.5 kV to phase) (feet)	-		9.0 (4.5)	9.0 (4.5)	9.0 (4.5)		17.0 (12.5)	18.0 (13.5)	18.0 (13.5)	23.0 (18.5)		9.0 (4.5)	12.0 (8.0)		9.0 (4.5)	10.0 (5.5)
SC Tab Jnguard Istallatio				(46 kV to (6 phase) p (feet)			9.0 (4.7)	9.0 (4.7)	9.0 (4.7)		17.0 (12.7)	18.0 (13.7)	18.0 (13.7)	23.0 (18.5)		9.0 (4.7)	13.0 (8.2)		9.0 (4.5)	10.0 (5.5)
le 234–′ ed Rigid ns Exce ^{3c2a.}			over 0 27 kV to 42 h 42 kV to 70 h ground gro								18.0 19 (13.2) (14	19.0 2( (14.2) (15		24.0 2f (19.2) (2(		10.0 1 ⁻ (5.2) (6			9.0 1( (4.5) (5	
l) Live Pa pt Bridg		Open Supply Conductors	over over 42 kV to 70 kV to 70 kV to 84 kV to ground ground					11.0 11.0 (6.2) (7.2)			19.0 19.0 (14.2) (14.8)	20.0 20.0 (15.2) (15.8)	20.0 20.0 (15.2) (15.8)	25.0 25.0 (20.2) (20.8)		11.0 11.0 (6.2) (6.8)	Ŭ		10.0 10.0 (5.2) (6.7)	
ss S		Conductors		<pre>kV (161 kV se) to phase) (feet)</pre>							) 20.0 3) (15.3)	1 21.0 3) (16.3)	) 21.0 3) (16.3)	) 26.0 3) (21.3)		) 12.0 ) (7.3)	Ť		) 11.0 (6.2)	
			over 98 kV to 140 kV to ground				13.0 (8.8)	13.0 (9.2)	13.0 (8.8)		21.0 (16.8)	22.0 (17.8)	22.0 (17.8)	27.0 (22.8)		13.0 (8.8)	17.0 (12.3)		12.0 (7.8)	13.0 (8.8)
			over 140 kV to 210 kV to ground	(345 kV to phase) (feet)			16.0 (11.3)	16.0 (11.7)	16.0 (11.3)		24.0 (19.3)	25.0 (20.3)	25.0 (20.3)	30.0 (25.3)		16.0 (11.3)	19.0 (14.8)		15.0 (10.3)	16.0 (11.3)
			over 210 kV to 318 kV to ground	(500 kV to phase) (feet)			20.0 (15.3)	20.0 (15.3)	20.0 (15.3)		28.0 (23.3)	29.0 (24.3)	29.0 (24.3)	34.0 (29.3)		20.0 (15.3)	23.0 (18.8)		19.0 (14.2)	20.0 (15.2)

Table 7 – Pacif Clearances of Wires, Co Adjacent but Not Attach Clearances ar			90 10 10	Clearances of (feet)	1. Buildings	a. Horiz	(1). To walls, projection, and guarded 9.0 (4.5)	(2) To unguarded windows. 9.0 (4.5)	(3) To balconies and areas readily 9.0 9.0 9.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	b. Vertical	<ul> <li>(1) Over or under roofs or projections not readily accessible to pedestrians.</li> </ul>	(2) Over or under balconies and roofs readily accessible to pedestrians.	(3) Over roofs accessible to vehicles but not subject to truck traffic.	(4) Over roofs accessible to truck traffic.	<ol> <li>Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.</li> </ol>	a. Horizontal	b. Vertical over or under 7.0 (3.0)	3. Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.		
7 – PacifiCorp Standard Practice (NESC Table 234–1) Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Not Attached to Buildings and Other Installations Except Bridges Clearances are with 6 lb/sf WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 6300 Construction tolerance:	Supply cables over	Unguarded rigid live parts, 0 to F 750 V; noninsulated communication	(feet)			9.0 8.0 (5.0) (3.5)				14.0 15.0 (10.0) (10.5)	15.0 16.0 (11.0) (11.5)	15.0 16.0 (11.0) (11.5)	20.0 21.0 (16.0) (16.5)		8.0 8.0 (3.5) (3.5)			8.0 8.0 (3.5) (3.5)	
d Practice (NESC Table 2: Cables, and Unguarded F s and Other Installations E see NESC Rules 233C1 and 233C2a.	9300 4 feet		over over 756 V to 22 kV to 22 kV to 27 kV to ground ground (34.5 kV (46 kV to to phase) phase)	(feet)			10.0 9.0 (4.5) (4.7)		9.0 9.0 (4.7)		17.0 17.0 (12.5) (12.7)	18.0 18.0 (13.5) (13.7)	18.0 18.0 (13.5) (13.7)	23.0 23.0 (18.5) (18.5)		9.0 9.0 (4.5) (4.7)			9.0 9.0 (4.5) (4.5)	
Table 234–1 arded Rigid ations Excep d 233c2a.		)	over over 27 kV to 42 kV to 42 kV to 70 kV to ground ground 66 kV to (115 kV ohtsei) to htsei	(leet)			10.0 11.0 (5.2) (6.4)				18.0 19.0 (13.2) (14.4)	19.0 20.0 (14.2) (15.4)	19.0 20.0 (14.2) (15.4)	24.0 25.0 (19.2) (20.4)		10.0 11.0 (5.2) (6.4)			9.0 10.0 (4.5) (5.3)	
) Live Parts it Bridges		Open Supply Conductors	over 70 kV to 84 kV to ground (138 kV to phase)	(feet)			0 11.0 (6.3)				0 19.0 4) (14.9)		0 20.0 4) (15.9)	0 25.0 4) (20.9)		0 11.0 (6.9)			0 10.0 3) (5.8)	
		tors	over over aver 98 kV to 98 kV to 98 kV to 98 kV to 140 kV to 97 ound ground (161 kV (230 kV) 10 ohase) to ohase)				12.0 14.0 (7.5) (9.1)	Ų			20.0 22.0 (15.5) (17.1)	21.0 23.0 (16.5) (18.1)	21.0 23.0 (16.5) (18.1)	26.0 28.0 (21.5) (23.1)		12.0 14.0 (7.5) (9.1)			11.0 13.0 (6.4) (8.0)	
·			over over 140 kV to 210 kV to 210 kV to 318 kV to ground ground 345 kV to (500 kV nhase) to (500 kV	(feet)			16.0 21.0 (11.9) (16.1)	16.0 21.0 (12.7) (16.1)			24.0 29.0 (19.9) (24.1)	25.0 30.0 (20.9) (25.1)	25.0 30.0 (20.9) (25.1)	30.0 35.0 (25.9) (30.1)		16.0 21.0 (11.9) (16.1)			15.0 20.0 (10.8) (15.0)	

Transmis Construction ds Team Leader (C. L.	Sta	nd	ard CLW	fro a	on	3ui Dth	ldi 1er	ng: Ins	ices s, B stila 234)	srid atio	lge ns	S			PAC	IFIC			POWE
			arys guys	su Clearances of	1. Buildings	<ol> <li>To walls, projection, and guarded windows.</li> </ol>	(2) To unguarded windows.	(3) To balconies and areas readily accessible to pedestrians.	b. Vertical	(1) Over or under roofs or projections not readily accessible to pedestrians.	(2) Over or under balconies and roofs readily accessible to pedestrians.	(3) Over roofs accessible to vehicles but not subject to truck traffic.	(4) Over roofs accessible to truck traffic.	<ol> <li>Signs, chimneys, billboards, radio and television antennas, tanks, and other installations not classified as buildings or bridges.</li> </ol>	a. Horizontal	b. Vertical over or under	<ol> <li>Other supporting structures, wires, conductors, or cables of one line passing near a lighting support, traffic signal support, or a supporting structure of a second line, without being attached thereto.</li> </ol>	a. Horizontal	b. Vertical
Table 8 – PacifiCorp Standard Practice (NESC Table 234–1) Clearances of Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Adjacent but Not Attached to Buildings and Other Installations Except Bridges ^{Clearances are with 6 lb/sf WIND. See NESC Rules 233C1 and 233C2a.}		Insulated communication conductors and cables	protection wires; grounded guys; natural conductors meeting Rule 230E1;	supply cables meeting Rule 230C1 (feet)		9.0 (4.5)	9.0 (4.5)	9.0 (4.5)			15.0 (10.5)		с. 20.0 (15.5)	sion not	7.0 (3.0)	7.0 (3.0)	titing rting eing	8.0 (3.5)	9.0 (4.5)
8 – Pacifi Vires, Cor ot Attache			Supply cables cables of 0 to750 V meeting Rules	230C2 or 230C3 . (feet)		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		8.0 (3.5)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (4.5)
8 – PacifiCorp Standard Practice (NESC Table 234–1) Wires, Conductors, and Cables, and Unguarded Rigid Live Parts Not Attached to Buildings and Other Installations Except Bridges Clearances are with 6 lb/sf WIND. See NESC Rules 233C1 and 233C2a.	Elevation range for table: 9300 Construction tolerance:			communication conductors (feet)		9.0 (5.0)	9.0 (5.0)	9.0 (5.0)		14.0 (10.0)	15.0 (11.0)	15.0 (11.0)	20.0 (16.0)		8,0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)
dard Prac Ind Cable ings and VD. See NES	rr table: 9300 ance:	Supply cables over		-		8.0 (3.5)	8.0 (3.5)	8.0 (3.5)		15.0 (10.5)	16.0 (11.5)	16.0 (11.5)	21.0 (16.5)		8.0 (3.5)	10.0 (6.0)		8.0 (3.5)	9.0 (4.5)
d Practice (NESC Table 2 Cables, and Unguarded F s and Other Installations E see NESC Rules 233C1 and 233C2a	12300 4 feet		over 750 V to 22 kV to ground	(34.5 kV to phase) (feet)		10.0 (4.5)	9.0 (4.5)	9.0 (4.5)		17.0 (12.5)	18.0 (13.5)	18.0 (13.5)	23.0 (18.5)		9.0 (4.5)	12.0 (8.0)		9.0 (4.5)	10.0 (5.5)
SC Tabl Jnguarde Istallation 3C1 and 233			1	(46 kV to (6( phase) p (feet) (			9.0 (4.7)	9.0 (4.7)			18.0 (13.7) (	18.0 (13.7) (	23.0 (18.5) (		9.0 (4.7)			9.0 (4.5)	
le 234–1 ∍d Rigid ns Exce∣ ³c2a.				(69 kV to (115 phase) to ph (feet) (fe			10.0 11 (5.2) (6	10.0 11 (5.2) (6.			19.0 20 (14.2) (15	19.0 20 (14.2) (15	24.0 25 (19.2) (20		10.0 11 (5.2) (6			9.0 10 (4.5) (5.	
l) Live Pa pt Bridg		Open Supply Conductors	over over aver over 42 kV to 70 kV to 70 kV to 84 kV to ground ground	(115 kV (138 l to phase) to pha (feet) (feet			11.0 12.0 (6.5) (8.3)	11.0 12.0 (6.5) (7.1)			20.0 21.0 (15.5) (16.1)	20.0 21.0 (15.5) (16.1)	25.0 26.0 (20.5) (21.1)		11.0 12.0 (6.5) (7.1)	-		10.0 10.0 (5.3) (5.9)	
urts es		Conductors		kV (161 kV ise) to phase) t) (feet)			0 12.0 () (8.9)	0 12.0 (7.7)			0 21.0 1) (16.7)	0 21.0 1) (16.7)	0 26.0 1) (21.7)		0 12.0 (7.7)	-		0 11.0 ) (6.5)	
		-		/ (230 kV e) to phase) (feet)		14.0 (9.5)	14.0 (10.7)	14.0 (9.5)			23.0 (18.5)	23.0 (18.5)	28.0 (23.5)		14.0 (9.5)	17.0 (13.0)		13.0 (8.3)	14.0 (9.3)
				(345 kV to phase) (feet)		17.0 (12.5)	17.0 (13.7)	17.0 (12.5)		25.0 (20.5)	26.0 (21.5)	26.0 (21.5)	31.0 (26-5)		17.0 (12.5)	20.0 (16.0)		16.0 (11.3)	17.0 (12.3)
			over 210 kV to 318 kV to ground	(500 kV to phase) (feet)		22.0 (17.0)	22.0 (17.0)	22.0 (17.0)		30.0 (25.0)	31.0 (26.0)	31.0 (26.0)	36.0 (31.0)		22.0 (17.0)	25.0 (20.5)		20.0 (15.8)	21.0 (16.8)

Trans Construct Stds Team Leade Standards Service	tion \$	Standard		fro an	m E d C	3uil 9the	earances dings, E er Install ESC 234	Brid atio	lge: ons	S	17	PACIFIC F Oct 95	POWER	<b>LOR</b> UTAH POW <b>C 151</b> Je 13 of 26	-
				1. Clearance over bridges.	a Attached	b. Not attached	<ol> <li>Clearance beside, under or within bridge structure.</li> <li>a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.</li> </ol>	(1) Attached	(2) Not Attached	<ul> <li>b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masony) and from abutments.</li> </ul>	(1) Attached	(2) Not Attached			
Table 9 – PacifiCorp Standard Practice (NESC Table 234–2) Clearances of Wires, Conductors, and Cables From Bridges Clearances with NO WIND. See NESC Rules 234D1a and 234H4. Flevation range for table. Sea Level to 3300	Unguarded rigid live	parts, 0 to 750 V; noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 or 230C3 230C2 or 230C3	(feet)		7.0 (3.0)	14.0 (10.0)	eb	7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)			
9 – PacifiCorp Standard Practice (NESC Table 234–2) ances of Wires, Conductors, and Cables From Bridges clearances with NO WIND. See NESC Rules 234D1a and 234H4. Flevation rance for table. Sea Level to 3300	Construct Supply	cables over _ 750 V meeting Rules 230C2 or 230C3; or 230C3; or 230C3; or 230C3; or 230C3; or 230C3; or 230C3; or 230C3; or 200 V or 200 V	- 1		8.0 (3.5)	15.0 (10.5)		8.0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)			
Corp Standard Pra Vires, Conductors, with No WIND. See NES	Construction tolerance: upply	over 750 V to 22 kV to ground (34.5 kV (			10.0 (5.5)	17.0 (12.5)		10.0 (5.5)	12.0 (7.5)		10.0 (5.5)	11.0 (6.5)			
ard Practice (NESC Table luctors, and Cables From see NESC Rules 234D1a and 234H4. for table: Sea Level to 3300		over over 22 kV to 27 kV to 9 ground (46 kV to (6 hase)			10.0 (5.7)	17.0 (12.7)		10.0 (5.7)	12.0 (7.7)		10.0 (5.7)	11.0 (6.7)			
(NESC - Cables F 234D1a and		over 28 kV to 4; 42 kV to 7( 9 ground g (69 kV to (7			11.0 (6.2)	18.0 (13.2) (		11.0 (6.2)	13.0 (8.2)		11.0 (6.2)	12.0 (7.2)			
Table 234 rom Brid 234H4.	4 feet Open Suppl	over 0 42 kV to 70 70 kV to 84 20 kV to 84 ground gru (115 kV (13 to phase) to 13			12.0 1 (7.1) (7	19.0 1 (14.1) (1		12.0 (7.1)	14.0 1 (9.1) (9		12.0 1 (7.1) (7				
-2) ges	4 feet Open Supply Conductors	over over over over 70 kV to 84 kV to 84 kV to 98 kV to ground ground (138 kV (161 kV to phase) to phase)			12.0 13.0 (7.6) (8.0)	19.0 20.0 (14.6) (15.0)		12.0 13.0 (7.6) (8.0)	14.0 15.0 (9.6) (10.0)		12.0 13.0 (7.6) (8.0)	13.0 14.0 (8.6) (9.0)			
		er over / to 98 kV to / to 140 kV to ind ground xe) to thase/			.0 14.0 0) (9.4)	.0 21.0 .0) (16.4)		.0 14.0 0) (9.4)	0 16.0 0) (11.4)		0 14.0 0) (9.4)	0 15.0 0) (10.4)			
		over o 140 kV to to 210 kV to ground / (345 kV	1		16.0 (11.8)	23.0 (18.8)		16.0 (11.8)	18.0 (13.8)		16.0 (11.8)	17.0 (12.8)			
		over 210 kV to 318 kV to ground (500 kV to phase)	(feet)		20.0 (15.4)	27.0 (22.4)		20.0 (15.4)	22.0 (17.4)		20.0 (15.4)	21.0 (16.4)			

		ion	Sta	ndard	f	ron	C n Bu I Oth	lea iildi	ran ing:	ices s, Br tallat	idg	es					
			2	0.0		1. Clearance over bridges.	a Attached	b. Not attached	2. Clearance beside, under or within bridge structure.	<ul> <li>a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.</li> </ul>	(1) Attached	(2) Not Attached	<ul> <li>D. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	(1) Attached	(2) Not Attached		
Table 10 – F	Clearances _{Clear}		Unguarded rigid live	communication communication conductors; supply	meeting Rules 230C2 or 230C3	lieery	7.0 (3.0)	14.0 (10.0)	lge		7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)		
10 – PacifiCorp Standard Practice (NESC Table 234–2)	ances of Wires, Conductors, and Cables From Bridges Clearances with NO WIND. See NESC Rules 234D1a and 234H4.	Elevation Construc	Supply cables over	750 V meeting Rules 230C2 or 230C3;	op op op	(iaai)	8.0 (3.5)	15.0 (10.5)			8.0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)	-	
Standard	Conducto MIND. See N	Elevation range for table: Construction tolerance:		over 750 V to 22 kV to	ground (34.5 kV to phase)	(leel)	10.0 (5.5)	17.0 (12.5)			10.0 (5.5)	12.0 (7.5)		10.0 (5.5)	11.0 (6.5)		
Practice	ors, and JESC Rules	ble: 3300 e:			ground (46 kV to phase)	licery	10.0 (5.7)	17.0 (12.7)	1		10.0 (5.7)	12.0 (7.7)		10.0 (5.7)	11.0 (6.7)		
(NESC	Cables   234D1a and	6300 4 feet			ground (69 kV to phase) to (foot)	(leel)	11.0 (6.2)	18.0 (13.2)			11.0 (6.2)	13.0 (8.2)		11.0 (6.2)	12.0 (7.2)		
Table 2	From Bri 1234H4.		Open Sul		ground (115 kV ( to phase) to	الحدرا	12.0 (7.2)	19.0 (14.2)			12.0 (7.2)	14.0 (9.2)		12.0 (7.2)	13.0 (8.2)		
34–2)	idges		Open Supply Conductors		ground (138 kV ( to phase) to	licery	12.0 (7.8)	, 19.0 (14.8)			12.0 (7.8)	14.0 (9.8)		12.0 (7.8)	13.0 (8.8)		
			tors		ground g (161 kV (2 to phase) to		13.0 (8.3)	_			13.0 (8.3)	15.0 (10.3)		13.0 (8.3)	14.0 (9.3)		
·					ground (230 kV ( to phase) to	(leer)	14.0 (9.8)	21.0 (16.8)			14.0 (9.8)	16.0 (11.8)		14.0 (9.8)	15.0 (10.8)		
					ground (345 kV to phase) 1	المحدا	17.0 (12.3)	24.0 (19.3)			17.0 (12.3)	19.0 (14.3)		17.0 (12.3)	18.0 (13.3)		
				over 210 kV to 318 kV to	ground (500 kV to phase)	المحدا	21.0 (16.3)	28.0 (23.3)			21.0 (16.3)	23.0 (18.3)		21.0 (16.3)	22.0 (17.3)		

Tran Construc				ard	1 Clearance over bridges	<u>.</u>	a Attached		2. Clearance beside, structure.	a. Readily accessible portions of any bridge, including wing, walls, and b attachments.		(2) Not Attached	<ul> <li>b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	(1) Attached				DR
μU		pnU p	8	cab cab	31	ż			under or within bridge	Readily accessible portions of any bridge, including wing, walls, and bridge attachments.			ible portions of brick, concrete, or abutments.					
Table 11 – Pa Clearances ( ^{Clearar}		Unguarded rigid live parts, 0 to 750 V;	noninsulated communication		(feet)		7.0 (3.0)	14.0 (10.0)			7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)			
1 – PacifiCorp Standard Practice (NESC Table 234–2) nces of Wires, Conductors, and Cables From Bridges ^{Clearances with NO WIND. See NESC Rules 234D1a and 234H4.}	Construc	Supply cables over	750 V meeting Rules 230C2	or 230C3; open supply conductors 0 to 750 V	(teet)		8.0 (3.5)	15.0 (10.5)			8.0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)			
Standard Conducto	Elevation range for table: Construction tolerance:			о л > ө	(reer)		10.0 (5.5)	17.0 (12.5)			10.0 (5.5)	12.0 (7.5)		10.0 (5.5)	11.0 (6.5)			
Practice ors, and VESC Rules	ble: 6300 e:		over 22 kV to		(Teet)		10.0 (5.7)	17.0 (12.7)			10.0 (5.7)	12.0 (7.7)		10.0 (5.7)	11.0 (6.7)			
e (NESC Cables   234D1a and	9300 4 feet		over 28 kV to		(reet)		11.0 (6.2)	18.0 (13.2)			11.0 (6.2)	13.0 (8.2)		11.0 (6.2)	12.0 (7.2)			
Table 2 From Br 1234H4.		Open Su	over 42 kV to	4	(reet)		12.0 (7.4)	19.0 (14.4)			12.0 (7.4)	14.0 (9.4)		12.0 (7.4)	13.0 (8.4)			
234–2) idges		Open Supply Conductors	over 70 kV to	о <del>п</del> > ө	(reet)		12.0 (7.9)	19.0 (14.9)			12.0 (7.9)	14.0 (9.9)		12.0 (7.9)	13.0 (8.9)			
		Ictors		0> @	(reer)		13.0 (8.5)	20.0 (15.5)			13.0 (8.5)	15.0 (10.5)		13.0 (8.5)	14.0 (9.5)			
				ᅌᅭᇰᅘ	(reet)		15.0 (10.1)	22.0 (17.1)			15.0 (10.1)	17.0 (12.1)		15.0 (10.1)	16.0 (11.1)		·	
			over 140 kV to		(teet)		17.0 (12.9)	24.0 (19.9)			17.0 (12.9)	19.0 (14.9)		17.0 (12.9)	18.0 (13.9)			
			over 210 kV to	318 kV to ground (500 kV to phase)	(reet)		22.0 (17.1)	29.0 (24.1)			22.0 (17.1)	24.0 (19.1)		22.0 (17.1)	23.0 (18.1)			

Trans					ď	1	Fre		С	lea	l∝ rar	nces s, Br				♦ F	2	<b>CIF</b> Pow	
			ō		00			1. Clearance over bridges.	a Attached	b. Not attached	Clearance beside, under or within bridge structure.	<ul> <li>And the second se</li></ul>	(1) Attached	(2) Not Attached	<li>b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li>	(1) Attached	(2) Not Attached		
Table 12 – P Clearances ^{Cleara}			oligualded rigiditive parts. 0 to 750 V:	noninsulated communication	conductors; supply cables of 0 to 750 V	meeting Rules 230C2 or 230C3	(feet)		7.0 (3.0)	14.0 (10.0)			7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)		
12 – PacifiCorp Standard Practice (NESC Table 234–2) ances of Wires, Conductors, and Cables From Bridges ^{Clearances with NO WIND. See NESC Rules 234D1a and 234H4.}	Elevatior	Construc	cables over	750 V meeting Rules 23002	or 230C3; open supply	conductors 0 to 750 V	(feet)		8.0 (3.5)	15.0 (10.5)			8.0 (3.5)	10.0 (5.5)		8.0 (3.5)	9.0 (4.5)		
Standard Conductc VIND. See N	Elevation range for table:	Construction tolerance:		over 750 V to		_	(feet)		10.0 (5.5)	17.0 (12.5)			10.0 (5.5)	12.0 (7.5)		10.0 (5.5)	11.0 (6.5)		
Practice brs, and lesc Rules	ble: 9300	:			27 kV to ground		(feet)		10.0 (5.7)	17.0 (12.7)			10.0 (5.7)	12.0 (7.7)		10.0 (5.7)	11.0 (6.7)		
actice (NESC Table 234–2 and Cables From Bridges : Rules 234D1a and 234H4.	12300	4 feet			42 kV to 7 ground	·	(feet)		11.0 (6.2)	18.0 (13.2)			11.0 (6.2)	13.0 (8.2)		11.0 (6.2)	12.0 (7.2)		
Table 2 From Bri 1234H4.			Open Sul	over 42 kV to 7			(feet)		12.0 (7.5)	19.0 (14.5)			12.0 (7.5)	14.0 (9.5)		12.0 (7.5)	13.0 (8.5)		
34–2) dges			Open Supply Conductors	over 70 kV to 8			(feet)		13.0 (8.1)		,		13.0 (8.1)			13.0 (8.1)	14.0 (9.1)		
			tors	over 84 kV to 95		(161 kV (2 to phase) to			13.0 (8.7) (	_			13.0 (8.7) (	15.0 (10.7) (		13.0 (8.7) (			
				over 98 kV to 14	_	<b>&gt;</b> ô			15.0 (10.5)				15.0 (10.5)			15.0 (10.5)			
						(345 kV to phase) t			18.0 (13.5)	25.0 (20.5)			18.0 (13.5)	20.0 (15.5)		18.0 (13.5)	19.0 (14.5)		
				over 210 kV to	318 kV to ground	(500 kV to phase)	(feet)		23.0 (18.0)	30.0 (25.0)			23.0 (18.0)	25.0 (20.0)		23.0 (18.0)	24.0 (19.0)		

Transr Constructio		1	<i>-</i> -	a Attached		2. Clearance bee structure. a. Readily acce bridge, incluc attachments.			è I	(1) Attached	PAC	
			Clearance over bridges.	q	ched	Clearance beside, under or within bridge structure. a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.	ached	(2) Not Attached	<ul> <li>D. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	ached	(2) Not Attached	
Table 13 – PacifiCorp Standard Practice (NESC Table 234–2         Clearances of Wires, Conductors, and Cables From Bridges         Clearances with 6 lbs/sf WIND. See NESC Rules 234D1a and 234H4.         Elevation range for table: Sea Level to 3300         Construction telerance:	Unguarded rigid live parts. 0 to 750 V:	communication communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 or 230C3	/icci/	7.0 (3.0)	14.0 (10.0)	ridge Je	7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)	
3 – PacifiCorp Standard Practice (NESC Table 234–2) Inces of Wires, Conductors, and Cables From Bridges Clearances with 6 lbs/sf WIND. See NESC Rules 234D1a and 234H4. Elevation range for table: Sea Level to 3300 Construction tolerance: A feet 4 feet	Supply cables over	750 V meeting Rules 230C2 or 230C3; open supply conductors 0 to 750 V	10011	8.0 (3.5)	15.0 (10.5)		8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (3.5)	
Corp Standard Pr Vires, Conductors. h 6 lbs/sf WIND. See NE Elevation range for table: Construction tolerance:		over 750 V to 22 kV to ground (34.5 kV (600) (600)	6224	10.0 (5.5)	17.0 (12.5)		9.0 (4.5)	9.0 (4.5)		9.0 (4.5)	9.0 (4.5)	
ard Practice (NESC Table Ictors, and Cables From B see NESC Rules 234D1a and 234H4. r table: Sea Level to 3300 ance:		over 22 kV to 27 kV to ground (46 kV to phase) (feat)	622.1	10.0 (5.7)	17.0 (12.7)		9.0 (4.7)	9.0 (4.7)		9.0 (4.7)	9.0 (4.7)	
<ul> <li>(NESC Ta Cables Fro ss 234D1a and 3 wel to 3300 4 feet</li> </ul>		over 28 kV to 4 42 kV to 7 ground 9 (69 kV to ( (69 kV to ( faat) to (	6001	11.0 (6.2)	18.0 (13.2)		10.0 (5.2)	10.0 (5.2)		10.0 (5.2)	10.0 (5.2)	
Table 25 From Bric td 234H4.	Open Sup	over 2 kV to 70 kV to 9 ground (115 kV (115 kV (1 (115 kV (1 (1 (feat)) 0 to		12.0 (7.1)	19.0 (14.1) (			11.0 (6.1)		11.0 (6.1)	11.0 (6.1)	
34-2) Iges	Open Supply Conductors	over 70 kV to 84 84 kV to 96 ground 9 (138 kV (1 (138 kV (1 (feet) to		12.0 (7.6)	19.0 (14.6) (		11.0 (6.6)	11.0 (6.6)		11.0 (6.6)	11.0 (6.6)	
	ors	over over 98 kV to 98 kV to 98 kV to 146 147 (25 10 phase) 10 phas		13.0 (8.0) (	20.0 (15.0) ()			12.0 (7.0) (		12.0 (7.0) 1	(7.0)	
		over ov 98 kV to 1401 140 kV to 210 ground gro to phase) to ph (fact)		14.0 16 (9.4) (11	21.0 23 (16.4) (18		13.0 15 (8.4) (10	13.0 15 (8.4) (10		13.0 15 (8.4) (10	13.0 15 (8.4) (10	
		over 0 over 0 140 kV to 210 210 kV to 318 ground gr (345 kV (50 (564) to p		16.0 2 (11.8) (1	23.0 2 (18.8) (2		_	15.0 1 (10.8) (1		15.0 1 (10.8) (1	15.0 1 (10.8) (1	
		over over 210 kV to 318 kV to ground (500 kV to phase) (504 kV		20.0 (15.4)	27.0 (22.4)		19.0 (14.4)	19.0 (14.4)		19.0 (14.4)	19.0 (14.4)	

Trans onstruct				ard		fr	om	C Bu	lea iild	ran ing	nces s, Br talla	idg	es		•		 	
					~		1. Clearance over bridges.	a Attached	b. Not attached	2. Clearance beside, under or within bridge structure.	<ul> <li>Readily accessible portions of any bridge, including wing, walls, and bridge attachments.</li> </ul>	(1) Attached	(2) Not Attached	<ul> <li>b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	(1) Attached	(2) Not Attached		
Table 14 – PacifiCorp Standard Practice (NESC Table 234–2) Clearances of Wires, Conductors, and Cables From Bridges ^{Clearances with 6 Ibs/st WIND.} See NESC Rules 234D1a and 234H4.		Unguarded rigid live	noninsulated	conductors; supply	caples of 0 to 7 ou v meeting Rules	230C2 or 230C3 (feet)		7.0 (3.0)	14.0 (10.0)	idge	¢)	7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)		
14 – PacifiCorp Standard Practice (NESC Table ances of Wires, Conductors, and Cables From B Clearances with 6 lbs/sf WIND. See NESC Rules 234D1a and 234H4.	Elevation Construct	Supply cables over	750 V meeting	Rules 230C2 or 230C3;	open supply conductors 0	to 750 V (feet)		8.0 (3.5)	15.0 (10.5)			8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (3.5)		
Standard Conducto	Elevation range for table: Construction tolerance:				ground (34.5 kV	to phase) (feet)		10.0 (5.5)	17.0 (12.5)			9.0 (4.5)	9.0 (4.5)		9.0 (4.5)	9.0 (4.5)		
Practice ors, and NESC Rule	ble: 3300 e:				ground (46 kV to	phase) (feet)		10.0 (5.7)	17.0 (12.7)			9.0 (4.7)	9.0 (4.7)		9.0 (4.7)	9.0 (4.7)		
e (NESC Cables I ss 234D1a a	6300 4 feet				ground (69 kV to	phase) ti (feet)		11.0 (6.2)	18.0 (13.2)			10.0 (5.2)	10.0 (5.2)		10.0 (5.2)	10.0 (5.2)		
Table 2 [∓] rom Bri ^{nd 234H4.}		Open Su				to phase) to (feet)		12.0 (7.2)	19.0 (14.2)			11.0 (6.2)	11.0 (6.2)		11.0 (6.2)	11.0 (6.2)		
34–2) dges		Open Supply Conductors				_		12.0 (7.8)	19.0 (14.8)			11.0 (6.8)	11.0 (6.8)		11.0 (6.8)	11.0 (6.8)		
		ors				to phase) to (feet) (		13.0 (8.3)	20.0 (15.3) (			12.0 (7.3)			12.0 (7.3)	12.0 (7.3)		
				~	ground (230 kV	to phase) to (feet)		14.0 (9.8)	21.0 (16.8)			13.0 (8.8)	13.0 (8.8)		13.0 (8.8)	13.0 (8.8)		
						to phase) 1 (feet)		17.0 (12.3)	24.0 (19.3)			16.0 (11.3)	16.0 (11.3)		16.0 (11.3)	16.0 (11.3)		
			over	210 kV to 318 kV to	ground (500 kV	to phase) (feet)		21.0 (16.3)	28.0 (23.3)			20.0 (15.3)	20.0 (15.3)		20.0 (15.3)	20.0 (15.3)		

		n S	tandard		fro	om l nd C		earance Idings, E er Install		lge ons	S		PACIFIC	POWER	 Powe
					1. Clearance over bridges.	a Attached	b. Not attached	<ol> <li>Clearance beside, under or within bridge structure.</li> <li>a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.</li> </ol>	(1) Attached	(2) Not Attached	<ul> <li>b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	(1) Attached	(2) Not Attached		
Table 15 – PacifiCorp Standard Practice (NESC Table 234–2 Clearances of Wires, Conductors, and Cables From Bridges ^{Clearances with 6 lbs/sf wIND.} See NESC Rules 234D1a and 234H4.		Unguarded rigid live parts. 0 to 750 V;	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules	230C2 or 230C3 (feet)		7.0 (3.0)	14.0 (10.0)	eDj	7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)		
5 – PacifiCorp Standard Practice (NESC Table 234–2) inces of Wires, Conductors, and Cables From Bridges clearances with 6 lbs/sf WIND. See NESC Rules 234D1a and 234H4.	Elevatior Construc	Supply cables over	750 V meeting Rules 230C2 or 230C3; open supply	to 750 V (feet)		8.0 (3.5)	15.0 (10.5)		8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (3.5)		
Standard Conductc f WIND. See	Elevation range for table: Construction tolerance:		over 750 V to 22 kV to ground	to phase) (feet)		10.0 (5.5)	17.0 (12.5)		9.0 (4.5)	9.0 (4.5)		9.0 (4.5)	9.0 (4.5)		
ard Practice (NESC Table lctors, and Cables From B see NESC Rules 234D1a and 234H4.	ble: 6300 e:		over 22 kV to 27 kV to ground 46 kV to	phase) (feet)		10.0 (5.7)	17.0 (12.7)		9.0 (4.7)	9.0 (4.7)		9.0 (4.7)	9.0 (4.7)		
e (NESC Cables I s 234D1a a	9300 4 feet		over 28 kV to 42 kV to ground 69 kV to			11.0 (6.2)	18.0 (13.2)		10.0 (5.2)	10.0 (5.2)		10.0 (5.2)	10.0 (5.2)		
Table 2 ^F rom Bri ^{nd 234H4.}		Open Sul	over 42 kV to 70 kV to ground (115 kV			12.0 (7.4)	19.0 (14.4)		11.0 (6.4)	11.0 (6.4)		11.0 (6.4)	11.0 (6.4)		
.34–2) Idges		Open Supply Conductors	over 70 kV to 84 kV to ground (138 kV			12.0 (7.9)	19.0 (14.9)		11.0 (6.9)	11.0 (6.9)		11.0 (6.9)	11.0 (6.9)		
		ctors	over 84 kV to 98 kV to 161 kV			13.0 (8.5)	20.0 (15.5)		12.0 (7.5)	12.0 (7.5)		12.0 (7.5)	12.0 (7.5)		
			over 98 kV to 1 140 kV to 2 ground (230 kV 1	-		15.0 (10.1)	22.0 (17.1)		14.0 (9.1)	14.0 (9.1)		14.0 (9.1)	14.0 (9.1)		
			over 140 kV to 210 kV to ground (345 kV			17.0 (12.9)	24.0 (19.9)		16.0 (11.9)	16.0 (11.9)		16.0 (11.9)	16.0 (11.9)		
			over 210 kV to 318 kV to ground (500 kV	to phase) (feet)		22.0 (17.1)	29.0 (24.1)		21.0 (16.1)	21.0 (16.1)		21.0 (16.1)	21.0 (16.1)		

Trans Construct	ion	Sta	ndard	fr	om nd	C Bu Oth	lea ildi ner	ran ings Inst	ces s, Br tallat	idg tion	es				POWE	I <b>CC</b> R UTAH TC 1	I PO
					1. Clearance over bridges.	a Attached	b. Not attached	2. Clearance beside, under or within bridge structure.	<ul> <li>a. Readily accessible portions of any bridge, including wing, walls, and bridge attachments.</li> </ul>	(1) Attached	(2) Not Attached	<ul> <li>D. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments.</li> </ul>	(1) Attached	(2) Not Attached			
Table 16 – P Clearances ^{clearan}		Unguarded rigidlive	roninsulated communication conductors; supply cables of the 750 V	meeting Rules 230C2 or 230C3 (feet)		7.0 (3.0)	14.0 (10.0)	dge	¢,	7.0 (3.0)	9.0 (5.0)		7.0 (3.0)	8.0 (4.0)			
<ul> <li>16 – PacifiCorp Standard Practice (NESC Table 234–2) arances of Wires, Conductors, and Cables From Bridges Clearances with 6 lbs/sf WIND. See NESC Rules 234D1a and 234H4.</li> </ul>	Elevatior Construc	Suppiy cables over	750 V meeting Rules 230C2 or 230C3;	open supply conductors 0 to 750 V (feet)		8.0 (3.5)	15.0 (10.5)			8.0 (3.5)	8.0 (3.5)		8.0 (3.5)	9.0 (3.5)			
Standard Conductc rwind. see	Elevation range for table: Construction tolerance:			ground (34.5 kV ( to phase) (feet)		10.0 (5.5)	17.0 (12.5)			9.0 (4.5)	9.0 (4.5)		9.0 (4.5)	9.0 (4.5)			
ard Practice (NESC Table Ictors, and Cables From B see NESC Rules 234D1a and 234H4.	ble: 9300 e:			ground (46 kV to ( phase) (feet)		10.0 (5.7)	17.0 (12.7)			9.0 (4.7)	9.0 (4.7)		9.0 (4.7)	9.0 (4.7)			
∋ (NESC Cables I ss 234D1a a	12300 4 feet			grouna (69 kV to phase) t _i (feet)		11.0 (6.2)	18.0 (13.2)			10.0 (5.2)	10.0 (5.2)		10.0 (5.2)	10.0 (5.2)			
Table 2 From Br nd 234H4.		Open Su		ground (115 kV to phase) t (feet)		12.0 (7.5)	19.0 (14.5)			11.0 (6.5)	11.0 (6.5)		11.0 (6.5)	11.0 (6.5)			
234–2) idges		Open Supply Conductors		ground (138 kV ( to phase) to (feet)		13.0 (8.1)	20.0 (15.1)			12.0 (7.1)	12.0 (7.1)		12.0 (7.1)	12.0 (7.1)			
		ctors		ground (161 kV to phase) to (feet)		13.0 (8.7)	20.0 (15.7)			12.0 (7.7)	12.0 (7.7)		12.0 (7.7)	12.0 (7.7)			
				ground (230 kV to phase) (feet)		15.0 (10.5)	22.0 (17.5)			14.0 (9.5)	14.0 (9.5)		14.0 (9.5)	14.0 (9.5)			
			over 140 kV to 210 kV to	ground (345 kV to phase) (feet)		18.0 (13.5)	25.0 (20.5)			17.0 (12.5)	17.0 (12.5)		17.0 (12.5)	17.0 (12.5)			
			over 210 kV to 318 kV to	ground (500 kV to phase) (feet)		23.0 (18.0)	30.0 (25.0)			22.0 (17.0)	22.0 (17.0)		22.0 (17.0)	22.0 (17.0)			

-

Trai Constru tds Team Lea		n S	tandard	from and	Bui Oth	earances dings, Bridges er Installations ESC 234)	TC 151
Clearanc				A. Clearance in any direction from the water level, edge of pool, base of diving platform, or	B Clearance in any direction to the platform or tower.	C Vertical clearance over adjacent land.	
Table 17 – PacifiCorp Standard Practice (NESC Table 234–3) Clearances of Wires, Conductors, and Cables Passing Over or Near Swimming Pools Clearances with NO WIND. See NESC Rules 234E1, 234E2. and 234H4.		Unguarded rigid live parts, 0 to 750 V;	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 or 230C3	(reer) e water 27.0 tform, or (22.5)	e diving 19.0 (14.5)		
17 – PacifiCorp Standard Practice (NESC Table 234–3) es, Conductors, and Cables Passing Over or Near Swir Clearances with NO WIND. See NESC Rules 234E1, 234E2, and 234H4.	Elevatio	ve Supply V; cables over		(reet) 27.0 (23.0)	19.0 (15.0)		
Standarc and Cab D. See NE	Elevation range for table: Construction tolerance:		6 (3) (0 A	(1941) 29.0 (25.0)	21.0 (17.0)		
d Practic les Past sc Rules 23	 		over 22 kV to 27 kV to ground (46 kV to phase)	(1001) 30.0 (25.2)	22.0 (17.2)	Clearance	
ce (NES( sing Ove 34E1, 234E2	Sea Level to		over 28 kV to ground (69 kV to phase)	(1001) 30.0 (25.7)	22.0 (17.7)	Clearance shall be as required by Rule 232	
C Table er or Nei 2. and 234H	3300 4 feet	Open 5	over 42 kV to 70 kV to ground (115 kV to phase)	(leet) 31.0 (26.6)	23.0 (18.6)	required by	
234–3) ar Swim 4.		Open Supply Conductors	over 70 kV to 84 kV to ground (138 kV to phase)	(reer) 32.0 (27.1)	24.0 (19.1)	Rule 232.	
ming Pc		luctors	over 84 kV to 98 kV to ground (161 kV to phase)	(reer) 32.0 (27.5)	24.0 (19.5)		
sloc			over 98 kV to 140 kV to ground (230 kV to phase)	(1961) 33.0 (28.9)	25.0 (20.9)		
			over 140 kV to 210 kV to ground (345 kV to phase)	(leel) 36.0 (31.3)	28.0 (23.3)		
			cver 210 kV to 318 kV to ground (500 kV to phase)	(1951) 39.0 (34.9)	31.0 (26.9)		

Trans Construct Stds Team Leader	ion	Sta	ndard	fro ai	om Bu nd Oth	Clearances uildings, Bridges her Installations NESC 234)	1	TC 151
Clearanc					<ul> <li>A. Clearance in any direction from the water level, edge of pool, base of diving platform, or anchor raft.</li> </ul>	<ul> <li>B Clearance in any direction to the platform or tower.</li> <li>C Vertical clearance over adjacent land.</li> </ul>		
Table 18 – F Clearances of Wires, Cc ^{Clearano}		Unguarded rigid live parts. 0 to 750 V:	roninsulated roninsulated communication conductors; supply cables of 0 to 750 V cables df 0 to 750 V	230C2 or 230C3 (feet)	water 27.0 orm, or (22.5)	diving 19.0 (14.5)		
18 – PacifiCorp Standard Practice (NESC Table 234–3) es, Conductors, and Cables Passing Over or Near Swimming Pools ^{Clearances with NO WIND.} See NESC Rules 234E1, 234E2. and 234H4.	Elevation Construct	Supply cables over	750 V meeting Rules 230C2 or 230C3; open supply conductors 0		27.0 (23.0)	19.0 (15.0)		
Standard and Cabl See NES	Elevation range for table: Construction tolerance:		over 750 V to 22 kV to ground (34.5 kV	to phase) (feet)	29.0 (25.0)	21.0 (17.0)		
Practice es Passi c _{Rules} 234	ole: 3300 e:		over over 22 kV to 27 kV to ground (46 kV to		30.0 (25.2)	22.0 (17.2) Clearance si		
) (NESC ing Over E1, 234E2.	6300 4 feet		over 28 kV to 4 42 kV to 7 ground 5 (69 kV to 7		30.0 (25.7)	22.0 (17.7) hall be as re:		
Table 2% or Near and 234H4.		Open Sup	over 242 kV to 70 kV to 30 vu to 30 ound 2115 kV 10 0		31.0 (26.7) (	22.0 22.0 23.0 24.0 (17.2) (17.2) (17.7) (18.7) (19.3) Clearance shall be as required by Rule 232		
34–3) Swimm		Open Supply Conductors	over 70 kV to 8 84 kV to 98 ground 9 (138 kV (1		32.0 (27.3) (			
ing Pools		ors	over c 84 kV to 98 98 kV to 140 ground gr (161 kV (2)		32.0 3 (27.8) (2	24.0 (19.8) (2)		
(0			over o 98 kV to 140 140 kV to 210 ground gr (230 kV (34	_	34.0 3 (29.3) (3	26.0 (21.3) (2		
			over 140 kV to 210 kV to 313 ground 315 kV (345 kV 5	_	36.0 (31.8) (	(23.8) (23.8) (1		
			over 210 kV to 318 kV to ground (500 kV	to phase) (feet)	40.0 (35.8)	32.0 (27.8)		

Transm Constructio	n S	tandard	from I and C	Clearances Buildings, Bridges Other Installations (NESC 234)	IFICORI
Clearar			A. Clearance in any direction from the water level, edge of pool, base of diving platform, or anchor raft.	B Clearance in any direction to the platform or tower. C Vertical clearance over adjacent land.	
Table 19 – PacifiCorp Standard Practice (NESC Table 234–3)         Clearances of Wires, Conductors, and Cables Passing Over or Near Swimming Pools         Clearances with NO WIND. See NESC Rules 234E1, 234E2. and 234H4.         Elevation range for table:       5300         Construction tolerance:       4 feet	Unguarded rigidlive parts, 0 to 750 V;	noninsulated communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 of 230C3 (feet)	_	the diving 19.0 (14.5) and	
19 – PacifiCorp Standard Practice (NESC Table 234–3) es, Conductors, and Cables Passing Over or Near Swin Clearances with NO WIND. See NESC Rules 234E1, 234E2. and 234H4. Elevation range for table: 6300 9300 Construction tolerance: 4 feet	ca	750 V meeting W extracting V or 230C3; V open supply ss conductors 0 conductors 0 conductors 0	27.0 (23.0)	19.0 (15.0)	
Corp Standard Practic ctors, and Cables Pas NO WIND. See NESC Rules 2 Elevation range for table: 6300 construction tolerance:		over 750 V to 22 kV to ground (34.5 kV to phase) (feet)	29.0 (25.0)	21.0 (17.0)	
d Practic les Pass sc Rules 23 ble: 6300 e:		over 22 kV to 27 kV to ground (46 kV to phase) (feet)	30.0 (25.2)	22.0 (17.2) Clearance	
:e (NESC sing Ove 34E1, 234E2 9300 4 feet		over 28 kV to 42 kV to ground (69 kV to phase) (feet)	30.0 (25.7)	22.0 (17.7) shall be as r	
C Table er or Nea 2. and 234H	Open S	over 42 kV to 70 kV to ground (115 kV to phase) (feet)	31.0 (26.9)	22.0 22.0 23.0 24.0 (17.2) (17.7) (18.9) (19.4) Clearance shall be as required by Rule 232	
234–3) ar Swim 4.	Open Supply Conductors	over 70 kV to 84 kV to ground (138 kV to phase) (feet)	32.0 (27.4)	24.0 (19.4) Rule 232.	
ming Po	uctors	over 84 kV to 98 kV to ground (161 kV to phase) (feet)	32.0 (28.0)	24.0 (20.0)	
slo		over 98 kV to 140 kV to ground (230 kV to phase) (feet)	34.0 (29.6)	26.0 (21.6)	
		over 140 kV to 210 kV to ground (345 kV to phase) (feet)	37.0 (32.4)	29.0 (24.4)	
		over 210 kV to 318 kV to ground (500 kV to phase) (feet)	41.0 (36.6)	33.0 (28.6)	

Trans Construct	ion \$	Sta	ndard	fro	Com Bund Otl	Clearances uildings, Bridges her Installations	TC 151
Table 20 Clearances of Wires		Unguarded rigidlive parts. 0to 750 V:	porta or vou v noninsulated communication conductors; supply cables of 01 750 V meeting Rules	230C2 or 230C3 (feet)	<ul> <li>A. Clearance in any direction from the water 27.0 level, edge of pool, base of diving platform, or (22.5) anchor raft.</li> </ul>	<ul> <li>B Clearance in any direction to the diving 19.0 platform or tower. (14.5)</li> <li>C Vertical clearance over adjacent land.</li> </ul>	
20 – PacifiCorp Standard Practice (NESC Table 234–3) es, Conductors, and Cables Passing Over or Near Swimming Pools Clearances with NO WIND. See NESC Rules 234E1, 234E2. and 234H4.		Irigid live Supply to 750 V: cables over		30C3 to 750 V st) (feet)	0 27.0 5) (23.0)	0 19.0 5) (15.0)	
Standard and Cable ND. See NESC	Elevation range for table: Construction tolerance:		over 750 V to 22 kV to ground (34.5 kV	to phase) (feet)	29.0 (25.0)	21.0	
Practice es Passin c _{Rules} 234E	ile: 9300 :		over over 22 kV to 28 37 kV to 42 ground 9 (46 kV to 66		30.0 (25.2) (	22.0 (17.2) ( Clearance sh	
(NESC T 19 Over o 11, 234E2. and	12300 4 feet		over ov 28 kV to 42 h 42 kV to 70 h ground gro (69 kV to (111		30.0 3. (25.7) (2 ⁻	22.0 2. (17.7) (1: nall be as requi	
able 234 r Near Sw ^{3234H4.}		Open Supply Conductors	over over 42 kV to 70 kV to 70 kV to 84 kV to ground ground (115 kV (138 kV	-	32.0 32.0 (27.0) (27.6)	22.0 22.0 24.0 24.0 (17.2) (17.2) (17.1) (19.0) (19.6) (19.6) Clearance shall be as required by Rule 232	
3) imming P		onductors	over 0 84 kV to 10 98 kV to d ground V (161 kV	-	33.0 (28.2)	25.0	
sloo			over 98 kV to 140 kV to ground (230 kV	to phase) (feet)	34.0 (30.0)	26.0 (22.0)	
			over 140 kV to 210 kV to ground (345 kV	to phase) (feet)	37.0 (33.0)	29.0 (25.0)	
			over over 210 kV to 318 kV to ground (500 kV	to phase) (feet)	42.0 (37.5)	34.0 (29.5)	

1. <u>Scope</u>

This standard describes the vegetation clearing along rights-of-way (ROW) of the NU operating companies in Connecticut and Massachusetts where overhead transmission lines are to be constructed. The practices described here apply to the construction requirements for all 115kV and 345kV¹ electric transmission lines, and are consistent with the North American Electric Reliability Council (NERC) Vegetation Management Standard FAC-003-1 dated 2/16/2006, The New England Independent System Operator's (ISO-NE) vegetation clearing standard OP-3 dated 2/1/2005, and the National Electrical Safety Code (NESC) Rule 218 as adopted by the Connecticut Department of Public Utility Control (Regulation Sec. 16-11-134).

This standard applies to new construction clearing requirements and practices and not to on-going future vegetation maintenance of the ROW's. The initial clearance requirements outlined in this standard are intended to provide adequate clearances for a period of four (4) years at which time scheduled maintenance will be performed to reestablish or preserve the initial clearances. The maintenance of the vegetation following construction is addressed under the Northeast Utilities Specification for Rights-of-Way Vegetation Management. Low-maturing trees, which are allowed to remain after completion of vegetation clearing, are still subject to future trimming and removals, depending upon their growth and health, as well as the future needs of NU to operate, maintain, and add or replace electric facilities on the ROW.

NU operating companies typically obtain permanent easement rights for the placement of overhead transmission lines, including the right to clear vegetation within the fully defined limits of a ROW. In most locations the right to remove any tree or portion of tree outside the easemented limits of the ROW ("danger tree") that by falling could endanger the transmission line facilities is also obtained. These rights are necessary to provide for the safe and reliable operation and maintenance of any overhead transmission line that is built on a ROW.

Notwithstanding these rights, the standard practice of the NU operation companies is to minimize tree and other vegetation removal that is required for new transmission line construction by:

- A. Designing new lines to keep the positions of new conductors as much as possible within any existing cleared ROW corridor, thus minimizing additional clearing
- B. Remove non-compatible vegetation (trees and tall growing shrub species) within the conductor clearance zone (area directly under the conductors extending 15 feet horizontally outward from the outermost line conductors)

¹ Except for possible modifications to existing 69kV lines, it is unlikely that NU will construct any new 69kV lines. Therefore, this standard covers 115 and 345kV lines only, and 115kV line clearances would apply to any new 69kV lines.

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines									
Northeast Utilities	Design and Application	OTRM	Rev. 1						
Approved by: DEH, PJA		030.001	05/16/2008						

- C. Allowing low-maturing tree species such as dogwoods to remain within the side zones (area outside of the conductor clearance zone extending to the edge of the ROW clearing limits) where these low-maturing species exist
- D. Re-establishing pre-existing access roads for construction vehicles to minimize the clearing of low growth within the existing corridor for access
- E. Locating new line structures close to old structures and overlapping the work areas of old structures to reduce to the amount of clearing for the new structure work areas
- F. Where feasible, using existing conductors to pull in new conductors, thus reducing damage to low growth vegetation along the cleared corridor
- G. Engaging an arborist to determine individual "danger trees" for removal considering
  - 1) Species
  - 2) Soil conditions
    - a) including wetland vs. upland
    - b) susceptibility to flooding
    - c) depth to rock (and adaptability of the species to those conditions)
  - 3) Health of the tree
  - 4) Inclination of trunk
  - 5) shape of crown

Refer to figures V-1 through V-6 for diagrams of the conductor clearance zone and side zones associated with various line structure types.

2. Clearance between Conductors and Woody Vegetation

Transmission lines within the Northeast Utilities System present a variety of woody vegetation control situations. Regulatory authorities may require "buffers" or "screening" at visually sensitive highway and local road crossings or other locations, and such locations require special attention to achieve and maintain the necessary clearances. At all other locations, standard ROW vegetation clearing practices for new line construction are as follows:

- A. Within the ROW limits, as depicted on Figures A, B, and C, cut all tall-maturing tree species of any height while retaining existing compatible woody shrub species (see Appendix 1).
- B. Clear-cut construction areas at structure locations and access roads as depicted on Figure C.
- C. At road crossings, within side zones and other sensitive areas, as specified by ROW development and management plans, retain existing low-maturing tree species such as Flowering Dogwood (see Appendix 2) to the extent that these trees will not conflict with operation of the transmission line prior to the next scheduled vegetation maintenance.
- D. At ravines, river crossings, and similar locations: retain tree species on the ROW where the conductors will be significantly higher than normal and where the

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines									
Northeast Utilities	Design and Application	OTRM	Rev. 1						
Approved by: DEH, PJA		030.002	05/16/2008						

vegetation at full mature height would not violate Figure A clearances and will not cause construction or access problems.

The minimum clearances established in Figures A, B, and C between conductors and woody vegetation includes allowances for re-growth over the periodic maintenance cycle of four (4) years for vegetation within the cleared limits of the ROW, and ten (10) years for vegetation beyond the cleared limits of the ROW. The defined clearances cover all vegetation including natural growth, screens or buffers, orchards, ornamental plantings, nursery stock, and danger trees.

The minimum clearances applicable to woody vegetation are shown in the included figures.

- 1) Figure A; Minimum Conductor Clearances
- 2) Figure B; Danger Tree Clearance
- 3) Figure C; Conductor Clearance Zone, Side Zones and Structure Clearing Areas for New Construction

Where Orchards, ornamental plantings, or nursery stock is permitted by easement or license to exist, the maximum tree heights allowed within the conductor and side zones are shown in Figure A. Agreements with individual property owners may define site-specific maximum allowable tree heights and should be checked prior to scheduled maintenance activities.

Where rights exist beyond the edge of the ROW, any tree designated as a "danger tree," i.e. a tree that can fall within the dimensions noted in Figure B that is determined to be an imminent hazard will be removed at the discretion of the arborist. In sensitive areas adjacent to or within the ROW or where rights or other permission to remove danger trees cannot be obtained, arborists will direct the removal of those portions of the tree canopy projecting into the ROW, and those portions of a tree which, if they become detached, may fall within the minimum clearance distances as shown on Figure B. On side-hill ROW's, danger trees can be found significantly further from the conductors on the uphill side of the ROW.

3. Clearing for New Construction

This clearing consists of clear cutting four distinct areas of the ROW as defined by Figure C. These clearing areas are:

- A. Basic clearing of the ROW width, which consists of a conductor clearance zone and side zones. Low-maturing woody shrub species are typically not removed from the side zones, and low maturing tree species such as Flowering Dogwood will be preserved where they do not conflict with construction needs.
- B. Clearing at each structure location as required for construction equipment
- C. Clearing the full length of all access road and spurs to structure sites for a cleared width of fifteen (15) feet
- D. Removal of danger trees that pose an imminent risk to the new line along the new or existing clearing edge

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines										
Northeast Utilities	Design and Application	OTRM	Rev. 1							
Approved by: DEH, PJA		030.003	05/16/2008							

For new line construction, in addition to the cleared area around each structure, a laydown and assembly area may be required that is considerably larger. The size of this area depends upon topography, the type of structure to be assembled, and the type of foundation required at the site. Also at selected locations spaced several miles apart, setup sites for conductor-pulling equipment are required within the conductor zone and may require some removal of shrub growth.

The process to accomplish the clearing for new construction involves:

- A. Field survey and stake the edge of the clearing limits and conductor zone
- B. The NU "Owner's Representative" further reviews the survey staking before clearing begins
- C. Where specified in an existing agreement with individual landowners, the Owner's Representative or his designee marks acceptable low growing trees they will attempt to retain within a side zone
- D. The Owner's Representative contacts landowners before the clearing begins if they wish to discuss the clearing as marked out, and to ask if the property owner wishes to take ownership of the cut wood
- E. Where the landowner will take the cut wood, an agreement will specify the contractor's placement of cut wood outside the ROW, or the landowner's schedule for removal if at a location within the ROW
- F. Carry out the clearing operation
- G. Cut using chain saws within wetland areas, and minimize the use of mechanized equipment for removal (note: mechanized equipment may be used to remove the logs and tree tops from a wetland by positioning equipment outside wetlands to drag out logs and tops using cables)
- H. During or shortly after the initial clearing operation, an arborist will evaluate trees beyond the edge of the clearing limits to identify and mark danger trees that pose an imminent risk to the new line
- I. The landowner will then be given an opportunity to discuss the danger trees marked for removal with the Owner's Representative who will then give instructions to the contractor

Contracts for clearing will be structured to effectively implement the above process and this standard. Despite efforts to minimize tree and other vegetation removal, there may still be locations where the transmission facility requirements and/or the existing vegetation conditions are such that no substantial vegetation may remain within the ROW limits.

4. Clearing for Structure Maintenance or the Replacement of an Existing Line

Clearing for structure maintenance or replacement of an existing line is similar to that for new line construction with the following exceptions:

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines										
Northeast Utilities	Design and Application	OTRM	Rev. 1							
Approved by: DEH, PJA		030.004	05/16/2008							

- A. Clearing needs depend on the relative location of the rebuilt line with respect to the existing maintained area of the ROW and the proposed construction method for installation of conductors and shield wires. These factors may reduce the needed clearing.
- B. Structure site and access road clearing will still be required but may also be significantly reduced.
- C. When structures from the old line are removed, the cleared area at these sites and the access spurs to them will be allowed to naturally re-vegetate with native plant species, which may include native grasses, forbs or shrubs.
- 5. Decision Responsibility for Retention of Non-standard Woody Vegetation

The transmission line Construction Manager and Contractor Arborist will be responsible for obtaining approval from the Transmission Supervisor, Vegetation Management before allowing vegetation to remain which conflicts with the clearances shown in Figures A, B, and C.

6. Approving Managers and SME

Dorian Hill Manager Transmission Line and Civil Engineering Northeast Utilities

Peter Avery Manager Transmission Line Construction and MTCE Northeast Utilities

#### <u>SME</u>

Anthony Johnson III Supervisor Transmission Vegetation Management Northeast Utilities

7. Deviations

This standard sets forth the current NU 'best practices' for most applications of this subject matter. Therefore, deviation from this standard is generally not permitted. However, in unique instances a user may submit a written deviation request including justification to the listed Subject Matter Expert (SME). The SME must approve or deny the request in writing prior to the user commencing any non-standard activities. The SME may consult with his/her supervisor, co-SME if any and co-SME supervisor, and subsequently must copy any approval to them.

Revision History

Rev. 1 – Clarified conductor zone and side zone definitions, and clearing practices to address NERC reliability requirements through strict conformance to the ISO-NE OP-3.

Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines			
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.005	05/16/2008

Rev.0 - original issue

#### **APPENDIX 1**

### SHRUB SPECIES ALLOWED TO REMAIN: (PARTIAL LIST)

#### COMMON NAME

Arrowwood Viburnum Bayberry Blueberry - Highbush Blueberry - Lowbush Brambles **Buttonbush** Dogwood - Gray Dogwood - Redosier Dogwood - Silky Elderberry Hazelnut Honeysuckle - Bush Honeysuckle - Fly Honeysuckle - Tartarian Huckleberry Maple-leaf Viburnum Meadowsweet - Broad-leaved Meadowsweet - Narrow-leaved Mountain Laurel **Oblong Fruited Juneberry** Oldfield Common Juniper Pasture Juniper Running Shadbush Sheeplaurel Spicebush Steeplebush Sumac - Smooth Sweetfern Sweetpepperbush Winterberry Witch Hobble Witherod

#### **GENUS/SPECIES**

Viburnum dentatum Myrica pennsylvanica Vaccinium corymbosum Vaccinium angustifolium & V. vacillans Rubus spp. Cephalanthus occidentalis Cornus racemosa Cornus stolonifera Cornus amomum Sambucus spp. Corvlus americana & C. cornuta Diervilla Ionicera Lonicera canadensis Lonicera tatarica Gaylussacia spp. Viburnum acerifolium Spirea latifolia Spirea alba Kalmia spp. Amelanchier bartramiana Juniperus depressa Juniperis communis Amelanchier stolonifera Kalamia augustifolia Lindera benzoin Spirea tomentosa Rhus glabra Comptonia peregrina Clethra alnifolia llex verticillata Vburnum alnifolium Viburnum cassinoides

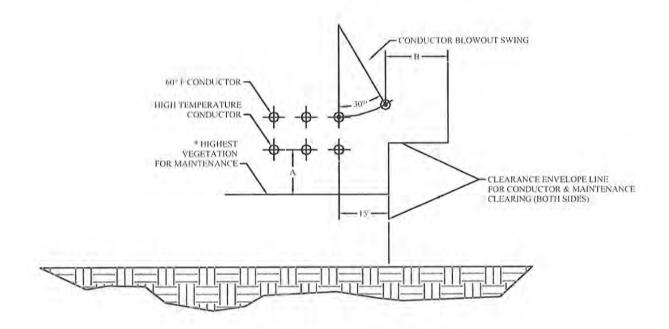
	Appendix 1		
Right-	of-Way Vegetation Initial Cleara	nce Standard	
for 115- and 345-kV Transmission Lines			
Northeast Utilities Design and Application OTRM Rev.			
Approved by: DEH, PJA		030.006	05/16/2008

### **APPENDIX 2**

LOW-MATURING TREE AND SHRUB SPECIES ALLOWED TO REMAIN ALONG THE SIDE ZONES: (PARTIAL LIST)

### All species listed above including:

Alder Dogwood - Alternate-leaved Dogwood - Flowering Sumac - Shining Sumac - Staghorn Willows (except tree species) Witch-Hazel Almus spp. Cornus alternifolia Cornus florida Rhus copillina Rhus typhina Salix spp. Hamamelis virginiana


	Appendix 2		
Right-of-Way Vegetation Initial Clearance Standard			
for 115- and 345-kV Transmission Lines			
Northeast Utilities Design and Application OTRM Rev.			
Approved by: DEH, PJA		030.007	05/16/2008

## Figure A

Minimum Conductor Clearances

Line Voltage	A (ft.)	B (ft.)
69 & 115 kV	12	11
230 & 345 kV	16	15

* Orc	hards	
Line Voltage	A (ft.)	B (ft.)
69 & 115 kV	14	11
230 & 345 kV	18	15

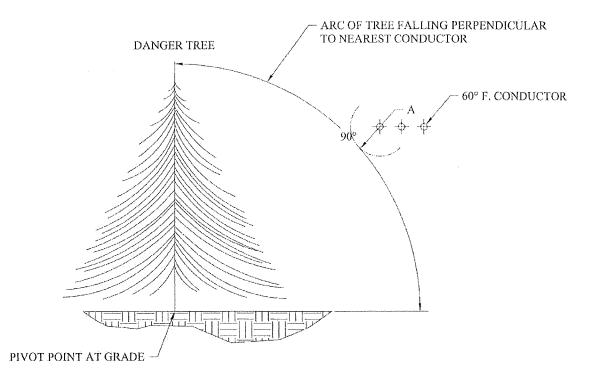
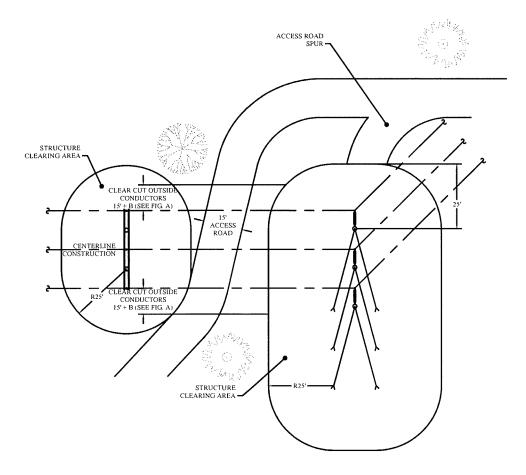


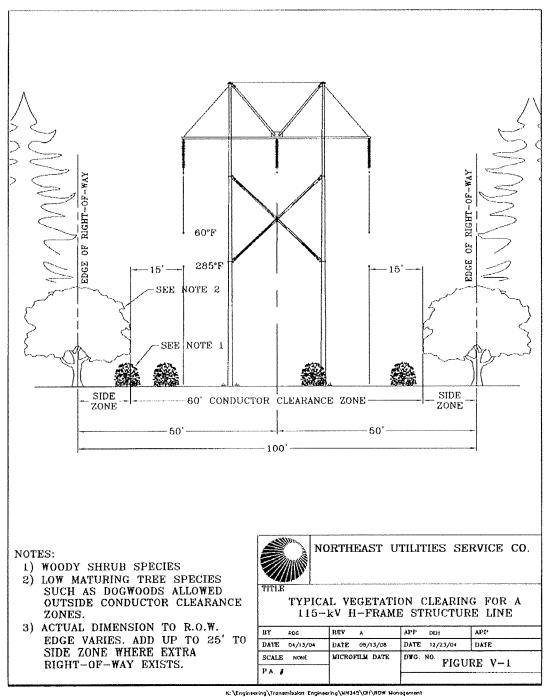

	Figure A of-Way Vegetation Initial Cleara or 115- and 345-kV Transmissio		a harman
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.008	05/16/2008

### <u>Figure B</u>

Danger Tree Clearances


Line Voltage	A (ft.)
69 & 115 kV	6
230 & 345 kV	10




Figure B Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines			
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.009	05/16/2008

### Figure C

Conductor Clearance Zone, Side Zones and Structure Clearing Areas for New Construction

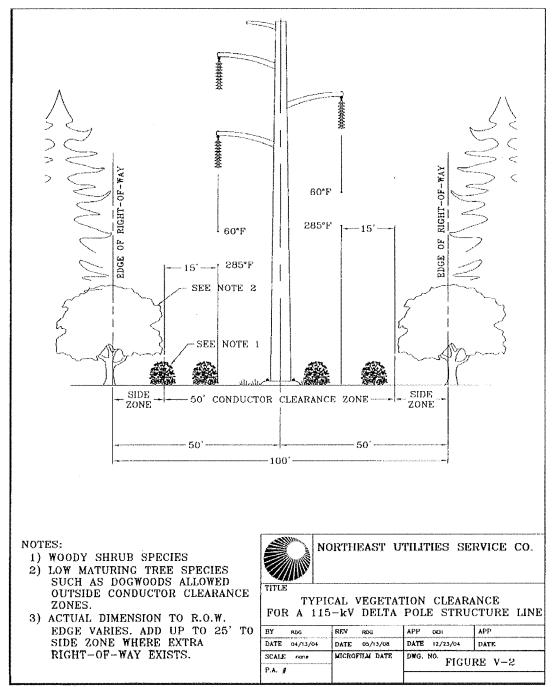



Figure C Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines			
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.0010	05/16/2008



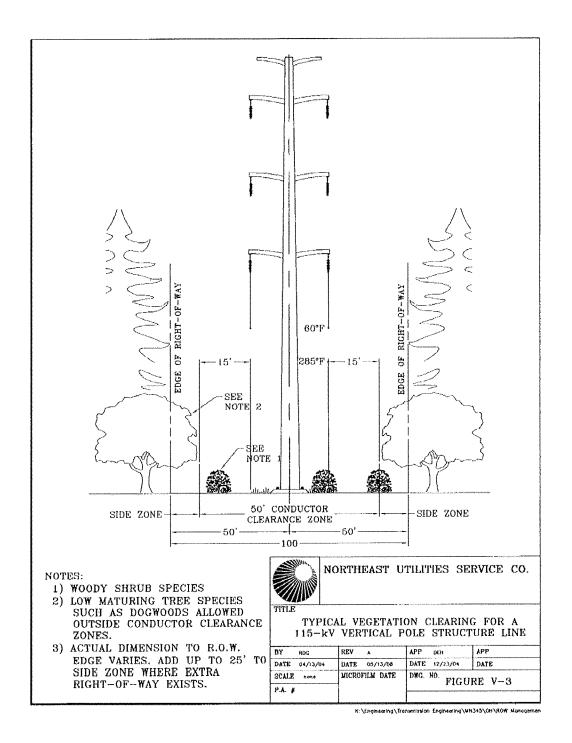
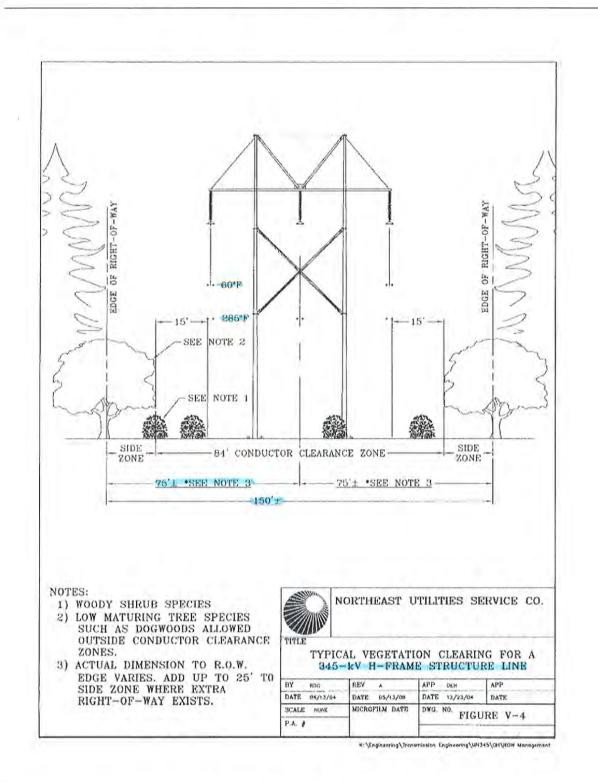
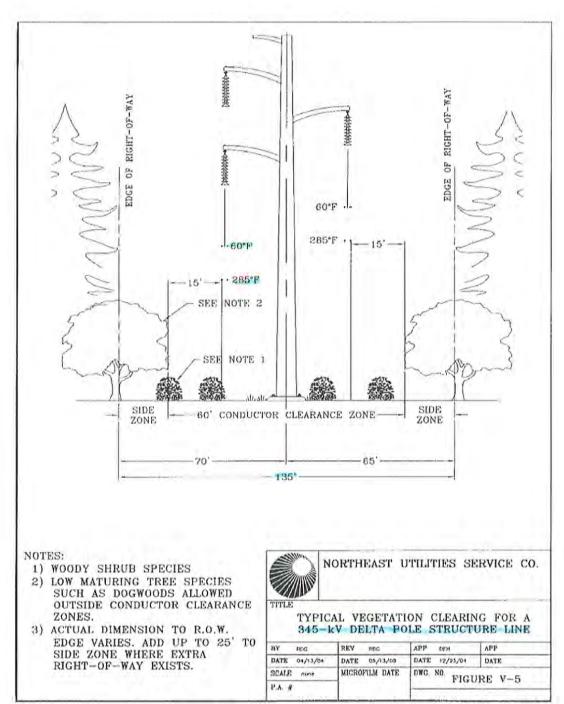

K: \Engineering\Transmission	Engineering\WM345\CH\ROW	Honogement
------------------------------	--------------------------	------------

Figure V-1			
Right-of-Way Vegetation Initial Clearance Standard			
for 115- and 345-kV Transmission Lines			
Northeast Utilities Design and Application OTRM Rev.			
Approved by: DEH, PJA		030.0011	05/16/2008



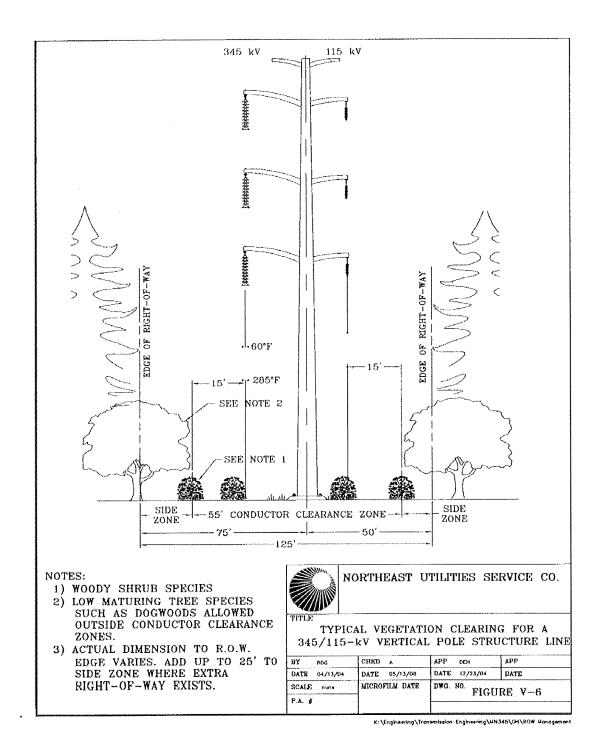

K:\Engineering\Transmission Engineering\404345\0H\RDW Management

Figure V-2			
Right-of-Way Vegetation Initial Clearance Standard			
for 115- and 345-kV Transmission Lines			
Northeast Utilities Design and Application OTRM Rev. 1			
Approved by: DEH, PJA		030.0012	05/16/2008




•	Figure V-3 -of-Way Vegetation Initial Cleara for 115- and 345-kV Transmissio		
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.0013	05/16/2008




Figure V-4 Right-of-Way Vegetation Initial Clearance Standard for 115- and 345-kV Transmission Lines				
Northeast Utilities	Design and Application	OTRM	Rev. 1	
Approved by: DEH, PJA		030.0014	05/16/2008	

Northeast Utilities Overhead Transmission Line Standards



K: \Engineering\Transmission Engineering\UN345\OH\VROW Vanagament

	Figure V-5 of-Way Vegetation Initial Cleara- for 115- and 345-kV Transmissio		
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA		030.0015	05/16/2008



	Figure V-6		
Right	of-Way Vegetation Initial Cleara	nce Standard	
	for 115- and 345-kV Transmissio	n Lines	
Northeast Utilities	Design and Application	OTRM	Rev. 1
Approved by: DEH, PJA	-	030.0016	05/16/2008

# CONCLUSIONS

- While performing several iterations of these Right-of-Way (ROW) width calculations, it became evident that placing twice the number of structures required under normal transmission line design is the only way the applicant could get the proposed 100-foot ROW to meet the National Electric Safety Code (NESC). The proposed 100-foot ROW width would be acceptable with spans under 850 feet. Under any other transmission line scenario the engineer would use a ruling span length in access of 1500 feet, which would greatly reduce the number of structures.
- I made reference to other utilities' general ROW design practices in order to illustrate the minimum widths. Please note that not only do these utilities consider blowout, but they add a buffer and use the National Electric Safety Code to have an adder of 50" for surges or lightning strokes.
- Should you have any questions, concerns or comments regarding the contents of this reference calculation please do not hesitate to contact me at MXWI@deainc.com, or 503.499.1350.

PPL Electric Utilities Two North Ninth Street, GENN5 Allentown, PA 18101-1179



August 26, 2010

Mr. John J. Donahue Superintendent National Park Service Delaware Water Gap National Recreation Area Bushkill, PA 18324

Ms. Pamela Underhill Superintendent Appalachian National Scenic Trail PO Box 50 252 McDowell Street Harper's Ferry, WV 25425

# Re: Construction of 500kV Transmission Line Within PPL Electric Utility Corporation's Existing 100-Foot Right-of-Way

Dear Mr. Donahue and Ms. Underhill:

As you know, PPL Electric Utility Corporation ("PPL Electric") has submitted an application for both a right-of-way permit and a construction permit for the construction and operation of the proposed 500 kV Susquehanna to Roseland Project. As you are also aware, PPL Electric has existing easements rights in Pennsylvania that traverse the Delaware River Water Gap National Recreation Area ("DEWA"). Those easements grant PPL Electric the rights, among other things, to reconstruct its facilities.

There are some areas in the park where PPL Electric has rights that are of a width greater than 100-feet. However, there is an approximate .8 mile stretch where the National Park Service has taken the position that PPL Electric's easement rights are limited to a width of 100 feet.¹ This .8 mile stretch is the area where PPL Electric has requested a right-of-way permit for an additional 25 feet on each side of the existing right of way.

As part of the project, PPL Electric analyzed whether it could safely and reliably construct and operate a 500 kV transmission line pursuant to its existing

¹ PPL Electric maintains that it is not limited to 100 feet for reconstruction for all but one of the easements. However, it has chosen not to challenge the NPS determination on that issue. Therefore, for purposes of this letter it is assuming that the easements in question do limit its construction to within a 100-foot right-of-way.

easement rights, because doing so would eliminate the need for a right-of-way permit. PPL Electric has concluded that it can safely and reliably construct and operate a transmission line pursuant to its existing easement rights (for purposes of this letter, the "100-foot ROW alternative"). That 100-foot ROW alternative would have two more structures than the current proposal, primarily because of issues relating to the 100-foot width in the .8 mile area reference. The structure heights would be approximately the same height as currently proposed.

PPL Electric provided the details of the 100-foot alternative to your consultant, Dave Evans Associates ("DEA"). In initial discussions, DEA questioned whether the 100-foot ROW alternative could meet National Electric Safety Code ("NESC") standards. However, after further discussions, and after PPL Electric provided additional documentation and analysis on that issue, it is our understanding that DEA is in agreement with PPL Electric's position that the 100-foot ROW alternative would meet all NESC standards.

Subsequently, DEA raised additional issues relating to the construction and operation of the 100-foot ROW alternative, which are as follows:

- 1. Allowable conductor tension.
- 2. Effect of wind on conductor temperature.
- 3. PJM criteria.
- 4. Electric fields.

PPL Electric notes that except for number 3, the above issues are not related to the width of the right-of-way. With regard to number 3, guidelines are provided by PJM in the document, PJM DESIGN AND APPLICATION OF OVERHEAD TRANSMSISSION LINES 69KV AND ABOVE, dated 5/20/2002 and found on the PJM website. This document lists target right-of-way widths of 300 feet for double circuit 500 kV and 150 feet for single or double circuit 230 kV. Clarification is provided by PJM on the TRANSMISSION OWNERS GUIDELINES webpage with the statement

Transmission Owner Technical Guidelines & Recommendations below, formerly were referred to as the "PJM TSDS Technical Requirements", as published by the PJM Transmission & Substation Design Committee (TSDS).

The documents included here are still subject to PJM's review and may thus potentially change before being formally published pursuant to Section 1.2c of the <u>PJM Open Access</u> Transmission Tariff (PDF).

These documents were originally developed for PJM by TSDS member companies when PJM's footprint matched the NERC MAAC Region (contributing companies included AE, BGC, DPL, JCPL, MetEd, PECO, PENELEC, PEPCO, PPL and PSEG.) Many of these companies often reference these documents for their Technical Requirements and Standards as defined in the PJM OATT. PJM now extends into multiple NERC regions. New members typically reference their own documents and therefore these documents no longer represent all of PJM. However, all PJM members are welcome to reference these documents. And, additional clarification is provided by PJM on the TRANSMISSION OWNERS ENGINEERING AND CONSTRUCTION STANDARDS webpage with the statement

Applicable engineering and construction standards are specified by each PJM Transmission Owner.

Thus, although PJM has guidelines for transmission line design, it is the Transmission Owners who have the final say, and responsibility for safe and reliable design of transmission lines. It is worth nothing that the currently proposed Susquehanna-Roseland 500 kV Transmission Line will be constructed within rights-of-way that vary from 150 feet to over 300 feet.

PPL Electric has concluded that none of the above items present any issues with respect to the 100-foot ROW alternative. In that regard, enclosed with this letter is a detailed analysis, including calculations, of each of the above items performed by Sargent & Lundy, LLC, the design engineer retained by PPL Electric as part of this project. In summary, that analysis concludes that the design proposed by PPL Electric relating to the 100-foot ROW alternative complies with any concerns raised by DEA.

In conclusion, PPL Electric maintains the design that has been provided for the 100-foot ROW alternative complies with all applicable regulations, including NESC and PJM criteria. Accordingly, the safe and reliable construction and operation of a 500kV transmission line within PPL Electric's existing easements, as demonstrated by the 100-foot ROW alternative, is feasible.

PPL Electric further notes that it, as the utility company providing electric transmission service in the area, has the obligation and responsibility to determine whether a transmission facility can be constructed and maintained in a safe and reliable manner. While PPL Electric appreciates comments and suggestions from DEA, ultimately it is PPL Electric that must determine whether such a facility can be constructed. As indicated above, in this case PPL Electric has determined that the 100-foot ROW alternative can be built safely and reliably. Accordingly, PPL Electric maintains that the 100-foot ROW alternative should be included as one of the alternatives studied in the Environmental Impact Statement. Quite simply, failure to do so ignores a viable option that can be constructed without the acquisition of any right-of-way permit from the National Park Service.

Thank you for your time and attention.

Sincerely,

Theyney I Amith

Gregory J. Smith Manager-Transmission Expansion

Enclosure



# United States Department of the Interior

NATIONAL PARK SERVICE Delaware Water Gap National Recreation Area Bushkill, Pennsylvania 18324

D5015

IN REPLY REFER TO:

# SEP 10 2010

Mr. Keith O' Neal, Director Division of Electric Reliability Standards Office of Electric Reliability Federal Energy Regulatory Commission 88 First Street NE Washington DC 20426

Dear Mr. O' Neal:

The National Park Service (NPS) has been asked by two regional electric utility companies (PPL in Pennsylvania and PSE&G in New Jersey) to provide permits for access across NPS lands and for construction of an additional 500kV line within their existing Right-of-Way (ROW). The structures would be built to hold a double circuit 500kV line where in some areas the existing width of the ROW is only 100 feet. The ROW of concern runs for 4.2 miles through the Appalachian National Scenic Trail (APPA), Delaware Water Gap National Recreation Area (DEWA), and the Middle Delaware National Scenic and Recreational River (MDSR), all units of the NPS. To evaluate the permit request we are preparing an Environmental Impact Statement (EIS).

The regional electrical energy interconnect group, PJM, has issued a set of Technical Requirements (section V.A of PJM TSDS Technical Requirements dated May 20, 2002) that address the design and application of overhead transmission lines 69kV and above. On Table 1 (page 12) of this document, PJM lists the *requirements* and the *recommendations* for transmission line design parameters. Our question is, are these requirements and recommendations the standard within which the utility companies are mandated to work when siting and planning new transmission lines? Is compliance with these standards optional?

We look forward to your timely reply as we are trying to maintain a tight EIS schedule and this information is vital to our analysis.

Please feel free to contact us or Patrick Lynch of our staff at (570) 426-2428.

Sincerely, John J. Donahue

Superintendent Delaware Water Gap National Recreation Area & Middle Delaware National Scenic and Recreational River (570) 426-2418

Pamela Underhill Superintendent Appalachian National Scenic Trail (304) 535-6278

Enclosure

Cc:

Andrew Tittler, DOI Office of the Solicitor Patrick Lynch, National Park Service, DEWA Kara Deutsch, National Park Service, DEWA Sarah Bransom, National Park Service, APPA Amanda Stein, National Park Service, DEWA Patrick Malone, National Park Service, DSC Jennifer McConaghie, National Park Service, NER

Clint Riley, U.S. Fish and Wildlife Service Pamela Shellenberger, U.S. Fish and Wildlife Service

Mr. Gregory Smith Manager, Transmission Expansion PPL Electric Utilities Two North Street, GENN5 Allentown, Pennsylvania 18101-1179

Denver Service Center - TIC Attn: SRLINE EIS 12795 W. Alameda Parkway Denver, CO 80225-0287

# V.A

# PJM Design and Application of Overhead Transmission Lines 69kV and Above

These design criteria have been established to assure acceptable reliability of the bulk transmission system facilities. These set forth the design and service conditions, and establish insulation levels for transmission lines. Some of these parameters were based on requirements for the Keystone, Conemaugh, Susquehanna Eastern, or LDV EHV projects, and others were developed by consensus of the PJM transmission line owners. Specific component requirements are listed in their own sections (in addition to NESC the proposed IEC 61936 could be a good reference). The criteria listed are requirements for lines rated 230 kV and above, and are guidelines for lines below 230 kV.

x

# PJM DESIGN OF OVERHEAD TRANSMISSION LINES 69 kV AND ABOVE

### 1.0 SCOPE AND GENERAL REQUIREMENTS

- 1.1. This document sets forth the requirements and recommendations for the design of overhead electric transmission facilities.
  - 1.1.1. Transmission lines, for the purpose of this document, are those with an operating voltage of 69kV or greater.
  - 1.1.2. The term "TO" in this document refers to the Transmission Owner, the party that will own and be responsible for the maintenance of the subject transmission facility.
- 1.2. The design and operation of all transmission lines shall meet the requirements of the National Electrical Safety Code (ANSI/IEEE C-2) [NESC]. The edition of the NESC in effect at the time of the design shall govern.
- 1.3. The electrical and strength requirements of this document shall apply to all new transmission lines; and extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is 1000ft or more.
- 1.4. The design of modifications to existing transmission lines; or extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is less than 1000ft; shall meet the requirements used for the design of the existing line and shall meet the requirements of the latest edition of the NESC.
- 1.5. The designs of existing transmission lines may not in all cases meet these criteria. The existing lines themselves are excluded from the scope of this document. However, taps from or extensions to these existing lines are covered under the scope of this document.
- 1.6. Switch structures are not within the scope of this document. If a switch is to be mounted on a transmission structure, the structure design shall have adequate strength and rigidity to ensure the reliable operation of the line and switch.
- 1.7. Transmission structures supporting non-electric transmission facilities (telecommunications antennas, fiber-optic cables, etc.) shall be capable of resisting the structural loads resulting from these facilities within the strength requirements of this document. The locating of such non-electric facilities on transmission structures shall not jeopardize the operation, maintenance, and reliability of the transmission lines.
- 1.8. While this document provides detailed criteria for the design of transmission lines on the PJM system, these do not represent the only issues to consider in the design of such lines. Other issues must also be considered such as: maintenance, inspection, and repair on both the structures and the wires of these lines. This will ensure the reliability of the line at a minimal cost well into the future.
- 1.9. In some instances, the requirements or recommendations specified in this document may come into conflict with other issues such as permitting or local issues. These specifications may be adjusted and negotiated with the specific and written approval of the TO. The agreed negotiation of a relaxation of any specification for an individual project or circumstance does not automatically result in a subsequent revision in this guide. Subsequent instances must be addressed individually on a case-by-case basis.
- 1.10. The use of structure guys, and wood structures shall be approved by the TO.

Section V.A of PJM TSDS Technical Requirements 5/20/2002 Page 2 of 12

### 2.0 CONDUCTORS

Conductors must be selected with sufficient thermal capability to meet continuous and emergency current ratings. Ratings of conductors applied to the PJM system should be determined using the PJM TSDS "Bare Overhead Transmission Conductor Ratings, November 2000".

The overhead line conductor and static wire should be chosen from those used by the TO. This provides the ability to quickly repair a section of line with utility stock material should an emergency arise. Standard transmission conductor types are ACSR, ACSR/AW, ACSS, and ACAR. Other conductor types will be reviewed by the TO.

The ambient temperature range listed in Table 1 covers the PJM system and is used for the electrical ratings of the conductors as well as the structural loads upon the towers or poles.

### 3.0 CONDUCTOR SAG & TENSION CRITERIA

3.1 Alcoa - Sag & Tension Common Point

The maximum tension case shall be allowed to default as the common point between the initial and final sag tables. No other common point shall be allowed. An example would be a common point based upon NESC Heavy conditions when calculated tensions for the 1-1/2" Heavy Ice case exceed those for the NESC case.

### **4.0 STRENGTH REQUIREMENTS**

- 4.1. Structure Types the following descriptions of structure types shall apply to the provisions for strength requirements
  - 4.1.1. <u>Suspension Structure</u> A structure where the phase conductors and static wires are attached through the use of suspension insulators and hardware or, in the case of the static wire, with a clamp not capable of resisting the full design tension of the wire.
  - 4.1.2. <u>Strain Structure</u> A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware but where the ability of the structure to resist a condition where all wires are broken on one side under full loading is not required or desired. Typically, strain structures would be used where the line deflection angle is 45 degrees or less. Structures subject to strain structure requirement shall be as identified by the Utility.
  - 4.1.3. <u>Dead-end Structure</u> A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware and where the ability of the structure to resist a condition where all wires are broken on one side under full loading is required or desired. Typically, dead-end structures would be used where the line deflection angle is greater than 45 degrees. Structures subject to dead-end structure requirement shall be as identified by the Utility.
  - 4.1.4. <u>Line Termination Structure</u> A structure where the phase conductors and static wires are to be installed on one side only for the purpose of terminating the line, usually at a substation or switchyard. This permanent dead-end condition is assumed in the application of all applicable loading conditions.

### 4.2. Loading Definitions

4.2.1. <u>Wind Pressure</u> – The pressure resulting from the exposure of a surface to wind. The pressure values provided are for wind acting upon objects with circular cross section. Pressure adjustments for other shapes shall be as set forth by the ASCE Guidelines for Electrical Transmission Line Structural Loading (ASCE Publication 74) [ASCE 74].

- 4.2.2. <u>Radial Ice</u> Radial ice is an equal thickness of ice applied about the circumference of the conductors and static wires. Ice density is assumed to be 57 lbs per cubic foot. For the purpose of transmission line design, ice is not applied to the surface of the structure, insulators, or line hardware.
- 4.2.3. Temperature Used for calculating conductor and static wire sag and tension.
- 4.2.4. <u>Transverse load</u> Forces or pressures acting perpendicular to the direction of the line. For angle structures, the transverse direction is parallel to the bisector of the angle of the transmission centerline.
- 4.2.5. <u>Longitudinal load</u> Forces or pressures acting parallel to the direction of the line. For angle structures, the longitudinal direction is perpendicular to the bisector of the angle of the transmission centerline.
- 4.2.6. <u>All wires intact</u> A condition where all intended spans of conductors and static wires are assumed to be in place. In the case of a Line Termination Structure, conductor and static wire spans are only on one side of the structure.
- 4.2.7. <u>Broken Conductor or Static Wire</u> A condition where one or more conductors or static wires are specified as broken. It is assumed that the broken conductor or static wire is in place on one side of the tower, and is removed from the other side. The span length for determination of loads from the conductor or static wire weight, wind pressure, and radial ice shall be not less than 60% of the design span length for the intact condition.
- 4.2.8. <u>Load Factor</u> A value by which calculated loads are multiplied in order of provide increased structural reliability. For the purpose of structural design, Overload Capacity Factors as specified by NESC shall be considered Load Factors.

### 4.3. Design Loading Conditions

- 4.3.1. <u>NESC</u> The provisions of the NESC Heavy Loading District, Class B Construction shall apply to all structure types. All wires intact. The latest NESC edition in effect at the time of line design shall apply. For informational purposes, the 1997 edition of NESC specifies the following requirements. Wind pressure 4psf. Radial Ice 0.5in. Temperature 0°F. For the purpose of calculating conductor or static wire tensions, a load constant of 0.3lbs shall be added to the resultant of the per linear foot weight, wind, and ice loads on the conductor or static wire. For steel structures, the load factor for wind load is 2.50; the load factor for vertical loads (dead weight and ice) is 1.50; and the load factor for conductor and static wire tension is 1.65. The associated factors for wooden transmission line structures shall be obtained from the TO.
- 4.3.2. Extreme Wind Loading Condition Applies to all structure types. All wires intact.
  - 4.3.2.1. Line voltage 230kV and greater. Wind pressure applied to the wires shall be 25psf. The ambient temperature is to be 60°F. The wind pressure applied to the structure shall be 31.25psf. Load factor is 1.00.
  - 4.3.2.2. Line voltage less than 230kV. The provisions of the NESC Extreme Wind loading shall be applied, subject to a minimum wind pressure of 17psf. The load factor is 1.00. The provision in NESC permitting exclusion of structures less than 60ft in height from extreme wind criteria shall not apply.
- 4.3.3. Heavy Ice Loading Condition Applies to all structure types. All wires intact.
  - 4.3.3.1. *Line voltage 230kV and greater*. Radial ice thickness on the wires only is to be 1.50in. No wind pressure. Temperature is 32°F. Load factor is 1.00.
  - 4.3.3.2. Line voltage less than 230kV. Heavy ice loading (if any) shall be as specified by the TO. Ice loading will not be more severe than that required for voltages 230kV or greater.

Section V.A of PJM TSDS Technical Requirements 5/20/2002 Page 4 of 12

- 4.3.4. <u>Longitudinal Loading Conditions for Suspension Structures</u> (line voltage 230kV or greater) The TO will specify one or more of the following loading conditions for design of Suspension Structures.
  - 4.3.4.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. Tensions shall not be reduced by assumed insulator swing. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10.
  - 4.3.4.2. Differential Ice Loading. All wires intact. No Wind. Temperature 32°F. All conductors and static wires on one side of the structure shall be assumed to have 1.0in radial ice. All conductors and static wires on the other side of the tower shall be assumed to have no ice. The determination of differential tension may include calculated swing of suspension insulator or static wire assemblies. Load factor 1.10.
  - 4.3.4.3. Bound stringing block All wires intact. 2psf wind. No ice. 30°F. Any one static wire or phase conductor (or all subconductors of any one phase) are assumed to bind in a running block during installation. The block is assumed to swing 45° in-line. This swing will result in a longitudinal load equal to the calculated vertical load of the static wire or phase conductor(s) under this loading condition. Load factor is 2.00.
- 4.3.5. <u>Longitudinal Loading Conditions for Strain Structures</u> The TO will specify one or more of the following loading conditions for design of Strain Structures.
  - 4.3.5.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10.

OR

- 4.3.5.2. All conductors and static wires broken. Loading condition is NESC Heavy. Load factor is 1.00.
- 4.3.6. <u>Longitudinal Loading Condition for Dead End Structures</u> All conductors and static wires are to be intact on one side of the structure only. Loading condition is NESC Heavy. Load factors are those specified by NESC.

- 4.3.7. Longitudinal Loading Condition for Line Termination Structures Conductors and static wires are to be intact on one side of the structure only. All loading conditions and load factors set forth by Section 4.3.1, 4.3.2, and 4.3.3 shall apply.
- 4.3.8. Foundation Loading The ultimate strength of overturning moment and uplift foundations shall be not less than 1.25 times the design factored load reactions of the structure. The ultimate strength of foundations subjected to primarily to compression load shall be not less than 1.10 times the design factored load reactions of the structure. Overturning moment foundations designed by rotation or pier deflection performance criteria shall use unfactored structure reactions for determination of the foundation performance, but shall use factored reactions for the 1.25 time ultimate strength check.
- 4.3.9. Personnel Support Loading Structures shall be designed to support a point load of 350 Ib at any point where a construction or maintenance person could stand or otherwise be supported.

# 5.0 ELECTRICAL DESIGN PARAMETERS

## , 5.1 Right-Of-Way Width

The transmission line is to be designed with adequate right-of-way width to provide access for line maintenance, repair, and vegetation management as shown in Table 1. These widths are based upon the listed number of circuits on the right-of-way. For additional circuits, a wider right-of-way should be utilized.

Vehicle or other means of access to each structure site is required for both construction and maintenance activities.

#### Wire to Ground Clearance 52

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. (The safety envelope is required to allow for sag and clearance uncertainties due to: actual conductor operating temperature, conductor sagging error, ground topography accuracy, plotting accuracy and other sources of error. The inclusion of a safety envelope is considered to be prudent). The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature or maximum conductor loading. The minimum clearances should take into account the limitation of a 5 mA shock current as given in NESC Rule 232D3c. All areas beneath the line shall be assumed to allow vehicle access beneath the line. For agricultural areas that may utilize farming equipment, additional clearance will be provided to assure public safety and line reliability during the periods of farming and harvesting activities.

#### Wire to Signs, Structures, etc Under the Wires 5.3

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature.

#### Wire to Structure Clearances 5.4

The minimum clearances between the phase conductors and the supporting tower or pole shall not be less than shown in Table 1. These clearances are to apply for all anticipated conductor positions from an every day condition to a displaced condition due to a 9-psf wind or ice loading. These clearances do not have any adders provided for birds or other animals, but are based upon the switching surge values listed in Table #1.

### 5.5 Wire-to-Wire Clearances

Clearance between the bottom transmission conductor and any lower wire shall meet the required clearance of NESC Rule 233 and 235as a minimum. When the lower wire is a non transmission wire, then the clearance should be at least 10 feet for voltages less than or equal to 230 kV, and 20 feet for voltages above 230 kV. This will allow safe personnel access to the non-transmission conductors. These clearances should be calculated with the transmission conductor at maximum operating temperatures or heavy ice, whichever provides greater conductor sag, and the non-transmission conductor at  $0^{\circ}$ F.

Clearances between transmission conductors should be either the larger of clearances based upon switching surges, or clearances based on the NESC. The per unit switching surges to use for the calculation are shown in Table #1

Using switching surge values, the method used to determine the actual required clearance is given in section 5 of the EPRI Transmission Line Reference Book 115 kV - 138 kV Compact Line Design.

For transmission conductors of different circuits, the clearances should be increased so that any wind induced dynamic conductor movement does not result in any breaker operations and subsequent reduction in transmission circuit reliability.

### 5.6 Conductor Operating Temperature and Conductor Sag

The conductor will be assumed to operate at or above the minimum temperature shown below, and at temperatures less than the maximum shown below. While the line conductor may be designed to operate at a lower temperature, the line must be sagged assuming the conductor temperature is at or above the minimum shown. For designed operating temperatures above the minimum shown, and still below the maximum, the line sag and clearances will be calculated for that operating temperature after rounding up to the nearest 10°C. In no case will a conductor operating temperature be allowed above the maximum shown in the table. Refer to the PJM "Bare Overhead Transmission Conductor Ratings" for the ampacity and temperatures of conductors.

Conductor Type	Minimum Conductor Operating Temperature for Sagging and Clearance Purposes	Maximum Operating Temperature
ACAR	100°C	140°C
ACSR, ACSS	125°C	180°C

Consult with the local transmission utility for the maximum operating temperature since some companies use slightly different values. Higher values for ACSS conductors may only be used with specific approval from the TO. Studies of the long-term high temperature operation of all conductor-connected hardware must be investigated prior to the request for approval from the local transmission utility.

### 5.7 Insulation Requirements

The insulation system for the transmission line shall have values in excess of the leakage distance, 60 Hz wet, and Critical Impulse flashover specified in Table 1. These values shown are minimum conditions and may need to be increased in specific locations such as coastal environments, industrial smokestack sites, or high altitudes. (BIL values are not included here as they are associated with substation insulation and not transmission line insulation,)

### 5.8 Lightning Performance and Grounding

All transmission structures will be individually grounded through a dedicated earth driven grounding system composed of ground rods and / or buried counterpoise. This system is to be measured on each individual structure prior to the installation of any overhead conductors or wires. The maximum acceptable resistance measurement of this grounding system for voltages up to and including 230 kV is 25 Ohms, and 15 ohms for voltages 345 kV and greater. The grounding system may include radial counterpoise wires, equipotential rings, or both. The TO must approve all grounding methods, and connections to the grounding system that are below grade. These resistance requirements are to assure acceptable lightning performance on the line as well as provide for the safe grounding of the line by construction and maintenance forces.

Individual tower grounding measurements will be allowed to exceed the 25 or 15 Ohms required only if the average value for the 5 adjacent structures along the line is less than the 25 or 15-Ohm restriction.

To assure acceptable lightning performance, a shield wire is required above each transmission line. The number of shield wires and the maximum shielding angles between the shield wire and phase conductor are shown in Table 1. Each new structure design is to be analyzed using the EPRI MULTIFLASH or equivalent software to determine that the line design and actual grounding design provides the required lightning performance shown in Table 1.

In instances where it is very difficult to provide the required lightning performance, the TO may grant permission to utilize a limited application of transmission lines arresters. In no case will chemical ground treatments be allowed to improve structure grounding.

### 5.9 EMF, RFI, TVI, and Audible Noise

The transmission line system is to be designed so that radio and TV interference is just perceptible at the edge of the right-of-way. This is typically the case with radio signal to noise ratios above 20 db, and TV signal to noise ratios above 40 db. The achievement of this level of performance is more of a problem for lines above 230 kV, so a radio frequency survey and investigation should be performed to measure actual radio and TV signal strength and calculate the signal to noise ratio.

Audible noise at the edge of the right-of-way should be calculated for the designed transmission line using wet conductor as the design condition. The resultant noise level must not exceed the level limited by the state and local authorities. Typically the limitation is 55 dbA during the daylight hours, and 50 dbA at night.

Electric and Magnetic Field (EMF) levels are to be calculated using the EPRI ENVIRO or equivalent software and compared to any state or local limits. Modifications are to be made through phasing, structure height, ground clearance, etc. to assure these limitations are met. If no specific limitations exist, the line should be designed to the level of EMF on and adjacent to the right-of-way. A typical example of such an effort is the appropriate choice of phasing on the right-of-way.

### 5.10 Inductive Interference

A study should be done to determine the inductive impact upon other utilities due to the power flow in the new transmission line. The power flow may induce unusual currents and voltages in magnetic and electrical conductors that run parallel to the transmission line.

When it is determined that the currents or voltages are being induced in nearby utilities or other facilities, the engineer for the new or modified line being constructed must take the appropriate corrective actions to eliminate or lower the currents or voltages to an acceptable level.

### 5.11 Line Transpositions

The transmission line designer may be required to transpose the geometry of a new transmission line if the voltage imbalance exceeds the tolerance of the TO at the substations the line connect s to. If transpositions structures are required, they shall be designed to provide for easy routine maintenance of the structure.

### 5.12 Line Crossings

Line crossings should be avoided if possible, but when line crossings are unavoidable they should be configured such that the most important circuits to the transmission network are on top. Additionally, crossings must be configured such that a single component failure will not outage more than one other circuit (beyond the circuit with the failed component). This is in accordance with MAAC Criteria.

### 6.0 OTHER DESIGN PARAMETERS

### 6.1 Line Cascade Mitigation

Transmission line failures that cascade beyond the original structural failure must be avoided. To accomplish this, the design of a new or modified line shall incorporate dead-end strain structures routinely employed along the line. An alternative is to utilize suspension structures that are longitudinally guyed to resist full line tension if all wires on one side were broken. For wood construction, the strain structures shall also have in-line storm guys utilized to provide the structural strength. The line tensions assumed for this condition are the NESC Heavy loadings on one side of the structure as defined above, and no tension on the other. The structures shall be placed routinely along the line to resist a line cascade, but in no case shall these structures be placed farther than 5 miles apart.

### 6.2 Corrosion Protection

Corrosion protection will be evaluated for all buried structural steel on transmission structures. This covers buried grillage, driven caissons, etc. The line designer will submit a recommendation to the TO for the corrosion mitigation method to be used for buried structural steel. The proposed method must show at least a 50 year durability before any degradation of structural strength is allowed. It is acceptable to include systems that require some routine maintenance such as cathodic protection using buried sacrificial anodes.

Above grade steel will be protected from corrosion using a coating acceptable to the TO. Typical alternatives that have been used include weathering steel, galvanized steel, or painted steel.

### 6.3 Climbing Devices

- 6.3.1 Steel pole structures shall utilize climbing ladders. The TO shall specify the requirements and placement of the climbing ladders.
- 6.3.2 All steel towers shall be designed with step bolts as the provision for climbing. The TO shall specify the requirements and placement of the step bolts.

### 7.0 MAINTENANCE

For maintenance see section V.L.2.A

	Parameter
<b>TABLE 1</b>	Line Design
	Transmission

ē. -

R	Requirement	its	Re	ecommendations
500 kV	345 kV	230 kV	138 64	112 LAT 1

Ambient Temperature Range	-30°C to +40°C (from -40°C N & W of Blue Mountain)	(Mountain)	-30°C to +40°C (from -40°C N & W of Plue Manueric)
Minimum Extreme Wind Loading	25 PSF	NESC Figure 250-2 or a minimum wind pressure of 17 psf. Existing Line Larger of: NESC Figure 250-2 OR the original line design parameters	New Line: NESC Figure 250-2 Existing Line: Larger of: NESC Figure 250-2 OR the original line design parameters
Heavy Ice Load (No Wind)	"14"		Consult the TO for applicable heavy ice loading requirements
Code Requirements	NESC Grade "B" Heavy	avv	MPCC C. d. WD 11.
Flood Plain	The line shall meet the applicable Local, State and Federal regulations.	l, State and Federal	The line shall meet the applicable Local, State and Federal
Sag and tension Calculation Method	Alcoa Sag & Tension Software or equivalent	e or equivalent	Alcoa Sag & Tension Software or equivalent
Damper Requirements	<18% RBS (No dampers Required) 18% -20% RBS (Dampers Required)	Required)	<18% RBS (No dampers Required) 18% -200% RBS (Thomson Provided)
Galloping Mitigation	Provide adequate clearance so that 12" of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloping history.	" of clearance exists inimize conductor or e this requirement for ing history.	Provide adequate clearance so that 12° of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas
Spacers	18" spacing - NO Preformed wire snacers allowed	spacers allowed	100 mode NO D. C. 1 .
Provisions for Live Line Maintenance	As required by the TO.	ro.	As required by the TO.
Access Requirements	Construction and maintenance access is required to each structure.	s is required to each	Construction and maintenance access is required to each
Approved conductor sizes for NEW Construction	Match approved conductor sizes and bundle configuration with local utility company	bundle configuration pany	Match approved conductor sizes and bundle configuration with local utility company

DMS #84474 Page 11 of 12 Section V.A Overhead Transmission Lines

Originally Issued: Revised: 5/17/02 TABLE 1 Transmission Line Design Parameters

per 100 ckt mi. / yr Provide a structure grounding system that meets the step and Per applicable state laws for noise at edge of right-of-way NESC minimum requirements PLUS an additional 3 feet 3.5 per unit 60 - 100 Ft 170 kV 440 kV 28 in. 50 in. As Required by TO and State Regulatory Agencies 30° **V**Å 69 Match approved conductor sizes with the TO 2 unless specifically approved by TO Recommendations touch requirements of the TO. Minimum of 1 per structure No limits specified per 100 ckt mi / yr 3.0 per unit 25 Ohms 295 kV 670 kV 1& 2 ckts 42 in. 83 in. 30° .1 3.0 100 Ft 115 kV 40 per 100 ckt mi. / yr 3.0 per unit L& 2 ckts 100 in. 860 kV 375 kV 52 in. 138 kV 100 Ft 300 3.0 2 unless specifically No limits specified Provide a structure grounding system that meets the step and approved by TO per 100 ckt mi. / yr NESC minimum requirements PLUS an additional 3 feet 2.5 per unit Per applicable state laws for noise at edge of right-of-way 1 & 2 ckts 25 Ohms 1105 kV 230 kV 150 Ft 167in. 490 kV 69 in. 250 2.0 Match approved conductor sizes with the TO. and State Regulatory Agencies touch requirements of the TO. Requirements Minimum of 1 per circuit As Required by TO per 100 ckt mi. / yr 170 Ft-1 ckt 2.4 per unit 300 µV @ 1 MHz (230 kV to gnd) 15 Ohms 1440 kV 250 in. 1 unless specifically approved 635 kV 345 kV 91 in. 40 200 by TO 300 Ft.(min.) - 2 ckts per 100 ckt mi. / yr 200 Ft. - 1 ckt. 300 µV @ 1 MHz (350 kV to gnd) 2.2 per unit 15 Ohms 2145 kV. 950 kV 125 in. 500 kV 360 in. 150 1.0 Insulation Requirements Leakage distance Switching Surge **Critical Impulse** Flashover 60 Hz WET Step & Touch Potential **Conductor to structure** Static Wires Required clearance at Max. Sag **Radio Interference at** Minimum Number of **Outage Performance** Maximum Structure **OPGW** wire sizes for circuits per structure steel clearance (min.) Maximum Shielding edge of right-of-way Approved static and Min. design ground **Ground Resistance Right-of-way width NEW Construction** Isokeraunic Level **Target Lightning** Parameter Max. Number of Target values) **Audible Noise EMF** Limits Issues Angle

Originally Issued: Revised: 5/17/02

Section V.A Overhead Transmission Lines

DMS #84474 Page 12 of 12



IN REPLY REFER TO:

# United States Department of the Interior

NATIONAL PARK SERVICE Delaware Water Gap National Recreation Area Bushkill, Pennsylvania 18324

# D5015

# SEP 13 2010

Mr. Steve Herling, Vice President PJM Interconnection L.L.C. 955 Jefferson Avenue Valley Forge Corporate Center Norristown, Pennsylvania 19403-2497

Dear Mr. Herling:

The National Park Service (NPS) has been asked by two regional electric utility companies (PPL in Pennsylvania and PSE&G in New Jersey) to provide permits for access across NPS lands and for construction of an additional 500kV line within their existing Right of Way (ROW). The structures would be built to hold a double circuit 500kV line where in some areas the existing width of the ROW is only 100 feet. The ROW of concern runs for 4.2 miles through the Appalachian National Scenic Trail (APPA), Delaware Water Gap National Recreation Area (DEWA), and the Middle Delaware National Scenic and Recreational River (MDSR), all units of the NPS. To evaluate the permit request we are preparing an Environmental Impact Statement (EIS).

We have a question regarding PJM's Technical Requirements that address the design and application of overhead transmission lines 69kV and above (section V.A of PJM TSDS Technical Requirements dated May 20, 2002). On Table 1 (page 12) of this document, PJM lists the *requirements* and the *recommendations* for transmission line design parameters. Our question is, are these requirements and recommendations the standard within which the utility companies are mandated to work when siting and planning new transmission lines?

We look forward to your timely reply as we are trying to maintain an efficient EIS schedule and this information is vital to our analysis.

Please feel free to contact us or Patrick Lynch of our staff at (570) 426-2428.

Sincerely, John, J. Donahue

Superintendent Delaware Water Gap National Recreation Area & Middle Delaware National Scenic and Recreational River (570) 426-2418

Pamela Underhill Superintendent Appalachian National Scenic Trail (304) 535-6278

Enclosure

Cc:

Andrew Tittler, DOI Office of the Solicitor Patrick Lynch, National Park Service, DEWA Kara Deutsch, National Park Service, DEWA Sarah Bransom, National Park Service, APPA Amanda Stein, National Park Service, DEWA Patrick Malone, National Park Service, DSC Jennifer McConaghie, National Park Service, NER

Clint Riley, U.S. Fish and Wildlife Service Pamela Shellenberger, U.S. Fish and Wildlife Service

Mr. Gregory Smith Manager, Transmission Expansion PPL Electric Utilities Two North Street, GENN5 Allentown, Pennsylvania 18101-1179

Denver Service Center - TIC Attn: SRLINE EIS 12795 W. Alameda Parkway Denver, CO 80225-0287

# V.A

# PJM Design and Application of Overhead Transmission Lines 69kV and Above

These design criteria have been established to assure acceptable reliability of the bulk transmission system facilities. These set forth the design and service conditions, and establish insulation levels for transmission lines. Some of these parameters were based on requirements for the Keystone, Conemaugh, Susquehanna Eastern, or LDV EHV projects, and others were developed by consensus of the PJM transmission line owners. Specific component requirements are listed in their own sections (in addition to NESC the proposed IEC 61936 could be a good reference). The criteria listed are requirements for lines rated 230 kV and above, and are guidelines for lines below 230 kV.

# PJM DESIGN OF OVERHEAD TRANSMISSION LINES 69 kV AND ABOVE

### 1.0 SCOPE AND GENERAL REQUIREMENTS

- 1.1. This document sets forth the requirements and recommendations for the design of overhead electric transmission facilities.
  - 1.1.1. Transmission lines, for the purpose of this document, are those with an operating voltage of 69kV or greater.
  - 1.1.2. The term "TO" in this document refers to the Transmission Owner, the party that will own and be responsible for the maintenance of the subject transmission facility.
- 1.2. The design and operation of all transmission lines shall meet the requirements of the National Electrical Safety Code (ANSI/IEEE C-2) [NESC]. The edition of the NESC in effect at the time of the design shall govern.
- **1.3.** The electrical and strength requirements of this document shall apply to all new transmission lines; and extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is 1000ft or more.
- 1.4. The design of modifications to existing transmission lines; or extensions, taps, or additions to existing transmission lines where the circuit length of the new construction is less than 1000ft; shall meet the requirements used for the design of the existing line and shall meet the requirements of the latest edition of the NESC.
- 1.5. The designs of existing transmission lines may not in all cases meet these criteria. The existing lines themselves are excluded from the scope of this document. However, taps from or extensions to these existing lines are covered under the scope of this document.
- 1.6. Switch structures are not within the scope of this document. If a switch is to be mounted on a transmission structure, the structure design shall have adequate strength and rigidity to ensure the reliable operation of the line and switch.
- 1.7. Transmission structures supporting non-electric transmission facilities (telecommunications antennas, fiber-optic cables, etc.) shall be capable of resisting the structural loads resulting from these facilities within the strength requirements of this document. The locating of such non-electric facilities on transmission structures shall not jeopardize the operation, maintenance, and reliability of the transmission lines.
- 1.8. While this document provides detailed criteria for the design of transmission lines on the PJM system, these do not represent the only issues to consider in the design of such lines. Other issues must also be considered such as: maintenance, inspection, and repair on both the structures and the wires of these lines. This will ensure the reliability of the line at a minimal cost well into the future.
- 1.9. In some instances, the requirements or recommendations specified in this document may come into conflict with other issues such as permitting or local issues. These specifications may be adjusted and negotiated with the specific and written approval of the TO. The agreed negotiation of a relaxation of any specification for an individual project or circumstance does not automatically result in a subsequent revision in this guide. Subsequent instances must be addressed individually on a case-by-case basis.
- 1.10. The use of structure guys, and wood structures shall be approved by the TO.

Section V.A of PJM TSDS Technical Requirements 5/20/2002 Page 2 of 12

### 2.0 CONDUCTORS

Conductors must be selected with sufficient thermal capability to meet continuous and emergency current ratings. Ratings of conductors applied to the PJM system should be determined using the PJM TSDS "Bare Overhead Transmission Conductor Ratings, November 2000".

The overhead line conductor and static wire should be chosen from those used by the TO. This provides the ability to quickly repair a section of line with utility stock material should an emergency arise. Standard transmission conductor types are ACSR, ACSR/AW, ACSS, and ACAR. Other conductor types will be reviewed by the TO.

The ambient temperature range listed in Table 1 covers the PJM system and is used for the electrical ratings of the conductors as well as the structural loads upon the towers or poles.

### 3.0 CONDUCTOR SAG & TENSION CRITERIA

3.1 Alcoa - Sag & Tension Common Point

The maximum tension case shall be allowed to default as the common point between the initial and final sag tables. No other common point shall be allowed. An example would be a common point based upon NESC Heavy conditions when calculated tensions for the 1-1/2" Heavy Ice case exceed those for the NESC case.

### **4.0 STRENGTH REQUIREMENTS**

- 4.1. Structure Types the following descriptions of structure types shall apply to the provisions for strength requirements
  - 4.1.1. <u>Suspension Structure</u> A structure where the phase conductors and static wires are attached through the use of suspension insulators and hardware or, in the case of the static wire, with a clamp not capable of resisting the full design tension of the wire.
  - 4.1.2. <u>Strain Structure</u> A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware but where the ability of the structure to resist a condition where all wires are broken on one side under full loading is not required or desired. Typically, strain structures would be used where the line deflection angle is 45 degrees or less. Structures subject to strain structure requirement shall be as identified by the Utility.
  - 4.1.3. <u>Dead-end Structure</u> A structure where the phase conductors and static wires are attached to the structure by use of dead-end insulators and hardware and where the ability of the structure to resist a condition where all wires are broken on one side under full loading is required or desired. Typically, dead-end structures would be used where the line deflection angle is greater than 45 degrees. Structures subject to dead-end structure requirement shall be as identified by the Utility.
  - 4.1.4. <u>Line Termination Structure</u> A structure where the phase conductors and static wires are to be installed on one side only for the purpose of terminating the line, usually at a substation or switchyard. This permanent dead-end condition is assumed in the application of all applicable loading conditions.
- 4.2. Loading Definitions
  - 4.2.1. <u>Wind Pressure</u> The pressure resulting from the exposure of a surface to wind. The pressure values provided are for wind acting upon objects with circular cross section. Pressure adjustments for other shapes shall be as set forth by the ASCE Guidelines for Electrical Transmission Line Structural Loading (ASCE Publication 74) [ASCE 74].

- 4.2.2. <u>Radial Ice</u> Radial ice is an equal thickness of ice applied about the circumference of the conductors and static wires. Ice density is assumed to be 57 lbs per cubic foot. For the purpose of transmission line design, ice is not applied to the surface of the structure, insulators, or line hardware.
- 4.2.3. <u>Temperature</u> Used for calculating conductor and static wire sag and tension.
- 4.2.4. <u>Transverse load</u> Forces or pressures acting perpendicular to the direction of the line. For angle structures, the transverse direction is parallel to the bisector of the angle of the transmission centerline.
- 4.2.5. <u>Longitudinal load</u> Forces or pressures acting parallel to the direction of the line. For angle structures, the longitudinal direction is perpendicular to the bisector of the angle of the transmission centerline.
- 4.2.6. <u>All wires intact</u> A condition where all intended spans of conductors and static wires are assumed to be in place. In the case of a Line Termination Structure, conductor and static wire spans are only on one side of the structure.
- 4.2.7. <u>Broken Conductor or Static Wire</u> A condition where one or more conductors or static wires are specified as broken. It is assumed that the broken conductor or static wire is in place on one side of the tower, and is removed from the other side. The span length for determination of loads from the conductor or static wire weight, wind pressure, and radial ice shall be not less than 60% of the design span length for the intact condition.
- 4.2.8. <u>Load Factor</u> A value by which calculated loads are multiplied in order of provide increased structural reliability. For the purpose of structural design, Overload Capacity Factors as specified by NESC shall be considered Load Factors.

### 4.3. Design Loading Conditions

- 4.3.1. <u>NESC</u> The provisions of the NESC Heavy Loading District, Class B Construction shall apply to all structure types. All wires intact. The latest NESC edition in effect at the time of line design shall apply. For informational purposes, the 1997 edition of NESC specifies the following requirements. Wind pressure 4psf. Radial Ice 0.5in. Temperature 0°F. For the purpose of calculating conductor or static wire tensions, a load constant of 0.3lbs shall be added to the resultant of the per linear foot weight, wind, and ice loads on the conductor or static wire. For steel structures, the load factor for wind load is 2.50; the load factor for vertical loads (dead weight and ice) is 1.50; and the load factor for conductor and static wire tension is 1.65. The associated factors for wooden transmission line structures shall be obtained from the TO.
- 4.3.2. Extreme Wind Loading Condition Applies to all structure types. All wires intact.
  - 4.3.2.1. Line voltage 230kV and greater. Wind pressure applied to the wires shall be 25psf. The ambient temperature is to be 60°F. The wind pressure applied to the structure shall be 31.25psf. Load factor is 1.00.
  - 4.3.2.2. Line voltage less than 230kV. The provisions of the NESC Extreme Wind loading shall be applied, subject to a minimum wind pressure of 17psf. The load factor is 1.00. The provision in NESC permitting exclusion of structures less than 60ft in height from extreme wind criteria shall not apply.
- 4.3.3. Heavy Ice Loading Condition Applies to all structure types. All wires intact.
  - 4.3.3.1. *Line voltage 230kV and greater*. Radial ice thickness on the wires only is to be 1.50in. No wind pressure. Temperature is 32°F. Load factor is 1.00.
  - 4.3.3.2. *Line voltage less than 230kV*. Heavy ice loading (if any) shall be as specified by the TO. Ice loading will not be more severe than that required for voltages 230kV or greater.

Section V.A of PJM TSDS Technical Requirements 5/20/2002 Page 4 of 12

- 4.3.4. <u>Longitudinal Loading Conditions for Suspension Structures</u> (line voltage 230kV or greater) The TO will specify one or more of the following loading conditions for design of Suspension Structures.
  - 4.3.4.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wire or broken conductor or subconductor. Tensions shall not be reduced by assumed insulator swing. For the intact phases and static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10.
  - 4.3.4.2. Differential Ice Loading. All wires intact. No Wind. Temperature 32°F. All conductors and static wires on one side of the structure shall be assumed to have 1.0in radial ice. All conductors and static wires on the other side of the tower shall be assumed to have no ice. The determination of differential tension may include calculated swing of suspension insulator or static wire assemblies. Load factor 1.10.
  - 4.3.4.3. Bound stringing block All wires intact. 2psf wind. No ice. 30°F. Any one static wire or phase conductor (or all subconductors of any one phase) are assumed to bind in a running block during installation. The block is assumed to swing 45° in-line. This swing will result in a longitudinal load equal to the calculated vertical load of the static wire or phase conductor(s) under this loading condition. Load factor is 2.00.
- 4.3.5. <u>Longitudinal Loading Conditions for Strain Structures</u> The TO will specify one or more of the following loading conditions for design of Strain Structures.
  - 4.3.5.1. One broken conductor or static wire. Any one phase conductor or static wire is assumed broken. For construction using bundled phase conductors, one subconductor of any one phase bundle shall be assumed broken, the other subconductor(s) of that phase shall be assumed intact. All other conductors and static wires are intact. Loading condition is NESC Heavy. The longitudinal load shall be the tension of the broken static wires, the wind on the structure, and the structure dead weight, the NESC load factors shall apply. For the broken static wire or the phase with the broken conductor or broken subconductor, the load factor shall be 1.10.

OR

- 4.3.5.2. All conductors and static wires broken. Loading condition is NESC Heavy. Load factor is 1.00.
- 4.3.6. <u>Longitudinal Loading Condition for Dead End Structures</u> All conductors and static wires are to be intact on one side of the structure only. Loading condition is NESC Heavy. Load factors are those specified by NESC.

- 4.3.7. Longitudinal Loading Condition for Line Termination Structures Conductors and static wires are to be intact on one side of the structure only. All loading conditions and load factors set forth by Section 4.3.1, 4.3.2, and 4.3.3 shall apply.
- 4.3.8. Foundation Loading The ultimate strength of overturning moment and uplift foundations shall be not less than 1.25 times the design factored load reactions of the structure. The ultimate strength of foundations subjected to primarily to compression load shall be not less than 1.10 times the design factored load reactions of the structure. Overturning moment foundations designed by rotation or pier deflection performance criteria shall use unfactored structure reactions for determination of the foundation performance, but shall use factored reactions for the 1.25 time ultimate strength check.
- 4.3.9. Personnel Support Loading Structures shall be designed to support a point load of 350 Ib at any point where a construction or maintenance person could stand or otherwise be supported.

# 5.0 ELECTRICAL DESIGN PARAMETERS

### , 5.1 Right-Of-Way Width

The transmission line is to be designed with adequate right-of-way width to provide access for line maintenance, repair, and vegetation management as shown in Table 1. These widths are based upon the listed number of circuits on the right-of-way. For additional circuits, a wider right-of-way should be utilized.

Vehicle or other means of access to each structure site is required for both construction and maintenance activities.

#### Wire to Ground Clearance 5.2

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. (The safety envelope is required to allow for sag and clearance uncertainties due to: actual conductor operating temperature, conductor sagging error, ground topography accuracy, plotting accuracy and other sources of error. The inclusion of a safety envelope is considered to be prudent). The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature or maximum conductor loading. The minimum clearances should take into account the limitation of a 5 mA shock current as given in NESC Rule 232D3c. All areas beneath the line shall be assumed to allow vehicle access beneath the line. For agricultural areas that may utilize farming equipment, additional clearance will be provided to assure public safety and line reliability during the periods of farming and harvesting activities.

#### Wire to Signs, Structures, etc Under the Wires 5.3

The minimum allowed clearance between the lowest transmission line conductor(s) shall meet the required NESC minimum plus a safety envelope of 3 feet. The NESC minimum shall be calculated with the conductor at maximum operating voltage and the maximum operating temperature.

### 5.4 Wire to Structure Clearances

The minimum clearances between the phase conductors and the supporting tower or pole shall not be less than shown in Table 1. These clearances are to apply for all anticipated conductor positions from an every day condition to a displaced condition due to a 9-psf wind or ice loading. These clearances do not have any adders provided for birds or other animals, but are based upon the switching surge values listed in Table #1.

### 5.5 Wire-to-Wire Clearances

Clearance between the bottom transmission conductor and any lower wire shall meet the required clearance of NESC Rule 233 and 235as a minimum. When the lower wire is a non transmission wire, then the clearance should be at least 10 feet for voltages less than or equal to 230 kV, and 20 feet for voltages above 230 kV. This will allow safe personnel access to the non-transmission conductors. These clearances should be calculated with the transmission conductor at maximum operating temperatures or heavy ice, whichever provides greater conductor sag, and the non-transmission conductor at  $0^{\circ}$ F.

Clearances between transmission conductors should be either the larger of clearances based upon switching surges, or clearances based on the NESC. The per unit switching surges to use for the calculation are shown in Table #1

Using switching surge values, the method used to determine the actual required clearance is given in section 5 of the EPRI Transmission Line Reference Book 115 kV - 138 kV Compact Line Design.

For transmission conductors of different circuits, the clearances should be increased so that any wind induced dynamic conductor movement does not result in any breaker operations and subsequent reduction in transmission circuit reliability.

### 5.6 Conductor Operating Temperature and Conductor Sag

The conductor will be assumed to operate at or above the minimum temperature shown below, and at temperatures less than the maximum shown below. While the line conductor may be designed to operate at a lower temperature, the line must be sagged assuming the conductor temperature is at or above the minimum shown. For designed operating temperatures above the minimum shown, and still below the maximum, the line sag and clearances will be calculated for that operating temperature after rounding up to the nearest 10°C. In no case will a conductor operating temperature be allowed above the maximum shown in the table. Refer to the PJM "Bare Overhead Transmission Conductor Ratings" for the ampacity and temperatures of conductors.

Conductor Type	Minimum Conductor Operating Temperature for Sagging and Clearance Purposes	Maximum Operating Temperature
ACAR	100°C	140°C
ACSR, ACSS	125°C	180°C

Consult with the local transmission utility for the maximum operating temperature since some companies use slightly different values. Higher values for ACSS conductors may only be used with specific approval from the TO. Studies of the long-term high temperature operation of all conductor-connected hardware must be investigated prior to the request for approval from the local transmission utility.

### 5.7 Insulation Requirements

The insulation system for the transmission line shall have values in excess of the leakage distance, 60 Hz wet, and Critical Impulse flashover specified in Table 1. These values shown are minimum conditions and may need to be increased in specific locations such as coastal environments, industrial smokestack sites, or high altitudes. (BIL values are not included here as they are associated with substation insulation and not transmission line insulation,)

### 5.8 Lightning Performance and Grounding

All transmission structures will be individually grounded through a dedicated earth driven grounding system composed of ground rods and / or buried counterpoise. This system is to be measured on each individual structure prior to the installation of any overhead conductors or wires. The maximum acceptable resistance measurement of this grounding system for voltages up to and including 230 kV is 25 Ohms, and 15 ohms for voltages 345 kV and greater. The grounding system may include radial counterpoise wires, equipotential rings, or both. The TO must approve all grounding methods, and connections to the grounding system that are below grade. These resistance requirements are to assure acceptable lightning performance on the line as well as provide for the safe grounding of the line by construction and maintenance forces.

Individual tower grounding measurements will be allowed to exceed the 25 or 15 Ohms required only if the average value for the 5 adjacent structures along the line is less than the 25 or 15-Ohm restriction.

To assure acceptable lightning performance, a shield wire is required above each transmission line. The number of shield wires and the maximum shielding angles between the shield wire and phase conductor are shown in Table 1. Each new structure design is to be analyzed using the EPRI MULTIFLASH or equivalent software to determine that the line design and actual grounding design provides the required lightning performance shown in Table 1.

In instances where it is very difficult to provide the required lightning performance, the TO may grant permission to utilize a limited application of transmission lines arresters. In no case will chemical ground treatments be allowed to improve structure grounding.

### 5.9 EMF, RFI, TVI, and Audible Noise

The transmission line system is to be designed so that radio and TV interference is just perceptible at the edge of the right-of-way. This is typically the case with radio signal to noise ratios above 20 db, and TV signal to noise ratios above 40 db. The achievement of this level of performance is more of a problem for lines above 230 kV, so a radio frequency survey and investigation should be performed to measure actual radio and TV signal strength and calculate the signal to noise ratio.

Audible noise at the edge of the right-of-way should be calculated for the designed transmission line using wet conductor as the design condition. The resultant noise level must not exceed the level limited by the state and local authorities. Typically the limitation is 55 dbA during the daylight hours, and 50 dbA at night.

Electric and Magnetic Field (EMF) levels are to be calculated using the EPRI ENVIRO or equivalent software and compared to any state or local limits. Modifications are to be made through phasing, structure height, ground clearance, etc. to assure these limitations are met. If no specific limitations exist, the line should be designed to the level of EMF on and adjacent to the right-of-way. A typical example of such an effort is the appropriate choice of phasing on the right-of-way.

### 5.10 Inductive Interference

A study should be done to determine the inductive impact upon other utilities due to the power flow in the new transmission line. The power flow may induce unusual currents and voltages in magnetic and electrical conductors that run parallel to the transmission line.

When it is determined that the currents or voltages are being induced in nearby utilities or other facilities, the engineer for the new or modified line being constructed must take the appropriate corrective actions to eliminate or lower the currents or voltages to an acceptable level.

### 5.11 Line Transpositions

The transmission line designer may be required to transpose the geometry of a new transmission line if the voltage imbalance exceeds the tolerance of the TO at the substations the line connect s to. If transpositions structures are required, they shall be designed to provide for easy routine maintenance of the structure.

### 5.12 Line Crossings

Line crossings should be avoided if possible, but when line crossings are unavoidable they should be configured such that the most important circuits to the transmission network are on top. Additionally, crossings must be configured such that a single component failure will not outage more than one other circuit (beyond the circuit with the failed component). This is in accordance with MAAC Criteria.

### 6.0 OTHER DESIGN PARAMETERS

### 6.1 Line Cascade Mitigation

Transmission line failures that cascade beyond the original structural failure must be avoided. To accomplish this, the design of a new or modified line shall incorporate dead-end strain structures routinely employed along the line. An alternative is to utilize suspension structures that are longitudinally guyed to resist full line tension if all wires on one side were broken. For wood construction, the strain structures shall also have in-line storm guys utilized to provide the structural strength. The line tensions assumed for this condition are the NESC Heavy loadings on one side of the structure as defined above, and no tension on the other. The structures shall be placed routinely along the line to resist a line cascade, but in no case shall these structures be placed farther than 5 miles apart.

### 6.2 Corrosion Protection

Corrosion protection will be evaluated for all buried structural steel on transmission structures. This covers buried grillage, driven caissons, etc. The line designer will submit a recommendation to the TO for the corrosion mitigation method to be used for buried structural steel. The proposed method must show at least a 50 year durability before any degradation of structural strength is allowed. It is acceptable to include systems that require some routine maintenance such as cathodic protection using buried sacrificial anodes.

Above grade steel will be protected from corrosion using a coating acceptable to the TO. Typical alternatives that have been used include weathering steel, galvanized steel, or painted steel.

### 6.3 Climbing Devices

- 6.3.1 Steel pole structures shall utilize climbing ladders. The TO shall specify the requirements and placement of the climbing ladders.
- 6.3.2 All steel towers shall be designed with step bolts as the provision for climbing. The TO shall specify the requirements and placement of the step bolts.

### 7.0 MAINTENANCE

For maintenance see section V.L.2.A

	Paramete
TABLE 1	Line Design
	Transmission
	F

÷.

R	Requirement	ts	Re	commendations	
500 kV	345 kV	230 kV	138 47	115 LV	201-177

Ambient Temperature Range	-30°C to +40°C (from -40°C N & W of Blue Mountain)	Mountain)	-30°C to +40°C (from -40°C N & W of Rhis Monutain)
Minimum Extreme Wind Loading	25 PSF	NESC Figure 250-2 or a minimum wind pressure of 17 psf. <u>Existing Line</u> Larger of: NESC Figure 250-2 OR the original line design parameters	New Line: NESC Figure 250-2 Existing Line: Larger of: NESC Figure 250-2 OR the original line design parameters
Heavy Ice Load (No Wind)	14"		Consult the TO for applicable heavy ice loading requirements
<b>Code Requirements</b>	NESC Grade "B" Heavy	NN	NBCC Cards (the IT
Flood Plain	The line shall meet the applicable Local, State and Federal regulations.	, State and Federal	The line shall meet the applicable Local, State and Federal resultations
Sag and tension Calculation Method	Alcoa Sag & Tension Software or equivalent	or equivalent	Alcoa Sag & Tension Software or equivalent
Damper Requirements	<18% RBS (No dampers Required) 18% -20% RBS (Dampers Required)	Required) Required)	<18% RBS (No dampers Required)
Galloping Mitigation	Provide adequate clearance so that 12" of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas with significant galloning history	clearance so that 12" of clearance exists oping ellipses to minimize conductor or The TO may revise this requirement for h significant galloning history	Provide adequate clearance so that 12" of clearance exists between wire galloping ellipses to minimize conductor or structure damage. The TO may revise this requirement for areas
Spacers	18" spacing - NO Preformed wire spacers allowed	spacers allowed.	18" spacing - MO Prefirmed with concernently.
Provisions for Live Line Maintenance	As required by the TO.	ro.	As required by the TO.
Access Requirements	Construction and maintenance access is required to each structure.	s is required to each	Construction and maintenance access is required to each structure
Approved conductor sizes for NEW Construction	Match approved conductor sizes and bundle configuration with local utility company	bundle configuration pany	Match approved conductor sizes and bundle configuration with local utility company

Section V.A Overhead Transmission Lines

DMS #84474 Page 11 of 12

Originally Issued: Revised: 5/17/02

	Parameters
TABLE 1	Line Design
	Transmission

	a	Requirements	nte	Roi	Recommondations	100
		INTEN TEN ha		1101	ommentatio	(11)
Parameter	500 kV	345 kV	230 kV	138 kV	115 kV	69 kV
Approved static and OPGW wire sizes for NEW Construction	Match appro	Match approved conductor sizes with the TO.	s with the TO.	Match appr	Match approved conductor sizes with the TO.	ith the TO.
Right-of-way width (Target values)	200 Ft. – 1 ckt. 300 Ft.(min.) – 2 ckts	170 Ft - 1 ckt	150 Ft 1 & 2 ckts	100 Ft 1 & 2 ckts	100 Ft 1& 2 ckts	60 - 100 Ft
Max. Number of circuits per structure	1 unless specifically approved by TO	ically approved TO	2 unless specifically approved by TO	2 unles	2 unless specifically approved by TO	by TO
Min. design ground clearance at Max. Sag	NESC minimum 1	equirements PLUS	NESC minimum requirements PLUS an additional 3 feet	NESC minimum	NESC minimum requirements PLUS an additional 3 feet	additional 3 feet
Conductor to structure steel clearance (min.)	125 in.	91 in.	69 in.	52 in.	42 in.	28 in.
Insulation Requirements						
Leakage distance	360 in.	250 in.	167in.	100 in.	83 in.	50 in
60 Hz WET	950 kV	635 kV	490 kV	375 kV	295 kV	170 kV
Switching Surge	2.2 per unit.	2.4 per unit	2.5 per unit	3.0 per unit	3.0 per unit	3.5 per unit
Critical Impulse Flashover	2145 kV.	1440 kV	1105.kV	860 kV	670 kV	440 kV
Maximum Structure Ground Resistance	15 Ohms	15 Ohms	25 Ohms		25 Ohms	-
Step & Touch Potential Issues	Provide a structure touc	ture grounding system that me touch requirements of the TO.	Provide a structure grounding system that meets the step and touch requirements of the TO.	Provide a structure tou	Provide a structure grounding system that meets the step and touch requirements of the TO.	meets the step and TO.
Minimum Number of Static Wires Required	W	Minimum of 1 per <u>circuit</u>	rcuit	Mi	Minimum of 1 per structure	ure
Isokeraunic Level		40			40	
Maximum Shielding Angle	15°	20°	25°	30°	30°	30°
Target Lightning Outage Performance	1.0 per 100 ckt mi. / yr	1.0 per 100 ckt mi. / yr	2.0 per 100 ckt mi. / vr	3.0 per 100 ckt mi / vr	" 3.0 per 100 ckt mi / vr	4 0 per 100 ckt mi / vr
EMF Limits	and	As Required by TO State Regulatory Agencies	0 gencies	As Required I	As Required by TO and State Regulatory Agencies	atory Agencies
Radio Interference at edge of right-of-way	300 µ.V @ 1 MHz (350 kV to gnd)	300 µV @ 1 MHz (230 kV to gnd)	No limits specified		No limits specified	
Audible Noise	Per applicable state	aws for noise at ed	Per applicable state laws for noise at edge of right-of-way	Per annlicable st	Per applicable state laws for noise at edge of right-of way	ne of right of unv

DMS #84474 Page 12 of 12

Section V.A Overhead Transmission Lines

Originally Issued: Revised: 5/17/02



# United States Department of the Interior

NATIONAL PARK SERVICE Delaware Water Gap National Recreation Area Bushkill, Pennsylvania 18324

IN REPLY REFER TO:

# D5015

# NOV 18 2010

Mr. Gregory Smith Manager - Transmission Expansion PPL Electric Utilities Two North Ninth Street, GENPL3 Allentown, PA 18101-1179

Dear Mr. Smith:

As we review the draft alternatives and associated comments, we need to clarify a point regarding the contention that the proposal can be constructed within the existing one hundred (100) foot right of way. All other discussions of safety and regulatory requirements aside, our understanding from previous discussion with you and your team is that you believe you can construct the proposed project within the existing ROW with one caveat. That caveat is that you also have the right to clear what you deem to be "danger trees" found outside of your deeded ROW and located on National Park Service Lands. Please verify or correct our understanding of your assertion in this matter at the earliest possible date. Thank you for your kind attention to this matter.

Sincerely,

John Dohahue

Superintendent Delaware Water Gap National Recreation Area & Middle Delaware National Scenic and Recreational River (570) 426-2418

Cc: Andrew Tittler, DOI Office of the Solicitor Patrick Lynch, National Park Service, DEWA Kara Deutsch, National Park Service, DEWA Sarah Bransom, National Park Service, APPA Amanda Stein, National Park Service, DEWA Patrick Malone, National Park Service, DSC Jennifer McConaghie, National Park Service, NER

J. J. (0)

Pam Underhill Superintendent Appalachian National Scenic Trail (304) 535-6279 Clint Riley, U.S. Fish and Wildlife Service Pamela Shellenberger, U.S. Fish and Wildlife Service

Denver Service Center - TIC Attn: SRLINE EIS 12795 W. Alameda Parkway Denver, CO 80225-0287

Gregory J. Smith Manager-Transmission Expansion



PPL Electric Utilities Two North Ninth Street, GENN5 Allentown, PA 18101-1179

December 7, 2010

Mr. John J. Donahue Superintendent National Park Service Delaware Water Gap National Recreation Area Bushkill, PA 18324

Ms. Pamela Underhill Superintendent Appalachian National Scenic Trail National Park Service P.O. Box 50 Harpers Ferry, WV 25425

# Re: PPL Electric Utilities Corporation/Vegetation Management In the Delaware Water Gap National Recreation Area ("DEWA")

Dear Mr. Donahue and Ms. Underhill:

Thank you for the opportunity to respond to your letter of November 18, 2010, regarding the need and right of PPL Electric Utilities Corporation ("PPL Electric") to clear what PPL Electric identifies as "danger trees." The answer to your question is that PPL Electric does need to remove danger trees with respect to the 100-foot alternative and, in fact, has the right to remove danger trees under its existing easements.

The relevant easement agreements include the following language:

And, further, in consideration of said payments, we do hereby release and quit claim the said Pennsylvania Power & Light Company, its successors, assigns and lessees, of, and from any and all damages, loss or injury that maybe at any time caused by or result from the construction, reconstruction, operation and maintenance of the said lines, or the trimming or cutting down of any and all trees which, in the judgment of the said Company, its successors, assigns and lessees, may interfere with the construction, reconstruction, maintenance or operation of the said lines or menace the same. Mr. Donahue and Ms. Underhill - 2 -

Based on the above language, PPL Electric has the right to cut and remove danger trees. Further, as you are aware, PPL Electric has been removing danger trees as part of its vegetation management program for many years.

PPL Electric also has the right to remove danger trees consistent with the Stipulation and Order of Settlement that was entered into between PPL Electric and the National Park Service that was approved by the District Court for the Middle District of Pennsylvania on August 19, 2010. In that stipulation it was agreed that PPL Electric has the right to perform vegetation management consistent with its easement rights and its Transmission Vegetation Management Program ("TVMP"). That Stipulation also indicated that the work this past year would be done consistent with the Scope of Work provided to NPS on May 19, 2010. Both the TVMP and the Scope of Work includes the removal of danger trees and, consistent with its easement rights and historical practice, PPL Electric removed 11 danger trees when the work was performed this past year.

Finally, PPL Electric notes that it is required by federal regulation to protect all of its transmission lines from trees and other vegetation that could come in contact with or otherwise impair the reliability or safety of the lines. Failure to protect the lines would subject PPL to fines under federal regulation.

Again, thank you for the opportunity to respond to your question. If you are in disagreement with PPL Electric's position, please advise at your earliest convenience.

Very truly yours,

Theyney 1) Douth

Gregory J. Smith

cc: Ronald J. Reybitz, Esq. John Lain, Esq.

> g:\steno\ael\rjr\donahueandunderhill.doc 12/07/10 4:04 PM

Patrick J. McMackin Project Director – Susquehanna Roseland

> PPL Electric Utilities Two North Ninth Street, Plaza 3 Allentown, PA 18101-1179



February 14, 2011

In regards to: SRLINE EIS 25147

Delaware Water Gap National Recreation Area c/o Amanda Stein HQ River Road, Off Route 209 Bushkill, PA 18324

Dear Ms. Stein:

Thank you again for taking the time to conference call with us on 18 January 2011. Hopefully, NPS and EA found this time well spent. As a follow-up to the discussion during that call and in an effort to further help the NPS and EA with the EIS process, we reviewed the information that was provided on File-Works over the last several years. We thought it might be helpful to consolidate all associated files in a new, single folder titled "Existing 100 foot ROW Alternative."

In regards to your specific information requests, we also reviewed each of the documents and identified the exact location of the information and provided a summary below. Lastly, we have updated some of the documents to remove outdated information.

The following summary should help provide some clarity and assist with locating the specific information requested on the existing 100' ROW alternative. Attachment 1 contains detailed references to the documents and pages that contain the information we believe will help in your analysis.

## Access Routes/Roads:

All associated access routes/roads for the existing 100' ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. Although there are additional transmission structures needed for this alternative, the same access routes/roads needed to access and remove existing structures will be utilized for access to these additional transmission structures. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

## Transmission Structure Locations, Heights and Spans

The associated transmission structures B17-4, B17-5 and B17-6 for the existing 100' ROW alternative are the same as those that would be utilized for the Applicants' original proposed route. There are two additional transmission structures needed on NPS property for this alternative: B17-3A and B17-5A. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

# **Transmission Structure Crane Pads:**

The associated transmission structure crane pads for B17-3, B17-4, B17-5 and B17-6 for the existing 100' ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. However, there are two additional transmission structures (B17-3A and B17-5A) that will require crane pads that will be entirely on NPS property. Additionally, an additional transmission structure (B17-2A) located outside NPS property will require an extra crane pad that will be approximately one-half on NPS property. Lastly, no new crane pads will be required for the removal of the existing structure on NPS property. Reference Attachment 1 for additional information, including references to existing documents posted in File Works.

# **100' Right-of-Way Boundaries**

These are the same ROW boundaries currently granted PPL for the operations of the existing 230 kV transmission line.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the boundaries for the current PPL ROW for the existing 100' ROW alternative. The ROW boundaries are identified on both page 1 and 2 by solid black lines, as noted in the Legend.

# Vegetation Management - Access Road Construction

All construction vegetation clearing associated with the construction of the access routes/roads for the existing 100' ROW alternative are the same in location and size as those that would be utilized for the Applicants' original proposed route. Although there are additional transmission structures needed for this alternative, the same access routes/roads needed to access and remove existing structures will be utilized for access to these additional transmission structures.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed access roads for the existing 100' ROW alternative. This document provides an aerial view of the portion of the line that would be modified to accommodate construction of the new transmission line within the existing ROW. Reference the "Access Routes/Roads" section in Attachment 1 for more details.

# Vegetation Management - Transmission Structure Construction and Removal

It is expected that additional clearing for the construction vegetation clearing associated with the construction and removal of transmission structures for the existing 100' ROW alternative will be very minimal, depending on the time passed since the last wire zone/border zone routine vegetation management associated with the existing 230 kV transmission line ROW currently operating on NPS property. The primary difference between the existing 100' ROW alternative and the Applicants' original proposed route is that the width of the ROW and associated clearing will be reduced by twenty-five (25) feet on each side. Additionally, more clearing including grubbing, would be required in the additional crane pad areas (B17-2A, B17-3A and B17-5A). There will be no additional clearing beyond what is presently required from the last structure in Pennsylvania, B17-6, to the Delaware River and the New Jersey border.

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structures and crane pads for the existing 100' ROW alternative. Reference the "Transmission Structure Locations" and "Transmission Structure Crane Pads" sections in Attachment 1 for more details.

# Vegetation Management - Transmission Line Operations

It is expected that additional vegetation management for the operations of the existing 100' ROW alternative will be very minimal compared to the ongoing wire zone/border zone routine vegetation management associated with the existing 230 kV transmission line ROW currently operating on NPS property. The primary difference between operations of the existing 100' ROW alternative and the Applicants' original proposed route is that the width of the ROW and associated clearing will be reduced by twenty-five (25) feet on each side. Additionally, as a result of the reduced ROW and clearing, vegetation management activities will be more routine (likely annually), there will be a lower tolerance for danger trees outside the ROW, the option for aerial clearing and maintenance will be eliminated, and access roads will need to be maintained in a more functional state. There will be no additional clearing from the last structure in Pennsylvania, B17-6, to the Delaware River than would be required for the existing 230 kV transmission line ROW currently operating on NPS property.

Additionally, the document titled "100' ROW Information.PDF" contains more information on the minimum vegetation management cycle. Assuming an annual two (2) foot growth rate, the minimum cycle for all spans is currently expected to be every three years. However, for the span between B173-A and B17-4 it is expected to be every year. This is based on the remaining buffer from tree line. This span is primarily over the existing Arnott Fen which currently does not promote the growth of tall vegetation.

# **Transmission Structure Maintenance**

The steel mono-pole structures proposed for use do not require routine painting. Therefore, the associated routine maintenance that has historically been performed on the existing transmission structures, specifically the lattice towers, will no longer be required. Painting will also not be required for the structures in the Applicants' original proposal.

# **Traffic and Visitor Impacts**

Due to the additional structures required for the 100' ROW alternative, construction duration is currently estimated to be an additional 2 weeks. Impacts to traffic and visitors should be relatively minor as work is anticipated to be scheduled during the winter months. Also reference the Follow-up to Data Request: #108, included in the data request response package dated September 15, 2010 and posted in File Works. To access this document (Followup Data Request 09152010 Responses.pdf) in File Works, open the "DEWA" folder, then the "Data Gap Responses" folder and lastly, the "Followup 9-15-10 Responses" folder.

## **Updated Documents**

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf," which provides an aerial view and identifies the proposed access roads for the existing 100' ROW alternative, has been updated. A new document titled "B17_PA_DEWA_Access_01272011.pdf" has been prepared. Obsolete project information has been removed and additional data labels added. We hope this further helps support the NPS and EA in their efforts.

Lastly, the latest version of the PPL EU "Specification for Initial Clearing and Control Maintenance of Vegetation On or Adjacent To Electric Line Right-of-Way through Use Of Herbicides, Mechanical, and Hand-clearing Technique - LA-79827-8" has been uploaded to File-Works in the folder titled "Vegetation". Changes associated with this latest revision are noted on page 2 of the document.

The Applicants stand ready to continue to provide any additional support needed to ensure a timely, accurate and complete EIS process. Should NPS or EA require any additional information or wish to discuss this or any other information provided, please feel free to contact Jeff Luzenski, 610-774-4184, or myself.

These documents are also available electronically on the enclosed CD, and have been uploaded today to the project's File-Works site.

In addition, two hard copies and one CD have been sent to the Appalachian National Scenic Trail c/o Sarah Bransom, and a hard copy to the Denver Service Center for inclusion in the administrative record. Additionally, one CD has been sent to Andrew Tittler at the Office of the Solicitor and one CD to EA Engineering Science and Technology, Inc.

Please let me know if additional copies are needed.

Sincerely,

Patrick & The Mackin

Patrick J. McMackin, P.E.

Project Director Susquehanna-Roseland Project PPL Electric Utilities 2 N. Ninth Street (Plaza) Allentown, PA 18101 pjmcmackin@pplweb.com Office: 610-774-3526 Cell: 610-577-6715

# Attachment 1

# **100 Foot ROW Alternative Details**

The following provides additional information from documents referenced above.

## Access Routes/Roads:

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed access roads for the existing 100' ROW alternative. This document provides an aerial view of the portion of the line that would be modified to accommodate construction of the new transmission line within the existing ROW. The document identifies the Delaware Water Gap NRA boundaries, the boundaries of the ROW (including the proposed 100' ROW sections), existing transmission structures, proposed transmission structures, the proposed transmission line, surveyed wetlands, proposed crane pad locations and sizes, the proposed access routes/roads and associated, approximate clearing area needed for the access routes/roads.

Page 1 identifies the "Existing Alternate Route" as a dotted yellow line, as noted in the Legend. Specifically identified are the access routes/roads off of:

River Road to proposed new transmission structure B17-2. (Note: This proposed new transmission structure and its associated access route/road are not on NPS property. The access route/road and new transmission structure B17-2 are identical to those for the proposed route originally submitted by the applicants. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line.)

River Road to existing structure 37-2 and to proposed new transmission structure B17-2A (Note: This transmission structure, B17-2A, and a majority of its associated access route/road are not on NPS property). Only approximately 250' of the access route/road will be on NPS property and on the existing PPL ROW. Approximately only one-half of the crane pad for the new transmission structure B17-2A will be on the NPS property and within the existing PPL ROW. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line.)

River Road to existing structure 37-3 and to proposed new transmission structure B17-3 (Note: This proposed new transmission structure and its associated access route/road are not on NPS property. The access route/road, its crane pad and new transmission structure B17-3 are identical to those for the proposed route originally submitted by the applicants. The associated access route/road to this structure already exists and is utilized for routine maintenance of the existing transmission line. However, approximately only one-half of the crane pad for the new transmission structure B17-3 will be on the NPS property and within the existing PPL ROW.)

Community Drive to existing structure 38-1 and to proposed new transmission structure B17-3A. (Note: This new transmission structure, B17-3A, its crane pad and its associated access route/road are all on NPS property. The crane pad for the new transmission structure B17-3A will be on the NPS property and within the existing PPL ROW. The associated access route/road to these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Page 1 also identifies the "New Preferred Route" as a dashed yellow line, as noted in the Legend. Specifically identified is the access route/road off of:

Community Drive to existing structure 38-1 and to proposed new transmission structure B17-4. (Note: Page 1 only shows the initial portion of a USFWS preferred access route/road that the applicants are currently planning to utilize. This new access route/road is on NPS property. The applicants are currently planning to utilize this access route/road as a result of an onsite investigation and consultation with the PA FBC and USFWS that occurred subsequent to the applicants' original submittal. This new preferred route will help further minimize any potential bog turtle issues as identified by the PA FBC and USFWS. Additionally, the removal of a stream crossing grate on the existing proposed access route/road by NPS personnel subsequent to the applicants' original submittal, further supports the use of this new preferred access route/road.)

Page 2 identifies an "Existing Alternate Route" as a dotted yellow line, as noted in the Legend (The same as page 1.). Specifically identified are the access routes/roads from:

Proposed new transmission structure B17-4 to proposed new transmission structure B17-5. (Note: This proposed new transmission structures and its associated access route/road are all on NPS property. The access route/road, new transmission structures B17-4 and B17-5, and associated crane pads are identical to those for the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Proposed new transmission structure B17-5 to existing transmission structure 38-3. (Note: This proposed new transmission structure and its associated access route/road are all on NPS property. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Existing transmission structure 38-3 to proposed new transmission structure B17-5A. (Note: This proposed new transmission structure and its associated access route/road are all on NPS property. The access route/road between the existing structure and the proposed new transmission structure B17-5A is identical to the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.)

Proposed new transmission structure B17-5A to proposed new transmission structure B17-6 and existing transmission structure 38-4. (Note: This proposed new transmission structures and its associated access route/road are all on NPS property. The access route/road, the new transmission structure B17-6 and its associated crane pad are identical to those for the proposed route submitted by the applicants. The associated access route/road between these structures already exists and is utilized for routine maintenance of the existing transmission line.) Page 2 also identifies a "New Preferred Route" as a dashed yellow line, as noted in the Legend. Specifically identified is the remaining section of the access route/road off of:

Community Drive to existing structure 38-2 and to proposed new transmission structure B17-4. (Note: Page 2 only shows the final portion of a USFWS preferred access route/road that the applicants are currently planning to utilize. As stated above, this new access route/road is on NPS property. The applicants are currently planning to utilize this access route/road as a result of an onsite investigation and consultation with the USFWS that occurred subsequent to the applicants' original submittal. This new preferred route will help further minimize any potential Bog Turtle issues as identified by USFWS. Additionally, the removal of a stream crossing grate on the existing proposed access route/road by NPS personnel subsequent to the applicants' original submittal, further supports the use of this new preferred access route/road.)

# **Transmission Structure Locations**

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structures for the existing 100' ROW alternative.

Page 1 identifies the approximate location of each "Existing Transmission Structure" as an orange box, as noted in the Legend. Specifically identified are two existing transmission structures currently on NPS property.

Page 1 also identifies the approximate location of each "Proposed Transmission Structure" as red box, as noted in the Legend. Specifically identified on page 1 are:

• B17-3A (Note: This is an additional structure on NPS property that would be needed to support the existing 100' ROW design and operations. All other proposed transmission structures on page 1 are not on NPS property.)

Page 2 identifies the approximate location of each "Existing Transmission Structure" as an orange box, as noted in the Legend (same as page 1). Specifically identified are three existing transmission structures currently on NPS property.

Page 2 also identifies the approximate location of each "Proposed Transmission Structure" as red box, as noted in the Legend (same as page 1). Specifically identified on page 2 are:

- B17-4 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)
- B17-5 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)
- B17-5A (Note: This is an additional structure on NPS property that would be needed to support the existing 100' ROW design and operations. All other proposed transmission structures on page 1 are not on NPS property.)

• B17-6 (Note: This proposed transmission structures on NPS property and its location are identical to the same transmission structure for the proposed route submitted by the applicants.)

## **Transmission Structure Heights**

...,

*v*-

The document titled "Blowout Rev2.pdf" is the Finite Element Sag Tension Report. Page 11 of this report has a plan and profile of the existing 100' ROW alternative. The respective height and elevation of each structure is noted on this page.

Summary of information in document "Blowout Rev2.pdf" follows:

- B17-3A: "ht =184.01 ele = 528.00"
- B17-4: "ht =184.01 ele = 533.00"
- B17-5: "ht =184.01 ele = 509.00"
- B17-5A: "ht =184.01 ele = 695.00"
- B17-6: "ht =184.01 ele = 532.00"

### **Transmission Line Spans:**

The document titled "Blowout Rev2.pdf" is the Finite Element Sag Tension Report. Page 11 of this report has a plan and profile of the existing 100' ROW alternative. The respective span between each structure is noted on this page.

Summary of information in document "Blowout Rev2.pdf" follows:

- B17-2 to B17-2A: "417.58"
- B17-3 to B17-3A: "573.51""
- B17-3A to B17-4: "1058.11"
- B17-4 to B17-5: "587.82" (Note: Same as Applicants' proposed route.)
- B17-5 to B17-5A: "528.21"
- B17-5A to B17-6: "749.86"

# **Transmission Structure Crane Pads:**

 $d=1,\ldots,n-p$ 

The document titled "DEWA_existing_ROW_Alternative_12142009.pdf" identifies the proposed transmission structure crane pads for the existing 100' ROW alternative.

Summary of information in document "DEWA_existing_ROW_Alternative 12142009.pdf" follows:

Page 1 identifies the approximate location of each "Crane Pad" as a gray rectangle, as noted in the Legend. Specifically identified on page 1 are:

- B17-2A crane pad (Note: This additional crane pad, a portion (approximately one-half) of which is on NPS property and entirely located within PPL's existing ROW, would be needed to support the existing 100' ROW design and construction.)
- B17-3 crane pad (Note: This is crane pad, a portion (approximately one-half) of which is on NPS property and entirely located within PPL's existing ROW would the same as the same one that would be utilized for the Applicants' original proposed route.)
- B17-3A (Note: This additional crane pad, located entirely on NPS property and PPL's existing ROW, would be needed to support the existing 100' ROW design and construction.)

Page 2 identifies the approximate location of each "Crane Pad" as gray rectangle, as noted in the Legend (same as page 1). Specifically identified on page 2 are:

- B17-4 crane pad (Note: This crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)
- B17-5 crane pad (Note: This crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)
- B17-5A crane pad (Note: This additional crane pad, located entirely on NPS property and within the existing PPL ROW, would be needed to support the existing 100' ROW design and construction.)
- B17-6 crane pad (Note: This is crane pad, located entirely on NPS property and within the existing PPL ROW, would be the same as the one that would be utilized for the Applicants' original proposed route.)